source: trunk/MagicSoft/Mars/mbase/MMath.cc@ 8581

Last change on this file since 8581 was 8581, checked in by tbretz, 17 years ago
*** empty log message ***
File size: 22.2 KB
Line 
1/* ======================================================================== *\
2! $Name: not supported by cvs2svn $:$Id: MMath.cc,v 1.35 2007-06-18 14:42:32 tbretz Exp $
3! --------------------------------------------------------------------------
4!
5! *
6! * This file is part of MARS, the MAGIC Analysis and Reconstruction
7! * Software. It is distributed to you in the hope that it can be a useful
8! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
9! * It is distributed WITHOUT ANY WARRANTY.
10! *
11! * Permission to use, copy, modify and distribute this software and its
12! * documentation for any purpose is hereby granted without fee,
13! * provided that the above copyright notice appear in all copies and
14! * that both that copyright notice and this permission notice appear
15! * in supporting documentation. It is provided "as is" without express
16! * or implied warranty.
17! *
18!
19!
20! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2005
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MMath
30//
31// Mars - Math package (eg Significances, etc)
32//
33/////////////////////////////////////////////////////////////////////////////
34#include "MMath.h"
35
36#ifndef ROOT_TVector2
37#include <TVector2.h>
38#endif
39
40#ifndef ROOT_TVector3
41#include <TVector3.h>
42#endif
43
44#ifndef ROOT_TArrayD
45#include <TArrayD.h>
46#endif
47
48#ifndef ROOT_TComplex
49#include <TComplex.h>
50#endif
51
52//NamespaceImp(MMath);
53
54// --------------------------------------------------------------------------
55//
56// Calculate Significance as
57// significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
58//
59// s: total number of events in signal region
60// b: number of background events in signal region
61//
62Double_t MMath::Significance(Double_t s, Double_t b)
63{
64 const Double_t k = b==0 ? 0 : s/b;
65 const Double_t f = s+k*k*b;
66
67 return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
68}
69
70// --------------------------------------------------------------------------
71//
72// Symmetrized significance - this is somehow analog to
73// SignificanceLiMaSigned
74//
75// Returns Significance(s,b) if s>b otherwise -Significance(b, s);
76//
77Double_t MMath::SignificanceSym(Double_t s, Double_t b)
78{
79 return s>b ? Significance(s, b) : -Significance(b, s);
80}
81
82// --------------------------------------------------------------------------
83//
84// calculates the significance according to Li & Ma
85// ApJ 272 (1983) 317, Formula 17
86//
87// s // s: number of on events
88// b // b: number of off events
89// alpha = t_on/t_off; // t: observation time
90//
91// The significance has the same (positive!) value for s>b and b>s.
92//
93// Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
94//
95// Here is some eMail written by Daniel Mazin about the meaning of the arguments:
96//
97// > Ok. Here is my understanding:
98// > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
99// > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
100// > exactly this. If you scale OFF to ON first (using time or using any other
101// > method), then you cannot use formula 17 (9) anymore. You can just try
102// > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
103// > will see the result will be different.
104//
105// > Here are less mathematical arguments:
106//
107// > 1) the better background determination you have (smaller alpha) the more
108// > significant is your excess, thus your analysis is more sensitive. If you
109// > normalize OFF to ON first, you loose this sensitivity.
110//
111// > 2) the normalization OFF to ON has an error, which naturally depends on
112// > the OFF and ON. This error is propagating to the significance of your
113// > excess if you use the Li&Ma formula 17 correctly. But if you normalize
114// > first and use then alpha=1, the error gets lost completely, you loose
115// > somehow the criteria of goodness of the normalization.
116//
117Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
118{
119 const Double_t sum = s+b;
120
121 if (s<0 || b<0 || alpha<=0)
122 return -1;
123
124 const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
125 const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
126
127 return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
128}
129
130// --------------------------------------------------------------------------
131//
132// Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
133// calculation has failed. Otherwise the Li/Ma significance which was
134// calculated. If s<b a negative value is returned.
135//
136Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
137{
138 const Double_t sig = SignificanceLiMa(s, b, alpha);
139 if (sig<=0)
140 return 0;
141
142 return TMath::Sign(sig, s-alpha*b);
143}
144
145// --------------------------------------------------------------------------
146//
147// Return Li/Ma (5) for the error of the excess, under the assumption that
148// the existance of a signal is already known.
