source: trunk/MagicSoft/Mars/mbase/MTime.cc@ 8339

Last change on this file since 8339 was 8337, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 27.7 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2003
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MTime
28//
29// A generalized MARS time stamp.
30//
31//
32// We do not use floating point values here, because of several reasons:
33// - having the times stored in integers only is more accurate and
34// more reliable in comparison conditions
35// - storing only integers gives similar bit-pattern for similar times
36// which makes compression (eg gzip algorithm in TFile) more
37// successfull
38//
39// Note, that there are many conversion function converting the day time
40// into a readable string. Also a direct interface to SQL time strings
41// is available.
42//
43// If you are using MTime containers as axis lables in root histograms
44// use GetAxisTime(). Make sure that you use the correct TimeFormat
45// on your TAxis (see GetAxisTime())
46//
47//
48// WARNING: Be carefull changing this class. It is also used in the
49// MAGIC drive software cosy as VERY IMPORTANT stuff!
50//
51// Remarke: If you encounter strange behaviour, check the casting.
52// Note, that on Linux machines ULong_t and UInt_t is the same.
53//
54//
55// Version 1:
56// ----------
57// - first version
58//
59// Version 2:
60// ----------
61// - removed fTimeStamp[2]
62//
63// Version 3:
64// ----------
65// - removed fDurtaion - we may put it back when it is needed
66// - complete rewrite of the data members (old ones completely replaced)
67//
68/////////////////////////////////////////////////////////////////////////////
69#include "MTime.h"
70
71#include <iomanip>
72
73#ifndef __USE_XOPEN
74#define __USE_XOPEN // on some systems needed for strptime
75#endif
76
77#include <time.h> // struct tm
78#include <sys/time.h> // struct timeval
79
80#include <TTime.h>
81
82#include "MLog.h"
83#include "MLogManip.h"
84
85#include "MAstro.h"
86
87ClassImp(MTime);
88
89using namespace std;
90
91const UInt_t MTime::kHour = 3600000; // [ms] one hour
92const UInt_t MTime::kDay = MTime::kHour*24; // [ms] one day
93
94// --------------------------------------------------------------------------
95//
96// Constructor. Calls SetMjd(d) for d>0 in all other cases the time
97// is set to the current UTC time.
98//
99MTime::MTime(Double_t d)
100{
101 Init(0, 0);
102 if (d<=0)
103 Now();
104 else
105 SetMjd(d);
106}
107
108// --------------------------------------------------------------------------
109//
110// Constructor. Calls Set(y, m, d, h, min, s, ms, ns).
111// To check validity test for (*this)==MTime()
112//
113MTime::MTime(UShort_t y, Byte_t m, Byte_t d, Byte_t h, Byte_t min, Byte_t s, UShort_t ms, UInt_t ns)
114{
115 Set(y, m, d, h, min, s, ms, ns);
116}
117
118// --------------------------------------------------------------------------
119//
120// Return date as year(y), month(m), day(d)
121//
122void MTime::GetDate(UShort_t &y, Byte_t &m, Byte_t &d) const
123{
124 MAstro::Mjd2Ymd((Long_t)fTime<0?fMjd-1:fMjd, y, m, d);
125}
126
127// --------------------------------------------------------------------------
128//
129// Return date as year(y), month(m), day(d). If the time is afternoon
130// (>=13:00:00) the date of the next day is returned.
131//
132void MTime::GetDateOfSunrise(UShort_t &y, Byte_t &m, Byte_t &d) const
133{
134 MAstro::Mjd2Ymd(fMjd, y, m, d);
135}
136
137// --------------------------------------------------------------------------
138//
139// GetMoonPhase - calculate phase of moon as a fraction:
140// Returns -1 if calculation failed
141//
142// see MAstro::GetMoonPhase
143//
144Double_t MTime::GetMoonPhase() const
145{
146 return MAstro::GetMoonPhase(GetMjd());
147}
148
149// --------------------------------------------------------------------------
150//
151// Calculate the Period to which the time belongs to. The Period is defined
152// as the number of synodic months ellapsed since the first full moon
153// after Jan 1st 1980 (which was @ MJD=44240.37917)
154//
155// see MAstro::GetMoonPeriod
156//
157Double_t MTime::GetMoonPeriod() const
158{
159 return MAstro::GetMoonPeriod(GetMjd());
160}
161
162// --------------------------------------------------------------------------
163//
164// To get the moon period as defined for MAGIC observation we take the
165// nearest integer mjd, eg:
166// 53257.8 --> 53258
167// 53258.3 --> 53258
168// Which is the time between 13h and 12:59h of the following day. To
169// this day-period we assign the moon-period at midnight. To get
170// the MAGIC definition we now substract 284.
