source: trunk/MagicSoft/Mars/mbase/MMath.cc@ 8791

Last change on this file since 8791 was 8673, checked in by tbretz, 17 years ago
*** empty log message ***
File size: 22.9 KB
Line 
1/* ======================================================================== *\
2! $Name: not supported by cvs2svn $:$Id: MMath.cc,v 1.37 2007-08-17 10:53:48 tbretz Exp $
3! --------------------------------------------------------------------------
4!
5! *
6! * This file is part of MARS, the MAGIC Analysis and Reconstruction
7! * Software. It is distributed to you in the hope that it can be a useful
8! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
9! * It is distributed WITHOUT ANY WARRANTY.
10! *
11! * Permission to use, copy, modify and distribute this software and its
12! * documentation for any purpose is hereby granted without fee,
13! * provided that the above copyright notice appear in all copies and
14! * that both that copyright notice and this permission notice appear
15! * in supporting documentation. It is provided "as is" without express
16! * or implied warranty.
17! *
18!
19!
20! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2005
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MMath
30//
31// Mars - Math package (eg Significances, etc)
32//
33/////////////////////////////////////////////////////////////////////////////
34#include "MMath.h"
35
36#ifndef ROOT_TVector2
37#include <TVector2.h>
38#endif
39
40#ifndef ROOT_TVector3
41#include <TVector3.h>
42#endif
43
44#ifndef ROOT_TArrayD
45#include <TArrayD.h>
46#endif
47
48#ifndef ROOT_TComplex
49#include <TComplex.h>
50#endif
51
52//NamespaceImp(MMath);
53
54// --------------------------------------------------------------------------
55//
56// Calculate Significance as
57// significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
58//
59// s: total number of events in signal region
60// b: number of background events in signal region
61//
62Double_t MMath::Significance(Double_t s, Double_t b)
63{
64 const Double_t k = b==0 ? 0 : s/b;
65 const Double_t f = s+k*k*b;
66
67 return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
68}
69
70// --------------------------------------------------------------------------
71//
72// Symmetrized significance - this is somehow analog to
73// SignificanceLiMaSigned
74//
75// Returns Significance(s,b) if s>b otherwise -Significance(b, s);
76//
77Double_t MMath::SignificanceSym(Double_t s, Double_t b)
78{
79 return s>b ? Significance(s, b) : -Significance(b, s);
80}
81
82// --------------------------------------------------------------------------
83//
84// calculates the significance according to Li & Ma
85// ApJ 272 (1983) 317, Formula 17
86//
87// s // s: number of on events
88// b // b: number of off events
89// alpha = t_on/t_off; // t: observation time
90//
91// The significance has the same (positive!) value for s>b and b>s.
92//
93// Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
94//
95// Here is some eMail written by Daniel Mazin about the meaning of the arguments:
96//
97// > Ok. Here is my understanding:
98// > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
99// > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
100// > exactly this. If you scale OFF to ON first (using time or using any other
101// > method), then you cannot use formula 17 (9) anymore. You can just try
102// > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
103// > will see the result will be different.
104//
105// > Here are less mathematical arguments:
106//
107// > 1) the better background determination you have (smaller alpha) the more
108// > significant is your excess, thus your analysis is more sensitive. If you
109// > normalize OFF to ON first, you loose this sensitivity.
110//
111// > 2) the normalization OFF to ON has an error, which naturally depends on
112// > the OFF and ON. This error is propagating to the significance of your
113// > excess if you use the Li&Ma formula 17 correctly. But if you normalize
114// > first and use then alpha=1, the error gets lost completely, you loose
115// > somehow the criteria of goodness of the normalization.
116//
117Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
118{
119 const Double_t sum = s+b;
120
121 if (s<0 || b<0 || alpha<=0)
122 return -1;
123
124 const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
125 const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
126
127 return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
128}
129
130// --------------------------------------------------------------------------
131//
132// Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
133// calculation has failed. Otherwise the Li/Ma significance which was
134// calculated. If s<b a negative value is returned.
135//
136Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
137{
138 const Double_t sig = SignificanceLiMa(s, b, alpha);
139 if (sig<=0)
140 return 0;
141
142 return TMath::Sign(sig, s-alpha*b);
143}
144
145// --------------------------------------------------------------------------
146//
147// Return Li/Ma (5) for the error of the excess, under the assumption that
148// the existance of a signal is already known.