149//
150Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
151{
152 Double_t Ns = s - alpha*b;
153 Double_t sN = s + alpha*alpha*b;
154
155 return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
156}
157
158// --------------------------------------------------------------------------
159//
160// Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
161//
162Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
163{
164 if (x<mean)
165 return 0;
166
167 static const Double_t sqrt2 = TMath::Sqrt(2.);
168
169 const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
170
171 if (rc<0)
172 return 0;
173 if (rc>1)
174 return 1;
175
176 return rc;
177}
178
179// ------------------------------------------------------------------------
180//
181// Return the "median" (at 68.3%) value of the distribution of
182// abs(a[i]-Median)
183//
184template <class Size, class Element>
185Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
186{
187 static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0);
188
189 // Sanity check
190 if (n <= 0 || !a)
191 return 0;
192
193 // Get median of distribution
194 med = TMath::Median(n, a);
195
196 // Create the abs(a[i]-med) distribution
197 Double_t arr[n];
198 for (int i=0; i<n; i++)
199 arr[i] = TMath::Abs(a[i]-med);
200
201 //return TMath::Median(n, arr)/0.67449896936; //MMath::GaussProb(x)=0.5
202
203 // Define where to divide (floor because the highest possible is n-1)
204 const Int_t div = TMath::FloorNint(n*prob);
205
206 // Calculate result
207 Double_t dev = TMath::KOrdStat(n, arr, div);
208 if (n%2 == 0)
209 {
210 dev += TMath::KOrdStat(n, arr, div-1);
211 dev /= 2;
212 }
213
214 return dev;
215}
216
217// ------------------------------------------------------------------------
218//
219// Return the "median" (at 68.3%) value of the distribution of
220// abs(a[i]-Median)
221//
222Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
223{
224 return MedianDevImp(n, a, med);
225}
226
227// ------------------------------------------------------------------------
228//
229// Return the "median" (at 68.3%) value of the distribution of
230// abs(a[i]-Median)
231//
232Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
233{
234 return MedianDevImp(n, a, med);
235}
236
237// ------------------------------------------------------------------------
238//
239// Return the "median" (at 68.3%) value of the distribution of
240// abs(a[i]-Median)
241//
242Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
243{
244 return MedianDevImp(n, a, med);
245}
246
247// ------------------------------------------------------------------------
248//
249// Return the "median" (at 68.3%) value of the distribution of
250// abs(a[i]-Median)
251//
252Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
253{
254 return MedianDevImp(n, a, med);
255}
256
257// ------------------------------------------------------------------------
258//
259// Return the "median" (at 68.3%) value of the distribution of
260// abs(a[i]-Median)
261//
262Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
263{
264 return MedianDevImp(n, a, med);
265}
266
267// ------------------------------------------------------------------------
268//
269// Return the "median" (at 68.3%) value of the distribution of
270// abs(a[i]-Median)
271//
272Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
273{
274 return MedianDevImp(n, a, med);
275}
276
277Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
278Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
279Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
280Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
281Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
282Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
283
284// --------------------------------------------------------------------------
285//
286// This function reduces the precision to roughly 0.5% of a Float_t by
287// changing its bit-pattern (Be carefull, in rare cases this function must
288// be adapted to different machines!). This is usefull to enforce better
289// compression by eg. gzip.
290//
291void MMath::ReducePrecision(Float_t &val)
292{
293 UInt_t &f = (UInt_t&)val;
294
295 f += 0x00004000;
296 f &= 0xffff8000;
297}
298
299// -------------------------------------------------------------------------
300//
301// Quadratic interpolation
302//
303// calculate the parameters of a parabula such that
304// y(i) = a + b*x(i) + c*x(i)^2
305//
306// If the determinant==0 an empty TVector3 is returned.
