1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MMath
|
---|
28 | //
|
---|
29 | // Mars - Math package (eg Significances, etc)
|
---|
30 | //
|
---|
31 | /////////////////////////////////////////////////////////////////////////////
|
---|
32 | #include "MMath.h"
|
---|
33 |
|
---|
34 | #ifndef ROOT_TVector3
|
---|
35 | #include <TVector3.h>
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | // --------------------------------------------------------------------------
|
---|
39 | //
|
---|
40 | // Calculate Significance as
|
---|
41 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
|
---|
42 | //
|
---|
43 | // s: total number of events in signal region
|
---|
44 | // b: number of background events in signal region
|
---|
45 | //
|
---|
46 | Double_t MMath::Significance(Double_t s, Double_t b)
|
---|
47 | {
|
---|
48 | const Double_t k = b==0 ? 0 : s/b;
|
---|
49 | const Double_t f = s+k*k*b;
|
---|
50 |
|
---|
51 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
|
---|
52 | }
|
---|
53 |
|
---|
54 | // --------------------------------------------------------------------------
|
---|
55 | //
|
---|
56 | // Symmetrized significance - this is somehow analog to
|
---|
57 | // SignificanceLiMaSigned
|
---|
58 | //
|
---|
59 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s);
|
---|
60 | //
|
---|
61 | Double_t MMath::SignificanceSym(Double_t s, Double_t b)
|
---|
62 | {
|
---|
63 | return s>b ? Significance(s, b) : -Significance(b, s);
|
---|
64 | }
|
---|
65 |
|
---|
66 | // --------------------------------------------------------------------------
|
---|
67 | //
|
---|
68 | // calculates the significance according to Li & Ma
|
---|
69 | // ApJ 272 (1983) 317, Formula 17
|
---|
70 | //
|
---|
71 | // s // s: number of on events
|
---|
72 | // b // b: number of off events
|
---|
73 | // alpha = t_on/t_off; // t: observation time
|
---|
74 | //
|
---|
75 | // The significance has the same (positive!) value for s>b and b>s.
|
---|
76 | //
|
---|
77 | // Returns -1 if sum<0 or alpha<0 or the argument of sqrt<0
|
---|
78 | // Returns 0 if s+b==0, s==0 or b==0
|
---|
79 | //
|
---|
80 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments:
|
---|
81 | //
|
---|
82 | // > Ok. Here is my understanding:
|
---|
83 | // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
|
---|
84 | // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
|
---|
85 | // > exactly this. If you scale OFF to ON first (using time or using any other
|
---|
86 | // > method), then you cannot use formula 17 (9) anymore. You can just try
|
---|
87 | // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
|
---|
88 | // > will see the result will be different.
|
---|
89 | //
|
---|
90 | // > Here are less mathematical arguments:
|
---|
91 | //
|
---|
92 | // > 1) the better background determination you have (smaller alpha) the more
|
---|
93 | // > significant is your excess, thus your analysis is more sensitive. If you
|
---|
94 | // > normalize OFF to ON first, you loose this sensitivity.
|
---|
95 | //
|
---|
96 | // > 2) the normalization OFF to ON has an error, which naturally depends on
|
---|
97 | // > the OFF and ON. This error is propagating to the significance of your
|
---|
98 | // > excess if you use the Li&Ma formula 17 correctly. But if you normalize
|
---|
99 | // > first and use then alpha=1, the error gets lost completely, you loose
|
---|
100 | // > somehow the criteria of goodness of the normalization.
|
---|
101 | //
|
---|
102 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
|
---|
103 | {
|
---|
104 | const Double_t sum = s+b;
|
---|
105 |
|
---|
106 | if (s==0 || b==0 || sum==0)
|
---|
107 | return 0;
|
---|
108 |
|
---|
109 | if (sum<0 || alpha<=0)
|
---|
110 | return -1;
|
---|
111 |
|
---|
112 | const Double_t l = s*TMath::Log(s/sum*(alpha+1)/alpha);
|
---|
113 | const Double_t m = b*TMath::Log(b/sum*(alpha+1) );
|
---|
114 |
|
---|
115 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
|
---|
116 | }
|
---|
117 |
|
---|
118 | // --------------------------------------------------------------------------
|
---|
119 | //
|
---|
120 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
|
---|
121 | // calculation has failed. Otherwise the Li/Ma significance which was
|
---|
122 | // calculated. If s<b a negative value is returned.