149//
150Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
151{
152 Double_t Ns = s - alpha*b;
153 Double_t sN = s + alpha*alpha*b;
154
155 if (Ns<0 || sN<0)
156 return 0;
157
158 if (Ns==0 && sN==0)
159 return 0;
160
161 return Ns/TMath::Sqrt(sN);
162}
163
164// --------------------------------------------------------------------------
165//
166// Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
167//
168Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
169{
170 if (x<mean)
171 return 0;
172
173 static const Double_t sqrt2 = TMath::Sqrt(2.);
174
175 const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
176
177 if (rc<0)
178 return 0;
179 if (rc>1)
180 return 1;
181
182 return rc;
183}
184
185// ------------------------------------------------------------------------
186//
187// Return the "median" (at 68.3%) value of the distribution of
188// abs(a[i]-Median)
189//
190template <class Size, class Element>
191Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
192{
193 static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0);
194
195 // Sanity check
196 if (n <= 0 || !a)
197 return 0;
198
199 // Get median of distribution
200 med = TMath::Median(n, a);
201
202 // Create the abs(a[i]-med) distribution
203 Double_t arr[n];
204 for (int i=0; i<n; i++)
205 arr[i] = TMath::Abs(a[i]-med);
206
207 //return TMath::Median(n, arr)/0.67449896936; //MMath::GaussProb(x)=0.5
208
209 // Define where to divide (floor because the highest possible is n-1)
210 const Int_t div = TMath::FloorNint(n*prob);
211
212 // Calculate result
213 Double_t dev = TMath::KOrdStat(n, arr, div);
214 if (n%2 == 0)
215 {
216 dev += TMath::KOrdStat(n, arr, div-1);
217 dev /= 2;
218 }
219
220 return dev;
221}
222
223// ------------------------------------------------------------------------
224//
225// Return the "median" (at 68.3%) value of the distribution of
226// abs(a[i]-Median)
227//
228Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
229{
230 return MedianDevImp(n, a, med);
231}
232
233// ------------------------------------------------------------------------
234//
235// Return the "median" (at 68.3%) value of the distribution of
236// abs(a[i]-Median)
237//
238Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
239{
240 return MedianDevImp(n, a, med);
241}
242
243// ------------------------------------------------------------------------
244//
245// Return the "median" (at 68.3%) value of the distribution of
246// abs(a[i]-Median)
247//
248Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
249{
250 return MedianDevImp(n, a, med);
251}
252
253// ------------------------------------------------------------------------
254//
255// Return the "median" (at 68.3%) value of the distribution of
256// abs(a[i]-Median)
257//
258Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
259{
260 return MedianDevImp(n, a, med);
261}
262
263// ------------------------------------------------------------------------
264//
265// Return the "median" (at 68.3%) value of the distribution of
266// abs(a[i]-Median)
267//
268Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
269{
270 return MedianDevImp(n, a, med);
271}
272
273// ------------------------------------------------------------------------
274//
275// Return the "median" (at 68.3%) value of the distribution of
276// abs(a[i]-Median)
277//
278Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
279{
280 return MedianDevImp(n, a, med);
281}
282
283Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
284Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
285Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
286Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
287Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
288Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
289
290// --------------------------------------------------------------------------
291//
292// This function reduces the precision to roughly 0.5% of a Float_t by
293// changing its bit-pattern (Be carefull, in rare cases this function must
294// be adapted to different machines!). This is usefull to enforce better
295// compression by eg. gzip.
296//
297void MMath::ReducePrecision(Float_t &val)
298{
299 UInt_t &f = (UInt_t&)val;
300
301 f += 0x00004000;
302 f &= 0xffff8000;
303}
304
305// -------------------------------------------------------------------------
306//
307// Quadratic interpolation
308//
309// calculate the parameters of a parabula such that
310// y(i) = a + b*x(i) + c*x(i)^2
311//
312// If the determinant==0 an empty TVector3 is returned.
313//
314TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
315{
316 const Double_t x1 = x(0);
317 const Double_t x2 = x(1);
318 const Double_t x3 = x(2);
319
320 const Double_t y1 = y(0);
321 const Double_t y2 = y(1);
322 const Double_t y3 = y(2);
323
324 const double det =
325 + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
326 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
327
328
329 if (det==0)
330 return TVector3();
331
332 const double det1 = 1.0/det;
333
334 const double ai11 = x2*x3*x3 - x3*x2*x2;
335 const double ai12 = x3*x1*x1 - x1*x3*x3;
336 const double ai13 = x1*x2*x2 - x2*x1*x1;
337
338 const double ai21 = x2*x2 - x3*x3;
339 const double ai22 = x3*x3 - x1*x1;
340 const double ai23 = x1*x1 - x2*x2;
341
342 const double ai31 = x3 - x2;
343 const double ai32 = x1 - x3;
344 const double ai33 = x2 - x1;
345
346 return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
347 (ai21*y1 + ai22*y2 + ai23*y3) * det1,
348 (ai31*y1 + ai32*y2 + ai33*y3) * det1);
349}
350
351// --------------------------------------------------------------------------
352//
353// Interpolate the points with x-coordinates vx and y-coordinates vy
354// by a parabola (second order polynomial) and return the value at x.
