1 | #ifndef MARS_MQuaternion
|
---|
2 | #define MARS_MQuaternion
|
---|
3 |
|
---|
4 | #if 1
|
---|
5 |
|
---|
6 | // We prefer to derive from TQuaternion instead of TLorantzVector
|
---|
7 | // because TQuaternion implements vector algebra with just the 3D vector
|
---|
8 |
|
---|
9 | #ifndef ROOT_TQuaternion
|
---|
10 | #include <TQuaternion.h>
|
---|
11 | #endif
|
---|
12 |
|
---|
13 | class MQuaternion : public TQuaternion
|
---|
14 | {
|
---|
15 | public:
|
---|
16 | MQuaternion(const TQuaternion &q) : TQuaternion(q) { }
|
---|
17 | MQuaternion(const TVector3 &v, Double_t t=0) : TQuaternion(v, t) { }
|
---|
18 | void operator*=(const TRotation &r)
|
---|
19 | {
|
---|
20 | fVectorPart *= r;
|
---|
21 | }
|
---|
22 | Double_t X() const { return fVectorPart.X(); }
|
---|
23 | Double_t Y() const { return fVectorPart.Y(); }
|
---|
24 | Double_t Z() const { return fVectorPart.Z(); }
|
---|
25 | Double_t T() const { return fRealPart; }
|
---|
26 |
|
---|
27 | // It seems to be a little bit faster than X*X+Y*Y
|
---|
28 | Double_t R2() const { return XYvector().Mod2(); }
|
---|
29 | Double_t R() const { return XYvector().Mod(); }
|
---|
30 |
|
---|
31 | void PropagateDz(const MQuaternion &w, const Double_t dz)
|
---|
32 | {
|
---|
33 | *this += dz/w.Z()*w;
|
---|
34 | }
|
---|
35 |
|
---|
36 | // Propagates the particle by a distance f in z along
|
---|
37 | // its trajectory w, if f is positive, in the opposite
|
---|
38 | // direction otherwise.
|
---|
39 | void PropagateZ(const MQuaternion &w, const Double_t z)
|
---|
40 | {
|
---|
41 | PropagateDz(w, z-Z());
|
---|
42 |
|
---|
43 | // z=3400, Z= 1700, t=0, c=1 -= 3400/-5*-5 -= 3400 Z=0, c>0
|
---|
44 | // += 1700/-5*-5 += 1700 Z=1700, c>0
|
---|
45 | // z=3400, Z=-1700, t=0, c=1 -= -3400/-5*-5 -= -1700 Z=0, c<0
|
---|
46 |
|
---|
47 | // z=3400, Z= 1700, t=0, c=1 -= (3400-1700)/-5*-5 -= 3400 Z=0, c>0
|
---|
48 | }
|
---|
49 |
|
---|
50 | // Move the photon along its trajectory to the x/y plane
|
---|
51 | // so that z=0. Therefor stretch the vector until
|
---|
52 | // its z-component vanishes.
|
---|
53 | //p -= p.Z()/u.Z()*u;
|
---|
54 | void PropagateZ0(const MQuaternion &w)
|
---|
55 | {
|
---|
56 | // If z>0 we still have to move by a distance of z.
|
---|
57 | // If z<0 we have to move in the opposite direction.
|
---|
58 | // --> z has the right sign for PropagateZ
|
---|
59 | PropagateDz(w, -Z());
|
---|
60 |
|
---|
61 | // Z= 1700, t=0, c=1 -= 1700/-5*-5 -= 1700 +c Z=0, c>0
|
---|
62 | // Z=-1700, t=0, c=1 -= -1700/-5*-5 -= -1700 -c Z=0, c<0
|
---|
63 |
|
---|
64 |
|
---|
65 | // Z= 1700, t=0, c=1 -= 1700/ 5* 5 -= 1700 -c Z=0, c<0
|
---|
66 | // Z=-1700, t=0, c=1 -= -1700/ 5* 5 -= -1700 +c Z=0, c>0
|
---|
67 |
|
---|
68 | //PropagateZ(w, Z());
|
---|
69 | }
|
---|
70 |
|
---|
71 | TVector2 XYvector() const { return fVectorPart.XYvector(); }
|
---|
72 |
|
---|
73 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
---|
74 |
|
---|
75 | ClassDef(MQuaternion, 1)
|
---|
76 | };
|
---|
77 |
|
---|
78 | #else
|
---|
79 |
|
---|
80 | #ifndef ROOT_TLorentzVector
|
---|
81 | #include <TLorentzVector.h>
|
---|
82 | #endif
|
---|
83 |
|
---|
84 | class MQuaternion : public TLorentzVector
|
---|
85 | {
|
---|
86 | public:
|
---|
87 | //MQuaternion(const TLorentzVector &q) : TLorentzVector(q) { }
|
---|
88 | MQuaternion(const TVector3 &v, Double_t t=0) : TLorentzVector(v, t) { }
|
---|
89 | /*
|
---|
90 | void operator*=(const TRotation &r)
|
---|
91 | {
|
---|
92 | fVectorPart *= r;
|
---|
93 | }
|
---|
94 | Double_t X() const { return fVectorPart.X(); }
|
---|
95 | Double_t Y() const { return fVectorPart.Y(); }
|
---|
96 | Double_t Z() const { return fVectorPart.Z(); }
|
---|
97 | Double_t T() const { return fRealPart; }
|
---|
98 | */
|
---|
99 |
|
---|
100 | // It seems to be a little bit faster than X*X+Y*Y
|
---|
101 | Double_t R2() const { return Perp2(); }
|
---|
102 | Double_t R() const { return Perp(); }
|
---|
103 |
|
---|
104 | // Propagates the particle by a distance f in z along
|
---|
105 | // its trajectory w, if f is positive, in the opposite
|
---|
106 | // direction otherwise.
|
---|
107 | void PropagateZ(const MQuaternion &w, const Double_t f)
|
---|
108 | {
|
---|
109 | *this += f/TMath::Abs(w.Z())*w;
|
---|
110 | }
|
---|
111 |
|
---|
112 | // Move the photon along its trajectory to the x/y plane
|
---|
113 | // so that z=0. Therefor stretch the vector until
|
---|
114 | // its z-component vanishes.
|
---|
115 | //p -= p.Z()/u.Z()*u;
|
---|
116 | void PropagateZ0(const MQuaternion &w)
|
---|
117 | {
|
---|
118 | // If z>0 we still have to move by a distance of z.
|
---|
119 | // If z<0 we have to move in th eopposite direction.
|
---|
120 | // --> z has the right sign for PropagateZ
|
---|
121 | PropagateZ(w, Z());
|
---|
122 | }
|
---|
123 |
|
---|
124 | TVector2 XYvector() const { return Vect().XYvector(); }
|
---|
125 |
|
---|
126 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
---|
127 |
|
---|
128 | ClassDef(MQuaternion, 0)
|
---|
129 | };
|
---|
130 |
|
---|
131 | #endif
|
---|
132 |
|
---|
133 | #endif
|
---|