1 | #ifndef MARS_MQuaternion
|
---|
2 | #define MARS_MQuaternion
|
---|
3 |
|
---|
4 | #if 1
|
---|
5 |
|
---|
6 | // We prefer to derive from TQuaternion instead of TLorantzVector
|
---|
7 | // because TQuaternion implements vector algebra with just the 3D vector
|
---|
8 |
|
---|
9 | #ifndef ROOT_TQuaternion
|
---|
10 | #include <math.h>
|
---|
11 | #define sqrt ::sqrt
|
---|
12 | #include <TQuaternion.h>
|
---|
13 | #undef sqrt
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | class MQuaternion : public TQuaternion
|
---|
17 | {
|
---|
18 | public:
|
---|
19 | MQuaternion(const TQuaternion &q) : TQuaternion(q) { }
|
---|
20 | MQuaternion(const TVector3 &v, Double_t t=0) : TQuaternion(v, t) { }
|
---|
21 | void operator*=(const TRotation &r)
|
---|
22 | {
|
---|
23 | fVectorPart *= r;
|
---|
24 | }
|
---|
25 | Double_t X() const { return fVectorPart.X(); }
|
---|
26 | Double_t Y() const { return fVectorPart.Y(); }
|
---|
27 | Double_t Z() const { return fVectorPart.Z(); }
|
---|
28 | Double_t T() const { return fRealPart; }
|
---|
29 |
|
---|
30 | // It seems to be a little bit faster than X*X+Y*Y
|
---|
31 | Double_t R2() const { return XYvector().Mod2(); }
|
---|
32 | Double_t R() const { return XYvector().Mod(); }
|
---|
33 |
|
---|
34 | void PropagateDz(const MQuaternion &w, const Double_t dz)
|
---|
35 | {
|
---|
36 | *this += dz/w.Z()*w;
|
---|
37 | }
|
---|
38 |
|
---|
39 | // Propagates the particle by a distance f in z along
|
---|
40 | // its trajectory w, if f is positive, in the opposite
|
---|
41 | // direction otherwise.
|
---|
42 | void PropagateZ(const MQuaternion &w, const Double_t z)
|
---|
43 | {
|
---|
44 | PropagateDz(w, z-Z());
|
---|
45 |
|
---|
46 | // z=3400, Z= 1700, t=0, c=1 -= 3400/-5*-5 -= 3400 Z=0, c>0
|
---|
47 | // += 1700/-5*-5 += 1700 Z=1700, c>0
|
---|
48 | // z=3400, Z=-1700, t=0, c=1 -= -3400/-5*-5 -= -1700 Z=0, c<0
|
---|
49 |
|
---|
50 | // z=3400, Z= 1700, t=0, c=1 -= (3400-1700)/-5*-5 -= 3400 Z=0, c>0
|
---|
51 | }
|
---|
52 |
|
---|
53 | // Move the photon along its trajectory to the x/y plane
|
---|
54 | // so that z=0. Therefor stretch the vector until
|
---|
55 | // its z-component vanishes.
|
---|
56 | //p -= p.Z()/u.Z()*u;
|
---|
57 | void PropagateZ0(const MQuaternion &w)
|
---|
58 | {
|
---|
59 | // If z>0 we still have to move by a distance of z.
|
---|
60 | // If z<0 we have to move in the opposite direction.
|
---|
61 | // --> z has the right sign for PropagateZ
|
---|
62 | PropagateDz(w, -Z());
|
---|
63 |
|
---|
64 | // Z= 1700, t=0, c=1 -= 1700/-5*-5 -= 1700 +c Z=0, c>0
|
---|
65 | // Z=-1700, t=0, c=1 -= -1700/-5*-5 -= -1700 -c Z=0, c<0
|
---|
66 |
|
---|
67 |
|
---|
68 | // Z= 1700, t=0, c=1 -= 1700/ 5* 5 -= 1700 -c Z=0, c<0
|
---|
69 | // Z=-1700, t=0, c=1 -= -1700/ 5* 5 -= -1700 +c Z=0, c>0
|
---|
70 |
|
---|
71 | //PropagateZ(w, Z());
|
---|
72 | }
|
---|
73 |
|
---|
74 | TVector2 XYvector() const { return fVectorPart.XYvector(); }
|
---|
75 |
|
---|
76 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
---|
77 |
|
---|
78 | ClassDef(MQuaternion, 1)
|
---|
79 | };
|
---|
80 |
|
---|
81 | #else
|
---|
82 |
|
---|
83 | #ifndef ROOT_TLorentzVector
|
---|
84 | #include <TLorentzVector.h>
|
---|
85 | #endif
|
---|
86 |
|
---|
87 | class MQuaternion : public TLorentzVector
|
---|
88 | {
|
---|
89 | public:
|
---|
90 | //MQuaternion(const TLorentzVector &q) : TLorentzVector(q) { }
|
---|
91 | MQuaternion(const TVector3 &v, Double_t t=0) : TLorentzVector(v, t) { }
|
---|
92 | /*
|
---|
93 | void operator*=(const TRotation &r)
|
---|
94 | {
|
---|
95 | fVectorPart *= r;
|
---|
96 | }
|
---|
97 | Double_t X() const { return fVectorPart.X(); }
|
---|
98 | Double_t Y() const { return fVectorPart.Y(); }
|
---|
99 | Double_t Z() const { return fVectorPart.Z(); }
|
---|
100 | Double_t T() const { return fRealPart; }
|
---|
101 | */
|
---|
102 |
|
---|
103 | // It seems to be a little bit faster than X*X+Y*Y
|
---|
104 | Double_t R2() const { return Perp2(); }
|
---|
105 | Double_t R() const { return Perp(); }
|
---|
106 |
|
---|
107 | // Propagates the particle by a distance f in z along
|
---|
108 | // its trajectory w, if f is positive, in the opposite
|
---|
109 | // direction otherwise.
|
---|
110 | void PropagateZ(const MQuaternion &w, const Double_t f)
|
---|
111 | {
|
---|
112 | *this += f/TMath::Abs(w.Z())*w;
|
---|
113 | }
|
---|
114 |
|
---|
115 | // Move the photon along its trajectory to the x/y plane
|
---|
116 | // so that z=0. Therefor stretch the vector until
|
---|
117 | // its z-component vanishes.
|
---|
118 | //p -= p.Z()/u.Z()*u;
|
---|
119 | void PropagateZ0(const MQuaternion &w)
|
---|
120 | {
|
---|
121 | // If z>0 we still have to move by a distance of z.
|
---|
122 | // If z<0 we have to move in th eopposite direction.
|
---|
123 | // --> z has the right sign for PropagateZ
|
---|
124 | PropagateZ(w, Z());
|
---|
125 | }
|
---|
126 |
|
---|
127 | TVector2 XYvector() const { return Vect().XYvector(); }
|
---|
128 |
|
---|
129 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
---|
130 |
|
---|
131 | ClassDef(MQuaternion, 0)
|
---|
132 | };
|
---|
133 |
|
---|
134 | #endif
|
---|
135 |
|
---|
136 | #endif
|
---|