307//
308TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
309{
310 Double_t x1 = x(0);
311 Double_t x2 = x(1);
312 Double_t x3 = x(2);
313
314 Double_t y1 = y(0);
315 Double_t y2 = y(1);
316 Double_t y3 = y(2);
317
318 const double det =
319 + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
320 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
321
322
323 if (det==0)
324 return TVector3();
325
326 const double det1 = 1.0/det;
327
328 const double ai11 = x2*x3*x3 - x3*x2*x2;
329 const double ai12 = x3*x1*x1 - x1*x3*x3;
330 const double ai13 = x1*x2*x2 - x2*x1*x1;
331
332 const double ai21 = x2*x2 - x3*x3;
333 const double ai22 = x3*x3 - x1*x1;
334 const double ai23 = x1*x1 - x2*x2;
335
336 const double ai31 = x3 - x2;
337 const double ai32 = x1 - x3;
338 const double ai33 = x2 - x1;
339
340 return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
341 (ai21*y1 + ai22*y2 + ai23*y3) * det1,
342 (ai31*y1 + ai32*y2 + ai33*y3) * det1);
343}
344
345Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
346{
347 const TVector3 c = GetParab(vx, vy);
348 return c(0) + c(1)*x + c(2)*x*x;
349}
350
351Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
352{
353 const Double_t l0 = TMath::Log10(vx(0));
354 const Double_t l1 = TMath::Log10(vx(1));
355 const Double_t l2 = TMath::Log10(vx(2));
356
357 const TVector3 vx0(l0, l1, l2);
358 return InterpolParabLin(vx0, vy, TMath::Log10(x));
359}
360
361Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
362{
363 const Double_t l0 = TMath::Cos(vx(0));
364 const Double_t l1 = TMath::Cos(vx(1));
365 const Double_t l2 = TMath::Cos(vx(2));
366
367 const TVector3 vx0(l0, l1, l2);
368 return InterpolParabLin(vx0, vy, TMath::Cos(x));
369}
370
371// --------------------------------------------------------------------------
372//
373// Analytically calculated result of a least square fit of:
374// y = A*e^(B*x)
375// Equal weights
376//
377// It returns TArrayD(2) = { A, B };
378//
379// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
380//
381TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
382{
383 Double_t sumxsqy = 0;
384 Double_t sumylny = 0;
385 Double_t sumxy = 0;
386 Double_t sumy = 0;
387 Double_t sumxylny = 0;
388 for (int i=0; i<n; i++)
389 {
390 sumylny += y[i]*TMath::Log(y[i]);
391 sumxy += x[i]*y[i];
392 sumxsqy += x[i]*x[i]*y[i];
393 sumxylny += x[i]*y[i]*TMath::Log(y[i]);
394 sumy += y[i];
395 }
396
397 const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
398
399 const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
400 const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
401
402 TArrayD rc(2);
403 rc[0] = TMath::Exp(a);
404 rc[1] = b;
405 return rc;
406}
407
408// --------------------------------------------------------------------------
409//
410// Analytically calculated result of a least square fit of:
411// y = A*e^(B*x)
412// Greater weights to smaller values
413//
414// It returns TArrayD(2) = { A, B };
415//
416// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
417//
418TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
419{
420 // -------- Greater weights to smaller values ---------
421 Double_t sumlny = 0;
422 Double_t sumxlny = 0;
423 Double_t sumxsq = 0;
424 Double_t sumx = 0;
425 for (int i=0; i<n; i++)
426 {
427 sumlny += TMath::Log(y[i]);
428 sumxlny += x[i]*TMath::Log(y[i]);
429
430 sumxsq += x[i]*x[i];
431 sumx += x[i];
432 }
433
434 const Double_t dev = n*sumxsq-sumx*sumx;
435
436 const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
437 const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
438
439 TArrayD rc(2);
440 rc[0] = TMath::Exp(a);
441 rc[1] = b;
442 return rc;
443}
444
445// --------------------------------------------------------------------------
446//
447// Analytically calculated result of a least square fit of:
448// y = A+B*ln(x)
449//
450// It returns TArrayD(2) = { A, B };
451//
452// see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
453//
454TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
455{
456 Double_t sumylnx = 0;
457 Double_t sumy = 0;
458 Double_t sumlnx = 0;
459 Double_t sumlnxsq = 0;
460 for (int i=0; i<n; i++)
461 {
462 sumylnx += y[i]*TMath::Log(x[i]);
463 sumy += y[i];
464 sumlnx += TMath::Log(x[i]);
465 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
466 }
467
468 const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
469 const Double_t a = (sumy-b*sumlnx)/n;
470
471 TArrayD rc(2);
472 rc[0] = a;
473 rc[1] = b;
474 return rc;
475}
476
477// --------------------------------------------------------------------------
478//
479// Analytically calculated result of a least square fit of:
480// y = A*x^B
481//
482// It returns TArrayD(2) = { A, B };
483//
484// see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
485//
486TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
487{
488 Double_t sumlnxlny = 0;
489 Double_t sumlnx = 0;
490 Double_t sumlny = 0;
491 Double_t sumlnxsq = 0;
492 for (int i=0; i<n; i++)
493 {
494 sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
495 sumlnx += TMath::Log(x[i]);
496 sumlny += TMath::Log(y[i]);
497 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
498 }
499
500 const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
501 const Double_t a = (sumlny-b*sumlnx)/n;
502
503 TArrayD rc(2);
504 rc[0] = TMath::Exp(a);
505 rc[1] = b;
506 return rc;
507}
508
509// --------------------------------------------------------------------------
510//
511// Calculate the intersection of two lines defined by (x1;y1) and (x2;x2)
512// Returns the intersection point.
