1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MMath
|
---|
28 | //
|
---|
29 | // Mars - Math package (eg Significances, etc)
|
---|
30 | //
|
---|
31 | /////////////////////////////////////////////////////////////////////////////
|
---|
32 | #include "MMath.h"
|
---|
33 |
|
---|
34 | #ifndef ROOT_TVector3
|
---|
35 | #include <TVector3.h>
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | #ifndef ROOT_TArrayD
|
---|
39 | #include <TArrayD.h>
|
---|
40 | #endif
|
---|
41 | // --------------------------------------------------------------------------
|
---|
42 | //
|
---|
43 | // Calculate Significance as
|
---|
44 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
|
---|
45 | //
|
---|
46 | // s: total number of events in signal region
|
---|
47 | // b: number of background events in signal region
|
---|
48 | //
|
---|
49 | Double_t MMath::Significance(Double_t s, Double_t b)
|
---|
50 | {
|
---|
51 | const Double_t k = b==0 ? 0 : s/b;
|
---|
52 | const Double_t f = s+k*k*b;
|
---|
53 |
|
---|
54 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
|
---|
55 | }
|
---|
56 |
|
---|
57 | // --------------------------------------------------------------------------
|
---|
58 | //
|
---|
59 | // Symmetrized significance - this is somehow analog to
|
---|
60 | // SignificanceLiMaSigned
|
---|
61 | //
|
---|
62 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s);
|
---|
63 | //
|
---|
64 | Double_t MMath::SignificanceSym(Double_t s, Double_t b)
|
---|
65 | {
|
---|
66 | return s>b ? Significance(s, b) : -Significance(b, s);
|
---|
67 | }
|
---|
68 |
|
---|
69 | // --------------------------------------------------------------------------
|
---|
70 | //
|
---|
71 | // calculates the significance according to Li & Ma
|
---|
72 | // ApJ 272 (1983) 317, Formula 17
|
---|
73 | //
|
---|
74 | // s // s: number of on events
|
---|
75 | // b // b: number of off events
|
---|
76 | // alpha = t_on/t_off; // t: observation time
|
---|
77 | //
|
---|
78 | // The significance has the same (positive!) value for s>b and b>s.
|
---|
79 | //
|
---|
80 | // Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
|
---|
81 | //
|
---|
82 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments:
|
---|
83 | //
|
---|
84 | // > Ok. Here is my understanding:
|
---|
85 | // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
|
---|
86 | // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
|
---|
87 | // > exactly this. If you scale OFF to ON first (using time or using any other
|
---|
88 | // > method), then you cannot use formula 17 (9) anymore. You can just try
|
---|
89 | // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
|
---|
90 | // > will see the result will be different.
|
---|
91 | //
|
---|
92 | // > Here are less mathematical arguments:
|
---|
93 | //
|
---|
94 | // > 1) the better background determination you have (smaller alpha) the more
|
---|
95 | // > significant is your excess, thus your analysis is more sensitive. If you
|
---|
96 | // > normalize OFF to ON first, you loose this sensitivity.
|
---|
97 | //
|
---|
98 | // > 2) the normalization OFF to ON has an error, which naturally depends on
|
---|
99 | // > the OFF and ON. This error is propagating to the significance of your
|
---|
100 | // > excess if you use the Li&Ma formula 17 correctly. But if you normalize
|
---|
101 | // > first and use then alpha=1, the error gets lost completely, you loose
|
---|
102 | // > somehow the criteria of goodness of the normalization.
|
---|
103 | //
|
---|
104 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
|
---|
105 | {
|
---|
106 | const Double_t sum = s+b;
|
---|
107 |
|
---|
108 | if (s<0 || b<0 || alpha<=0)
|
---|
109 | return -1;
|
---|
110 |
|
---|
111 | const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
|
---|
112 | const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
|
---|
113 |
|
---|
114 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
|
---|
115 | }
|
---|
116 |
|
---|
117 | // --------------------------------------------------------------------------
|
---|
118 | //
|
---|
119 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
|
---|
120 | // calculation has failed. Otherwise the Li/Ma significance which was
|
---|
121 | // calculated. If s<b a negative value is returned.
|
---|
122 | //
|
---|
123 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
|
---|
124 | {
|
---|
125 | const Double_t sig = SignificanceLiMa(s, b, alpha);
|
---|
126 | if (sig<=0)
|
---|
127 | return 0;
|
---|
128 |
|
---|
129 | return TMath::Sign(sig, s-alpha*b);
|
---|
130 | }
|
---|
131 |
|
---|
132 | // --------------------------------------------------------------------------
|
---|
133 | //
|
---|
134 | // Return Li/Ma (5) for the error of the excess, under the assumption that
|
---|
135 | // the existance of a signal is already known.