171//
172// For MAGIC observation period do eg:
173// GetMagicPeriod(53257.91042)
174// or
175// MTime t;
176// t.SetMjd(53257.91042);
177// GetMagicPeriod(t.GetMjd());
178// or
179// MTime t;
180// t.Set(2004, 1, 1, 12, 32, 11);
181// GetMagicPeriod(t.GetMjd());
182//
183// To get a floating point magic period use
184// GetMoonPeriod()-284
185//
186// see MAstro::GetMagicPeriod
187//
188Int_t MTime::GetMagicPeriod() const
189{
190 return MAstro::GetMagicPeriod(GetMjd());
191}
192
193
194// --------------------------------------------------------------------------
195//
196// Return the time in the range [0h, 24h) = [0h0m0.000s - 23h59m59.999s]
197//
198void MTime::GetTime(Byte_t &h, Byte_t &m, Byte_t &s, UShort_t &ms) const
199{
200 Long_t tm = GetTime24();
201 ms = tm%1000; // [ms]
202 tm /= 1000; // [s]
203 s = tm%60; // [s]
204 tm /= 60; // [m]
205 m = tm%60; // [m]
206 tm /= 60; // [h]
207 h = tm; // [h]
208}
209
210// --------------------------------------------------------------------------
211//
212// Return time as MJD (=JD-24000000.5)
213//
214Double_t MTime::GetMjd() const
215{
216 return fMjd+(Double_t)(fNanoSec/1e6+(Long_t)fTime)/kDay;
217}
218
219// --------------------------------------------------------------------------
220//
221// Return a time which is expressed in milliseconds since 01/01/1995 0:00h
222// This is compatible with root's definition used in gSystem->Now()
223// and TTime.
224// Note, gSystem->Now() returns local time, such that it may differ
225// from GetRootTime() (if you previously called MTime::Now())
226//
227TTime MTime::GetRootTime() const
228{
229 return (ULong_t)((GetMjd()-49718)*kDay);
230}
231
232// --------------------------------------------------------------------------
233//
234// Return a time which is expressed in seconds since 01/01/1970 0:00h
235// This is compatible with root's definition used in the constructor of
236// TDatime.
237//
238TDatime MTime::GetRootDatime() const
239{
240 return TDatime((UInt_t)((GetMjd()-40587)*kDay/1000));
241}
242
243// --------------------------------------------------------------------------
244//
245// Return a time which is expressed in seconds since 01/01/1995 0:00h
246// This is compatible with root's definition used in TAxis.
247// Note, a TAxis always displayes (automatically) given times in
248// local time (while here we return UTC) such, that you may encounter
249// strange offsets. You can get rid of this by calling:
250// TAxis::SetTimeFormat("[your-format] %F1995-01-01 00:00:00 GMT");
251//
252Double_t MTime::GetAxisTime() const
253{
254 return (GetMjd()-49718)*kDay/1000;
255}
256
257// --------------------------------------------------------------------------
258//
259// Counterpart of GetAxisTime
260//
261void MTime::SetAxisTime(Double_t time)
262{
263 SetMjd(time*1000/kDay+49718);
264}
265
266// --------------------------------------------------------------------------
267//
268// Set this to the date of easter corresponding to the given year.
269// If calculation was not possible it is set to MTime()
270//
271// The date corresponding to the year of MTime(-1) is returned
272// if year<0
273//
274// The date corresponding to the Year() is returned if year==0.
275//
276// for more information see: GetEaster and MAstro::GetEasterOffset()
277//
278void MTime::SetEaster(Short_t year)
279{
280 *this = GetEaster(year==0 ? Year() : year);
281}
282
283// --------------------------------------------------------------------------
284//
285// Set a time expressed in MJD, Time of Day (eg. 23:12.779h expressed
286// in milliseconds) and a nanosecond part.