355//
356Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
357{
358 const TVector3 c = GetParab(vx, vy);
359 return c(0) + c(1)*x + c(2)*x*x;
360}
361
362// --------------------------------------------------------------------------
363//
364// Interpolate the points with x-coordinates vx=(-1,0,1) and
365// y-coordinates vy by a parabola (second order polynomial) and return
366// the value at x.
367//
368Double_t MMath::InterpolParabLin(const TVector3 &vy, Double_t x)
369{
370 const TVector3 c(vy(1), (vy(2)-vy(0))/2, vy(0)/2 - vy(1) + vy(2)/2);
371 return c(0) + c(1)*x + c(2)*x*x;
372}
373
374Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
375{
376 const Double_t l0 = TMath::Log10(vx(0));
377 const Double_t l1 = TMath::Log10(vx(1));
378 const Double_t l2 = TMath::Log10(vx(2));
379
380 const TVector3 vx0(l0, l1, l2);
381 return InterpolParabLin(vx0, vy, TMath::Log10(x));
382}
383
384Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
385{
386 const Double_t l0 = TMath::Cos(vx(0));
387 const Double_t l1 = TMath::Cos(vx(1));
388 const Double_t l2 = TMath::Cos(vx(2));
389
390 const TVector3 vx0(l0, l1, l2);
391 return InterpolParabLin(vx0, vy, TMath::Cos(x));
392}
393
394// --------------------------------------------------------------------------
395//
396// Analytically calculated result of a least square fit of:
397// y = A*e^(B*x)
398// Equal weights
399//
400// It returns TArrayD(2) = { A, B };
401//
402// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
403//
404TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
405{
406 Double_t sumxsqy = 0;
407 Double_t sumylny = 0;
408 Double_t sumxy = 0;
409 Double_t sumy = 0;
410 Double_t sumxylny = 0;
411 for (int i=0; i<n; i++)
412 {
413 sumylny += y[i]*TMath::Log(y[i]);
414 sumxy += x[i]*y[i];
415 sumxsqy += x[i]*x[i]*y[i];
416 sumxylny += x[i]*y[i]*TMath::Log(y[i]);
417 sumy += y[i];
418 }
419
420 const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
421
422 const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
423 const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
424
425 TArrayD rc(2);
426 rc[0] = TMath::Exp(a);
427 rc[1] = b;
428 return rc;
429}
430
431// --------------------------------------------------------------------------
432//
433// Analytically calculated result of a least square fit of:
434// y = A*e^(B*x)
435// Greater weights to smaller values
436//
437// It returns TArrayD(2) = { A, B };
438//
439// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
440//
441TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
442{
443 // -------- Greater weights to smaller values ---------
444 Double_t sumlny = 0;
445 Double_t sumxlny = 0;
446 Double_t sumxsq = 0;
447 Double_t sumx = 0;
448 for (int i=0; i<n; i++)
449 {
450 sumlny += TMath::Log(y[i]);
451 sumxlny += x[i]*TMath::Log(y[i]);
452
453 sumxsq += x[i]*x[i];
454 sumx += x[i];
455 }
456
457 const Double_t dev = n*sumxsq-sumx*sumx;
458
459 const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
460 const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
461
462 TArrayD rc(2);
463 rc[0] = TMath::Exp(a);
464 rc[1] = b;
465 return rc;
466}
467
468// --------------------------------------------------------------------------
469//
470// Analytically calculated result of a least square fit of:
471// y = A+B*ln(x)
472//
473// It returns TArrayD(2) = { A, B };
474//
475// see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
476//
477TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
478{
479 Double_t sumylnx = 0;
480 Double_t sumy = 0;
481 Double_t sumlnx = 0;
482 Double_t sumlnxsq = 0;
483 for (int i=0; i<n; i++)
484 {
485 sumylnx += y[i]*TMath::Log(x[i]);
486 sumy += y[i];
487 sumlnx += TMath::Log(x[i]);
488 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
489 }
490
491 const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
492 const Double_t a = (sumy-b*sumlnx)/n;
493
494 TArrayD rc(2);
495 rc[0] = a;
496 rc[1] = b;
497 return rc;
498}
499
500// --------------------------------------------------------------------------
501//
502// Analytically calculated result of a least square fit of:
503// y = A*x^B
504//
505// It returns TArrayD(2) = { A, B };
506//
507// see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
508//
509TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
510{
511 Double_t sumlnxlny = 0;
512 Double_t sumlnx = 0;
513 Double_t sumlny = 0;
514 Double_t sumlnxsq = 0;
515 for (int i=0; i<n; i++)
516 {
517 sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
518 sumlnx += TMath::Log(x[i]);
519 sumlny += TMath::Log(y[i]);
520 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
521 }
522
523 const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
524 const Double_t a = (sumlny-b*sumlnx)/n;
525
526 TArrayD rc(2);
527 rc[0] = TMath::Exp(a);
528 rc[1] = b;
529 return rc;
530}
531
532// --------------------------------------------------------------------------
533//
534// Calculate the intersection of two lines defined by (x1;y1) and (x2;x2)
535// Returns the intersection point.