|
---|
136 | //
|
---|
137 | Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
|
---|
138 | {
|
---|
139 | Double_t Ns = s - alpha*b;
|
---|
140 | Double_t sN = s + alpha*alpha*b;
|
---|
141 |
|
---|
142 | return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
|
---|
143 | }
|
---|
144 |
|
---|
145 | // --------------------------------------------------------------------------
|
---|
146 | //
|
---|
147 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
|
---|
148 | //
|
---|
149 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
|
---|
150 | {
|
---|
151 | static const Double_t sqrt2 = TMath::Sqrt(2.);
|
---|
152 |
|
---|
153 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
|
---|
154 |
|
---|
155 | if (rc<0)
|
---|
156 | return 0;
|
---|
157 | if (rc>1)
|
---|
158 | return 1;
|
---|
159 |
|
---|
160 | return rc;
|
---|
161 | }
|
---|
162 |
|
---|
163 | // ------------------------------------------------------------------------
|
---|
164 | //
|
---|
165 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
166 | // abs(a[i]-Median)
|
---|
167 | //
|
---|
168 | template <class Size, class Element>
|
---|
169 | Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
|
---|
170 | {
|
---|
171 | static const Double_t prob = 0.682689477208650697; //MMath::.GaissProb(1.0);
|
---|
172 |
|
---|
173 | // Sanity check
|
---|
174 | if (n <= 0 || !a)
|
---|
175 | return 0;
|
---|
176 |
|
---|
177 | // Get median of distribution
|
---|
178 | med = TMath::Median(n, a);
|
---|
179 |
|
---|
180 | // Create the abs(a[i]-med) distribution
|
---|
181 | Double_t arr[n];
|
---|
182 | for (int i=0; i<n; i++)
|
---|
183 | arr[i] = TMath::Abs(a[i]-med);
|
---|
184 |
|
---|
185 | // FIXME: GausProb() is a workaround. It should be taken into account in Median!
|
---|
186 | //return TMath::Median(n, arr);
|
---|
187 |
|
---|
188 | // Sort distribution
|
---|
189 | Long64_t idx[n];
|
---|
190 | TMath::SortImp(n, arr, idx, kTRUE);
|
---|
191 |
|
---|
192 | // Define where to divide
|
---|
193 | const Int_t div = TMath::Nint(n*prob);
|
---|
194 |
|
---|
195 | // Calculate result
|
---|
196 | Double_t dev = TMath::KOrdStat(n, arr, div, idx);
|
---|
197 | if (n%2 == 0)
|
---|
198 | {
|
---|
199 | dev += TMath::KOrdStat(n, arr, div-1, idx);
|
---|
200 | dev /= 2;
|
---|
201 | }
|
---|
202 |
|
---|
203 | return dev;
|
---|
204 | }
|
---|
205 |
|
---|
206 | // ------------------------------------------------------------------------
|
---|
207 | //
|
---|
208 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
209 | // abs(a[i]-Median)
|
---|
210 | //
|
---|
211 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
|
---|
212 | {
|
---|
213 | return MedianDevImp(n, a, med);
|
---|
214 | }
|
---|
215 |
|
---|
216 | // ------------------------------------------------------------------------
|
---|
217 | //
|
---|
218 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
219 | // abs(a[i]-Median)
|
---|
220 | //
|
---|
221 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
|
---|
222 | {
|
---|
223 | return MedianDevImp(n, a, med);
|
---|
224 | }
|
---|
225 |
|
---|
226 | // ------------------------------------------------------------------------
|
---|
227 | //
|
---|
228 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
229 | // abs(a[i]-Median)
|
---|
230 | //
|
---|
231 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
|
---|
232 | {
|
---|
233 | return MedianDevImp(n, a, med);
|
---|
234 | }
|
---|
235 |
|
---|
236 | // ------------------------------------------------------------------------
|
---|
237 | //
|
---|
238 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
239 | // abs(a[i]-Median)
|
---|
240 | //
|
---|
241 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
|
---|
242 | {
|
---|
243 | return MedianDevImp(n, a, med);
|
---|
244 | }
|
---|
245 |
|
---|
246 | // ------------------------------------------------------------------------
|
---|
247 | //
|
---|
248 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
249 | // abs(a[i]-Median)
|
---|
250 | //
|
---|
251 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
|
---|
252 | {
|
---|
253 | return MedianDevImp(n, a, med);
|
---|
254 | }
|
---|
255 |
|
---|
256 | // ------------------------------------------------------------------------
|
---|
257 | //
|
---|
258 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
259 | // abs(a[i]-Median)
|
---|
260 | //
|
---|
261 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
|
---|
262 | {
|
---|
263 | return MedianDevImp(n, a, med);
|
---|
264 | }
|
---|
265 |
|
---|
266 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
267 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
268 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
269 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
270 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
271 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
272 |
|
---|
273 | // --------------------------------------------------------------------------
|
---|
274 | //
|
---|
275 | // This function reduces the precision to roughly 0.5% of a Float_t by
|
---|
276 | // changing its bit-pattern (Be carefull, in rare cases this function must
|
---|
277 | // be adapted to different machines!). This is usefull to enforce better
|
---|
278 | // compression by eg. gzip.