513//
514// It is assumed that the lines intersect. If there is no intersection
515// TVector2() is returned (which is not destinguishable from
516// TVector2(0,0) if the intersection is at the coordinate source)
517//
518// Formula from: http://mathworld.wolfram.com/Line-LineIntersection.html
519//
520TVector2 MMath::GetIntersectionPoint(const TVector2 &x1, const TVector2 &y1, const TVector2 &x2, const TVector2 &y2)
521{
522 TMatrix d(2,2);
523 d[0][0] = x1.X()-y1.X();
524 d[0][1] = x2.X()-y2.X();
525 d[1][0] = x1.Y()-y1.Y();
526 d[1][1] = x2.Y()-y2.Y();
527
528 const Double_t denom = d.Determinant();
529 if (denom==0)
530 return TVector2();
531
532 TMatrix l1(2,2);
533 TMatrix l2(2,2);
534
535 l1[0][0] = x1.X();
536 l1[0][1] = y1.X();
537 l2[0][0] = x2.X();
538 l2[0][1] = y2.X();
539
540 l1[1][0] = x1.Y();
541 l1[1][1] = y1.Y();
542 l2[1][0] = x2.Y();
543 l2[1][1] = y2.Y();
544
545 TMatrix a(2,2);
546 a[0][0] = l1.Determinant();
547 a[0][1] = l2.Determinant();
548 a[1][0] = x1.X()-y1.X();
549 a[1][1] = x2.X()-y2.X();
550
551 const Double_t X = a.Determinant()/denom;
552
553 a[1][0] = x1.Y()-y1.Y();
554 a[1][1] = x2.Y()-y2.Y();
555
556 const Double_t Y = a.Determinant()/denom;
557
558 return TVector2(X, Y);
559}
560
561// --------------------------------------------------------------------------
562//
563// Solves: x^2 + ax + b = 0;
564// Return number of solutions returned as x1, x2
565//
566Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
567{
568 const Double_t r = a*a - 4*b;
569 if (r<0)
570 return 0;
571
572 if (r==0)
573 {
574 x1 = x2 = -a/2;
575 return 1;
576 }
577
578 const Double_t s = TMath::Sqrt(r);
579
580 x1 = (-a+s)/2;
581 x2 = (-a-s)/2;
582
583 return 2;
584}
585
586// --------------------------------------------------------------------------
587//
588// This is a helper function making the execution of SolverPol3 a bit faster
589//
590static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
591{
592 const TComplex c2 = TComplex::Cos(th/3.);
593 return c1.Re() * c2.Re() - c1.Im() * c2.Im();
594}
595
596// --------------------------------------------------------------------------
597//
598// Solves: x^3 + ax^2 + bx + c = 0;
599// Return number of the real solutions, returned as z1, z2, z3
600//
601// Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
602// Which is based on the solution given in
603// http://mathworld.wolfram.com/CubicEquation.html
604//
605// -------------------------------------------------------------------------
606//
607// Exact solutions of cubic polynomial equations
608// by Stephen R. Schmitt Algorithm
609//
610// An exact solution of the cubic polynomial equation:
611//
612// x^3 + a*x^2 + b*x + c = 0
613//
614// was first published by Gerolamo Cardano (1501-1576) in his treatise,
615// Ars Magna. He did not discoverer of the solution; a professor of
616// mathematics at the University of Bologna named Scipione del Ferro (ca.