536//
537// It is assumed that the lines intersect. If there is no intersection
538// TVector2() is returned (which is not destinguishable from
539// TVector2(0,0) if the intersection is at the coordinate source)
540//
541// Formula from: http://mathworld.wolfram.com/Line-LineIntersection.html
542//
543TVector2 MMath::GetIntersectionPoint(const TVector2 &x1, const TVector2 &y1, const TVector2 &x2, const TVector2 &y2)
544{
545 TMatrix d(2,2);
546 d[0][0] = x1.X()-y1.X();
547 d[0][1] = x2.X()-y2.X();
548 d[1][0] = x1.Y()-y1.Y();
549 d[1][1] = x2.Y()-y2.Y();
550
551 const Double_t denom = d.Determinant();
552 if (denom==0)
553 return TVector2();
554
555 TMatrix l1(2,2);
556 TMatrix l2(2,2);
557
558 l1[0][0] = x1.X();
559 l1[0][1] = y1.X();
560 l2[0][0] = x2.X();
561 l2[0][1] = y2.X();
562
563 l1[1][0] = x1.Y();
564 l1[1][1] = y1.Y();
565 l2[1][0] = x2.Y();
566 l2[1][1] = y2.Y();
567
568 TMatrix a(2,2);
569 a[0][0] = l1.Determinant();
570 a[0][1] = l2.Determinant();
571 a[1][0] = x1.X()-y1.X();
572 a[1][1] = x2.X()-y2.X();
573
574 const Double_t X = a.Determinant()/denom;
575
576 a[1][0] = x1.Y()-y1.Y();
577 a[1][1] = x2.Y()-y2.Y();
578
579 const Double_t Y = a.Determinant()/denom;
580
581 return TVector2(X, Y);
582}
583
584// --------------------------------------------------------------------------
585//
586// Solves: x^2 + ax + b = 0;
587// Return number of solutions returned as x1, x2
588//
589Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
590{
591 const Double_t r = a*a - 4*b;
592 if (r<0)
593 return 0;
594
595 if (r==0)
596 {
597 x1 = x2 = -a/2;
598 return 1;
599 }
600
601 const Double_t s = TMath::Sqrt(r);
602
603 x1 = (-a+s)/2;
604 x2 = (-a-s)/2;
605
606 return 2;
607}
608
609// --------------------------------------------------------------------------
610//
611// This is a helper function making the execution of SolverPol3 a bit faster
612//
613static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
614{
615 const TComplex c2 = TComplex::Cos(th/3.);
616 return c1.Re() * c2.Re() - c1.Im() * c2.Im();
617}
618
619// --------------------------------------------------------------------------
620//
621// Solves: x^3 + ax^2 + bx + c = 0;
622// Return number of the real solutions, returned as z1, z2, z3
623//
624// Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
625// Which is based on the solution given in
626// http://mathworld.wolfram.com/CubicEquation.html
627//
628// -------------------------------------------------------------------------
629//
630// Exact solutions of cubic polynomial equations
631// by Stephen R. Schmitt Algorithm
632//
633// An exact solution of the cubic polynomial equation:
634//
635// x^3 + a*x^2 + b*x + c = 0
636//
637// was first published by Gerolamo Cardano (1501-1576) in his treatise,
638// Ars Magna. He did not discoverer of the solution; a professor of
639// mathematics at the University of Bologna named Scipione del Ferro (ca.