|
---|
279 | //
|
---|
280 | void MMath::ReducePrecision(Float_t &val)
|
---|
281 | {
|
---|
282 | UInt_t &f = (UInt_t&)val;
|
---|
283 |
|
---|
284 | f += 0x00004000;
|
---|
285 | f &= 0xffff8000;
|
---|
286 | }
|
---|
287 |
|
---|
288 | // -------------------------------------------------------------------------
|
---|
289 | //
|
---|
290 | // Quadratic interpolation
|
---|
291 | //
|
---|
292 | // calculate the parameters of a parabula such that
|
---|
293 | // y(i) = a + b*x(i) + c*x(i)^2
|
---|
294 | //
|
---|
295 | // If the determinant==0 an empty TVector3 is returned.
|
---|
296 | //
|
---|
297 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
|
---|
298 | {
|
---|
299 | Double_t x1 = x(0);
|
---|
300 | Double_t x2 = x(1);
|
---|
301 | Double_t x3 = x(2);
|
---|
302 |
|
---|
303 | Double_t y1 = y(0);
|
---|
304 | Double_t y2 = y(1);
|
---|
305 | Double_t y3 = y(2);
|
---|
306 |
|
---|
307 | const double det =
|
---|
308 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
---|
309 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
---|
310 |
|
---|
311 |
|
---|
312 | if (det==0)
|
---|
313 | return TVector3();
|
---|
314 |
|
---|
315 | const double det1 = 1.0/det;
|
---|
316 |
|
---|
317 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
---|
318 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
---|
319 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
---|
320 |
|
---|
321 | const double ai21 = x2*x2 - x3*x3;
|
---|
322 | const double ai22 = x3*x3 - x1*x1;
|
---|
323 | const double ai23 = x1*x1 - x2*x2;
|
---|
324 |
|
---|
325 | const double ai31 = x3 - x2;
|
---|
326 | const double ai32 = x1 - x3;
|
---|
327 | const double ai33 = x2 - x1;
|
---|
328 |
|
---|
329 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
|
---|
330 | (ai21*y1 + ai22*y2 + ai23*y3) * det1,
|
---|
331 | (ai31*y1 + ai32*y2 + ai33*y3) * det1);
|
---|
332 | }
|
---|
333 |
|
---|
334 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
335 | {
|
---|
336 | const TVector3 c = GetParab(vx, vy);
|
---|
337 | return c(0) + c(1)*x + c(2)*x*x;
|
---|
338 | }
|
---|
339 |
|
---|
340 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
341 | {
|
---|
342 | const Double_t l0 = TMath::Log10(vx(0));
|
---|
343 | const Double_t l1 = TMath::Log10(vx(1));
|
---|
344 | const Double_t l2 = TMath::Log10(vx(2));
|
---|
345 |
|
---|
346 | const TVector3 vx0(l0, l1, l2);
|
---|
347 | return InterpolParabLin(vx0, vy, TMath::Log10(x));
|
---|
348 | }
|
---|
349 |
|
---|
350 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
351 | {
|
---|
352 | const Double_t l0 = TMath::Cos(vx(0));
|
---|
353 | const Double_t l1 = TMath::Cos(vx(1));
|
---|
354 | const Double_t l2 = TMath::Cos(vx(2));
|
---|
355 |
|
---|
356 | const TVector3 vx0(l0, l1, l2);
|
---|
357 | return InterpolParabLin(vx0, vy, TMath::Cos(x));
|
---|
358 | }
|
---|
359 |
|
---|
360 | // --------------------------------------------------------------------------
|
---|
361 | //
|
---|
362 | // Analytically calculated result of a least square fit of:
|
---|
363 | // y = A*e^(B*x)
|
---|
364 | // Equal weights
|
---|
365 | //
|
---|
366 | // It returns TArrayD(2) = { A, B };
|
---|
367 | //
|
---|
368 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
---|
369 | //
|
---|
370 | TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
|
---|
371 | {
|
---|
372 | Double_t sumxsqy = 0;
|
---|
373 | Double_t sumylny = 0;
|
---|
374 | Double_t sumxy = 0;
|
---|
375 | Double_t sumy = 0;
|
---|
376 | Double_t sumxylny = 0;
|
---|
377 | for (int i=0; i<n; i++)
|
---|
378 | {
|
---|
379 | sumylny += y[i]*TMath::Log(y[i]);
|
---|
380 | sumxy += x[i]*y[i];
|
---|
381 | sumxsqy += x[i]*x[i]*y[i];
|
---|
382 | sumxylny += x[i]*y[i]*TMath::Log(y[i]);
|
---|
383 | sumy += y[i];
|
---|
384 | }
|
---|
385 |
|
---|
386 | const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
|
---|
387 |
|
---|