287//
288Bool_t MTime::SetMjd(UInt_t mjd, ULong_t ms, UInt_t ns)
289{
290 // [d] mjd (eg. 52320)
291 // [ms] time (eg. 17h expressed in ms)
292 // [ns] time (ns part of time)
293
294 if (ms>kDay-1 || ns>999999)
295 return kFALSE;
296
297 const Bool_t am = ms<kHour*13; // day of sunrise?
298
299 fMjd = am ? mjd : mjd + 1;
300 fTime = (Long_t)(am ? ms : ms-kDay);
301 fNanoSec = ns;
302
303 return kTRUE;
304}
305
306// --------------------------------------------------------------------------
307//
308// Set MTime to given MJD (eg. 52080.0915449892)
309//
310void MTime::SetMjd(Double_t m)
311{
312 const UInt_t mjd = (UInt_t)TMath::Floor(m);
313 const Double_t frac = fmod(m, 1)*kDay; // [ms] Fraction of day
314 const UInt_t ns = (UInt_t)fmod(frac*1e6, 1000000);
315
316 SetMjd(mjd, (ULong_t)TMath::Floor(frac), ns);
317}
318
319// --------------------------------------------------------------------------
320//
321// Set MTime to given time and date
322//
323Bool_t MTime::Set(UShort_t y, Byte_t m, Byte_t d, Byte_t h, Byte_t min, Byte_t s, UShort_t ms, UInt_t ns)
324{
325 if (h>23 || min>59 || s>59 || ms>999 || ns>999999)
326 return kFALSE;
327
328 const Int_t mjd = MAstro::Ymd2Mjd(y, m, d);
329 if (mjd<0)
330 return kFALSE;
331
332 const ULong_t tm = ((((h*60+min)*60)+s)*1000)+ms;
333
334 return SetMjd(mjd, tm, ns);
335}
336
337// --------------------------------------------------------------------------
338//
339// Set MTime to time expressed in a 'struct timeval'
340//
341void MTime::Set(const struct timeval &tv)
342{
343 const UInt_t mjd = (UInt_t)TMath::Floor(1000.*tv.tv_sec/kDay) + 40587;
344
345 const Long_t tm = tv.tv_sec%(24*3600)*1000 + tv.tv_usec/1000;
346 const UInt_t ms = tv.tv_usec%1000;
347
348 SetMjd(mjd, tm, ms*1000);
349}
350
351// --------------------------------------------------------------------------
352//
353// Return contents as a TString of the form:
354// "dd.mm.yyyy hh:mm:ss.fff"
355//
356Bool_t MTime::SetString(const char *str)
357{
358 if (!str)
359 return kFALSE;
360
361 UInt_t y, mon, d, h, m, s, ms;
362 const Int_t n = sscanf(str, "%02u.%02u.%04u %02u:%02u:%02u.%03u",
363 &d, &mon, &y, &h, &m, &s, &ms);
364
365 return n==7 ? Set(y, mon, d, h, m, s, ms) : kFALSE;
366}
367
368// --------------------------------------------------------------------------
369//
370// Return contents as a TString of the form:
371// "yyyy-mm-dd hh:mm:ss"
372//
373Bool_t MTime::SetSqlDateTime(const char *str)
374{
375 if (!str)
376 return kFALSE;
377
378 UInt_t y, mon, d, h, m, s;
379 const Int_t n = sscanf(str, "%04u-%02u-%02u %02u:%02u:%02u",
380 &y, &mon, &d, &h, &m, &s);
381
382 return n==6 ? Set(y, mon, d, h, m, s) : kFALSE;
383}
384
385// --------------------------------------------------------------------------
386//
387// Return contents as a TString of the form:
388// "yyyymmddhhmmss"
389//
390Bool_t MTime::SetSqlTimeStamp(const char *str)
391{
392 if (!str)
393 return kFALSE;
394
395 UInt_t y, mon, d, h, m, s;
396 const Int_t n = sscanf(str, "%04u%02u%02u%02u%02u%02u",
397 &y, &mon, &d, &h, &m, &s);
398
399 return n==6 ? Set(y, mon, d, h, m, s) : kFALSE;
400}
401
402// --------------------------------------------------------------------------
403//
404// Set MTime to time expressed as in CT1 PreProc files
405//
406void MTime::SetCT1Time(UInt_t mjd, UInt_t t1, UInt_t t0)
407{
408 // int isecs_since_midday; // seconds passed since midday before sunset (JD of run start)
409 // int isecfrac_200ns; // fractional part of isecs_since_midday
410 // fTime->SetTime(isecfrac_200ns, isecs_since_midday);
411 fNanoSec = (200*t1)%1000000;
412 const ULong_t ms = (200*t1)/1000000 + t0+12*kHour;
413
414 fTime = (Long_t)(ms<13*kHour ? ms : ms-kDay);
415
416 fMjd = mjd+1;
417}
418
419// --------------------------------------------------------------------------
420//
421// Update the magic time. Make sure, that the MJD is set correctly.