617// 1465-1526) is credited as the first to find an exact solution. In the
618// years since, several improvements to the original solution have been
619// discovered. Zeno source code
620//
621// http://home.att.net/~srschmitt/cubizen.html
622//
623// % compute real or complex roots of cubic polynomial
624// function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
625//
626// var Q, R, D, S, T : real
627// var im, th : real
628//
629// Q := (3*b - a^2)/9
630// R := (9*b*a - 27*c - 2*a^3)/54
631// D := Q^3 + R^2 % polynomial discriminant
632//
633// if (D >= 0) then % complex or duplicate roots
634//
635// S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
636// T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
637//
638// z1 := -a/3 + (S + T) % real root
639// z2 := -a/3 - (S + T)/2 % real part of complex root
640// z3 := -a/3 - (S + T)/2 % real part of complex root
641// im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
642//
643// else % distinct real roots
644//
645// th := arccos(R/sqrt( -Q^3))
646//
647// z1 := 2*sqrt(-Q)*cos(th/3) - a/3
648// z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
649// z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
650// im := 0
651//
652// end if
653//
654// return im % imaginary part
655//
656// end function
657//
658// see also http://en.wikipedia.org/wiki/Cubic_equation
659//
660Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
661 Double_t &x1, Double_t &x2, Double_t &x3)
662{
663 // Double_t coeff[4] = { 1, a, b, c };
664 // return TMath::RootsCubic(coeff, x1, x2, x3) ? 1 : 3;
665
666 const Double_t Q = (a*a - 3*b)/9;
667 const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
668 const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
669
670 // ----- The single-real / duplicate-roots solution -----
671
672 // D<0: three real roots
673 // D>0: one real root
674 // D==0: maximum two real roots (two identical roots)
675
676 // R==0: only one unique root
677 // R!=0: two roots
678
679 if (D==0)
680 {
681 const Double_t r = MMath::Sqrt3(R);
682
683 x1 = r - a/3.; // real root
684 if (R==0)
685 return 1;
686
687 x2 = 2*r - a/3.; // real root
688 return 2;
689 }
690
691 if (D>0) // complex or duplicate roots
692 {
693 const Double_t sqrtd = TMath::Sqrt(D);
694
695 const Double_t A = TMath::Sign(1., R)*MMath::Sqrt3(TMath::Abs(R)+sqrtd);
696
697 // The case A==0 cannot happen. This would imply D==0
698 // if (A==0)
699 // {
700 // x1 = -a/3;
701 // return 1;
702 // }
703
704 x1 = (A+Q/A)-a/3;
705
706 //const Double_t S = MMath::Sqrt3(R + sqrtd);
707 //const Double_t T = MMath::Sqrt3(R - sqrtd);
708 //x1 = (S+T) - a/3.; // real root
709
710 return 1;
711
712 //z2 = (S + T)/2 - a/3.; // real part of complex root
713 //z3 = (S + T)/2 - a/3.; // real part of complex root
714 //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
715 }
716
717 // ----- The general solution with three roots ---
718
719 if (Q==0)
720 return 0;
721
722 if (Q>0) // This is here for speed reasons
723 {
724 const Double_t sqrtq = TMath::Sqrt(Q);
725 const Double_t rq = R/TMath::Abs(Q);
726
727 const Double_t t = TMath::ACos(rq/sqrtq)/3;
728
729 static const Double_t sqrt3 = TMath::Sqrt(3.);
730
731 const Double_t s = TMath::Sin(t)*sqrt3;
732 const Double_t c = TMath::Cos(t);
733
734 x1 = 2*sqrtq * c - a/3;
735 x2 = -sqrtq * (s + c) - a/3;
736 x3 = sqrtq * (s - c) - a/3;
737
738 /* --- Easier to understand but slower ---
739 const Double_t th1 = TMath::ACos(rq/sqrtq);
740 const Double_t th2 = th1 + TMath::TwoPi();
741 const Double_t th3 = th2 + TMath::TwoPi();
742
743 x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
744 x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
745 x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
746 */
747 return 3;
748 }
749
750 const TComplex sqrtq = TComplex::Sqrt(Q);
751 const Double_t rq = R/TMath::Abs(Q);
752
753 const TComplex th1 = TComplex::ACos(rq/sqrtq);
754 const TComplex th2 = th1 + TMath::TwoPi();
755 const TComplex th3 = th2 + TMath::TwoPi();
756
757 // For ReMul, see bove
758 x1 = ReMul(2.*sqrtq, th1) - a/3.;
759 x2 = ReMul(2.*sqrtq, th2) - a/3.;
760 x3 = ReMul(2.*sqrtq, th3) - a/3.;
761
762 return 3;
763}
Note: See TracBrowser for help on using the repository browser.