|
---|
123 | //
|
---|
124 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
|
---|
125 | {
|
---|
126 | const Double_t sig = SignificanceLiMa(s, b, alpha);
|
---|
127 | if (sig<=0)
|
---|
128 | return 0;
|
---|
129 |
|
---|
130 | return TMath::Sign(sig, s-alpha*b);
|
---|
131 | }
|
---|
132 |
|
---|
133 | // --------------------------------------------------------------------------
|
---|
134 | //
|
---|
135 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
|
---|
136 | //
|
---|
137 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
|
---|
138 | {
|
---|
139 | static const Double_t sqrt2 = TMath::Sqrt(2.);
|
---|
140 |
|
---|
141 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
|
---|
142 |
|
---|
143 | if (rc<0)
|
---|
144 | return 0;
|
---|
145 | if (rc>1)
|
---|
146 | return 1;
|
---|
147 |
|
---|
148 | return rc;
|
---|
149 | }
|
---|
150 |
|
---|
151 | // --------------------------------------------------------------------------
|
---|
152 | //
|
---|
153 | // This function reduces the precision to roughly 0.5% of a Float_t by
|
---|
154 | // changing its bit-pattern (Be carefull, in rare cases this function must
|
---|
155 | // be adapted to different machines!). This is usefull to enforce better
|
---|
156 | // compression by eg. gzip.
|
---|
157 | //
|
---|
158 | void MMath::ReducePrecision(Float_t &val)
|
---|
159 | {
|
---|
160 | UInt_t &f = (UInt_t&)val;
|
---|
161 |
|
---|
162 | f += 0x00004000;
|
---|
163 | f &= 0xffff8000;
|
---|
164 | }
|
---|
165 |
|
---|
166 | // -------------------------------------------------------------------------
|
---|
167 | //
|
---|
168 | // Quadratic interpolation
|
---|
169 | //
|
---|
170 | // calculate the parameters of a parabula such that
|
---|
171 | // y(i) = a + b*x(i) + c*x(i)^2
|
---|
172 | //
|
---|
173 | // If the determinant==0 an empty TVector3 is returned.
|
---|
174 | //
|
---|
175 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
|
---|
176 | {
|
---|
177 | Double_t x1 = x(0);
|
---|
178 | Double_t x2 = x(1);
|
---|
179 | Double_t x3 = x(2);
|
---|
180 |
|
---|
181 | Double_t y1 = y(0);
|
---|
182 | Double_t y2 = y(1);
|
---|
183 | Double_t y3 = y(2);
|
---|
184 |
|
---|
185 | const double det =
|
---|
186 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
---|
187 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
---|
188 |
|
---|
189 |
|
---|
190 | if (det==0)
|
---|
191 | return TVector3();
|
---|
192 |
|
---|
193 | const double det1 = 1.0/det;
|
---|
194 |
|
---|
195 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
---|
196 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
---|
197 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
---|
198 |
|
---|
199 | const double ai21 = x2*x2 - x3*x3;
|
---|
200 | const double ai22 = x3*x3 - x1*x1;
|
---|
201 | const double ai23 = x1*x1 - x2*x2;
|
---|
202 |
|
---|
203 | const double ai31 = x3 - x2;
|
---|
204 | const double ai32 = x1 - x3;
|
---|
205 | const double ai33 = x2 - x1;
|
---|
206 |
|
---|
207 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
|
---|
208 | (ai21*y1 + ai22*y2 + ai23*y3) * det1,
|
---|
209 | (ai31*y1 + ai32*y2 + ai33*y3) * det1);
|
---|
210 | }
|
---|
211 |
|
---|
212 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
213 | {
|
---|
214 | const TVector3 c = GetParab(vx, vy);
|
---|
215 | return c(0) + c(1)*x + c(2)*x*x;
|
---|
216 | }
|
---|
217 |
|
---|
218 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
219 | {
|
---|
220 | const Double_t l0 = TMath::Log10(vx(0));
|
---|
221 | const Double_t l1 = TMath::Log10(vx(1));
|
---|
222 | const Double_t l2 = TMath::Log10(vx(2));
|
---|
223 |
|
---|
224 | const TVector3 vx0(l0, l1, l2);
|
---|
225 | return InterpolParabLin(vx0, vy, TMath::Log10(x));
|
---|
226 | }
|
---|
227 |
|
---|
228 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
229 | {
|
---|
230 | const Double_t l0 = TMath::Cos(vx(0));
|
---|
231 | const Double_t l1 = TMath::Cos(vx(1));
|
---|
232 | const Double_t l2 = TMath::Cos(vx(2));
|
---|
233 |
|
---|
234 | const TVector3 vx0(l0, l1, l2);
|
---|
235 | return InterpolParabLin(vx0, vy, TMath::Cos(x));
|
---|
236 | }
|
---|