388 | const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
|
---|
389 | const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
|
---|
390 |
|
---|
391 | TArrayD rc(2);
|
---|
392 | rc[0] = TMath::Exp(a);
|
---|
393 | rc[1] = b;
|
---|
394 | return rc;
|
---|
395 | }
|
---|
396 |
|
---|
397 | // --------------------------------------------------------------------------
|
---|
398 | //
|
---|
399 | // Analytically calculated result of a least square fit of:
|
---|
400 | // y = A*e^(B*x)
|
---|
401 | // Greater weights to smaller values
|
---|
402 | //
|
---|
403 | // It returns TArrayD(2) = { A, B };
|
---|
404 | //
|
---|
405 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
---|
406 | //
|
---|
407 | TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
|
---|
408 | {
|
---|
409 | // -------- Greater weights to smaller values ---------
|
---|
410 | Double_t sumlny = 0;
|
---|
411 | Double_t sumxlny = 0;
|
---|
412 | Double_t sumxsq = 0;
|
---|
413 | Double_t sumx = 0;
|
---|
414 | for (int i=0; i<n; i++)
|
---|
415 | {
|
---|
416 | sumlny += TMath::Log(y[i]);
|
---|
417 | sumxlny += x[i]*TMath::Log(y[i]);
|
---|
418 |
|
---|
419 | sumxsq += x[i]*x[i];
|
---|
420 | sumx += x[i];
|
---|
421 | }
|
---|
422 |
|
---|
423 | const Double_t dev = n*sumxsq-sumx*sumx;
|
---|
424 |
|
---|
425 | const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
|
---|
426 | const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
|
---|
427 |
|
---|
428 | TArrayD rc(2);
|
---|
429 | rc[0] = TMath::Exp(a);
|
---|
430 | rc[1] = b;
|
---|
431 | return rc;
|
---|
432 | }
|
---|
433 |
|
---|
434 | // --------------------------------------------------------------------------
|
---|
435 | //
|
---|
436 | // Analytically calculated result of a least square fit of:
|
---|
437 | // y = A+B*ln(x)
|
---|
438 | //
|
---|
439 | // It returns TArrayD(2) = { A, B };
|
---|
440 | //
|
---|
441 | // see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
|
---|
442 | //
|
---|
443 | TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
|
---|
444 | {
|
---|
445 | Double_t sumylnx = 0;
|
---|
446 | Double_t sumy = 0;
|
---|
447 | Double_t sumlnx = 0;
|
---|
448 | Double_t sumlnxsq = 0;
|
---|
449 | for (int i=0; i<n; i++)
|
---|
450 | {
|
---|
451 | sumylnx += y[i]*TMath::Log(x[i]);
|
---|
452 | sumy += y[i];
|
---|
453 | sumlnx += TMath::Log(x[i]);
|
---|
454 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
---|
455 | }
|
---|
456 |
|
---|
457 | const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
|
---|
458 | const Double_t a = (sumy-b*sumlnx)/n;
|
---|
459 |
|
---|
460 | TArrayD rc(2);
|
---|
461 | rc[0] = a;
|
---|
462 | rc[1] = b;
|
---|
463 | return rc;
|
---|
464 | }
|
---|
465 |
|
---|
466 | // --------------------------------------------------------------------------
|
---|
467 | //
|
---|
468 | // Analytically calculated result of a least square fit of:
|
---|
469 | // y = A*x^B
|
---|
470 | //
|
---|
471 | // It returns TArrayD(2) = { A, B };
|
---|
472 | //
|
---|
473 | // see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
|
---|
474 | //
|
---|
475 | TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
|
---|
476 | {
|
---|
477 | Double_t sumlnxlny = 0;
|
---|
478 | Double_t sumlnx = 0;
|
---|
479 | Double_t sumlny = 0;
|
---|
480 | Double_t sumlnxsq = 0;
|
---|
481 | for (int i=0; i<n; i++)
|
---|
482 | {
|
---|
483 | sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
|
---|
484 | sumlnx += TMath::Log(x[i]);
|
---|
485 | sumlny += TMath::Log(y[i]);
|
---|
486 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
---|
487 | }
|
---|
488 |
|
---|
489 | const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
|
---|
490 | const Double_t a = (sumlny-b*sumlnx)/n;
|
---|
491 |
|
---|
492 | TArrayD rc(2);
|
---|
493 | rc[0] = TMath::Exp(a);
|
---|
494 | rc[1] = b;
|
---|
495 | return rc;
|
---|
496 | }
|
---|