640// 1465-1526) is credited as the first to find an exact solution. In the
641// years since, several improvements to the original solution have been
642// discovered. Zeno source code
643//
644// http://home.att.net/~srschmitt/cubizen.html
645//
646// % compute real or complex roots of cubic polynomial
647// function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
648//
649// var Q, R, D, S, T : real
650// var im, th : real
651//
652// Q := (3*b - a^2)/9
653// R := (9*b*a - 27*c - 2*a^3)/54
654// D := Q^3 + R^2 % polynomial discriminant
655//
656// if (D >= 0) then % complex or duplicate roots
657//
658// S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
659// T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
660//
661// z1 := -a/3 + (S + T) % real root
662// z2 := -a/3 - (S + T)/2 % real part of complex root
663// z3 := -a/3 - (S + T)/2 % real part of complex root
664// im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
665//
666// else % distinct real roots
667//
668// th := arccos(R/sqrt( -Q^3))
669//
670// z1 := 2*sqrt(-Q)*cos(th/3) - a/3
671// z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
672// z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
673// im := 0
674//
675// end if
676//
677// return im % imaginary part
678//
679// end function
680//
681// see also http://en.wikipedia.org/wiki/Cubic_equation
682//
683Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
684 Double_t &x1, Double_t &x2, Double_t &x3)
685{
686 // Double_t coeff[4] = { 1, a, b, c };
687 // return TMath::RootsCubic(coeff, x1, x2, x3) ? 1 : 3;
688
689 const Double_t Q = (a*a - 3*b)/9;
690 const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
691 const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
692
693 // ----- The single-real / duplicate-roots solution -----
694
695 // D<0: three real roots
696 // D>0: one real root
697 // D==0: maximum two real roots (two identical roots)
698
699 // R==0: only one unique root
700 // R!=0: two roots
701
702 if (D==0)
703 {
704 const Double_t r = MMath::Sqrt3(R);
705
706 x1 = r - a/3.; // real root
707 if (R==0)
708 return 1;
709
710 x2 = 2*r - a/3.; // real root
711 return 2;
712 }
713
714 if (D>0) // complex or duplicate roots
715 {
716 const Double_t sqrtd = TMath::Sqrt(D);
717
718 const Double_t A = TMath::Sign(1., R)*MMath::Sqrt3(TMath::Abs(R)+sqrtd);
719
720 // The case A==0 cannot happen. This would imply D==0
721 // if (A==0)
722 // {
723 // x1 = -a/3;
724 // return 1;
725 // }
726
727 x1 = (A+Q/A)-a/3;
728
729 //const Double_t S = MMath::Sqrt3(R + sqrtd);
730 //const Double_t T = MMath::Sqrt3(R - sqrtd);
731 //x1 = (S+T) - a/3.; // real root
732
733 return 1;
734
735 //z2 = (S + T)/2 - a/3.; // real part of complex root
736 //z3 = (S + T)/2 - a/3.; // real part of complex root
737 //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
738 }
739
740 // ----- The general solution with three roots ---
741
742 if (Q==0)
743 return 0;
744
745 if (Q>0) // This is here for speed reasons
746 {
747 const Double_t sqrtq = TMath::Sqrt(Q);
748 const Double_t rq = R/TMath::Abs(Q);
749
750 const Double_t t = TMath::ACos(rq/sqrtq)/3;
751
752 static const Double_t sqrt3 = TMath::Sqrt(3.);
753
754 const Double_t s = TMath::Sin(t)*sqrt3;
755 const Double_t c = TMath::Cos(t);
756
757 x1 = 2*sqrtq * c - a/3;
758 x2 = -sqrtq * (s + c) - a/3;
759 x3 = sqrtq * (s - c) - a/3;
760
761 /* --- Easier to understand but slower ---
762 const Double_t th1 = TMath::ACos(rq/sqrtq);
763 const Double_t th2 = th1 + TMath::TwoPi();
764 const Double_t th3 = th2 + TMath::TwoPi();
765
766 x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
767 x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
768 x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
769 */
770 return 3;
771 }
772
773 const TComplex sqrtq = TComplex::Sqrt(Q);
774 const Double_t rq = R/TMath::Abs(Q);
775
776 const TComplex th1 = TComplex::ACos(rq/sqrtq);
777 const TComplex th2 = th1 + TMath::TwoPi();
778 const TComplex th3 = th2 + TMath::TwoPi();
779
780 // For ReMul, see bove
781 x1 = ReMul(2.*sqrtq, th1) - a/3.;
782 x2 = ReMul(2.*sqrtq, th2) - a/3.;
783 x3 = ReMul(2.*sqrtq, th3) - a/3.;
784
785 return 3;
786}
Note: See TracBrowser for help on using the repository browser.