422// It must be the MJD of the corresponding night. You can set it
423// by Set(2003, 12, 24);
424//
425// It is highly important, that the time correspoding to the night is
426// between 13:00:00.0 (day of dawning) and 12:59:59.999 (day of sunrise)
427//
428Bool_t MTime::UpdMagicTime(Byte_t h, Byte_t m, Byte_t s, UInt_t ns)
429{
430 if (h>23 || m>59 || s>59 || ns>999999999)
431 return kFALSE;
432
433 const ULong_t tm = ((((h*60+m)*60)+s)*1000)+ns/1000000;
434
435 fTime = (Long_t)(tm<kHour*13 ? tm : tm-kDay); // day of sunrise?
436 fNanoSec = ns%1000000;
437
438 return kTRUE;
439}
440
441// --------------------------------------------------------------------------
442//
443// Conversion from Universal Time to Greenwich mean sidereal time,
444// with rounding errors minimized.
445//
446// The result is the Greenwich Mean Sidereal Time (radians)
447//
448// There is no restriction on how the UT is apportioned between the
449// date and ut1 arguments. Either of the two arguments could, for
450// example, be zero and the entire date+time supplied in the other.
451// However, the routine is designed to deliver maximum accuracy when
452// the date argument is a whole number and the ut argument lies in
453// the range 0 to 1, or vice versa.
454//
455// The algorithm is based on the IAU 1982 expression (see page S15 of
456// the 1984 Astronomical Almanac). This is always described as giving
457// the GMST at 0 hours UT1. In fact, it gives the difference between
458// the GMST and the UT, the steady 4-minutes-per-day drawing-ahead of
459// ST with respect to UT. When whole days are ignored, the expression
460// happens to equal the GMST at 0 hours UT1 each day.
461//
462// In this routine, the entire UT1 (the sum of the two arguments date
463// and ut) is used directly as the argument for the standard formula.
464// The UT1 is then added, but omitting whole days to conserve accuracy.
465//
466// The extra numerical precision delivered by the present routine is
467// unlikely to be important in an absolute sense, but may be useful
468// when critically comparing algorithms and in applications where two
469// sidereal times close together are differenced.
470//
471Double_t MTime::GetGmst() const
472{
473 const Double_t ut = (Double_t)(fNanoSec/1e6+(Long_t)fTime)/kDay;
474
475 // Julian centuries since J2000.
476 const Double_t t = (ut -(51544.5-fMjd)) / 36525.0;
477
478 // GMST at this UT1
479 const Double_t r1 = 24110.54841+(8640184.812866+(0.093104-6.2e-6*t)*t)*t;
480 const Double_t r2 = 86400.0*ut;
481
482 const Double_t sum = (r1+r2)/(24*3600);
483
484 return fmod(sum, 1)*TMath::TwoPi();//+TMath::TwoPi();
485}
486
487// --------------------------------------------------------------------------
488//
489// Get the day of the year represented by day, month and year.
490// Valid return values range between 1 and 366, where January 1 = 1.
491//
492UInt_t MTime::DayOfYear() const
493{
494 MTime jan1st;
495 jan1st.Set(Year(), 1, 1);
496
497 const Double_t newyear = TMath::Floor(jan1st.GetMjd());
498 const Double_t mjd = TMath::Floor(GetMjd());
499
500 return TMath::Nint(mjd-newyear)+1;
501}
502
503// --------------------------------------------------------------------------
504//
505// Return Mjd of the first day (a monday) which belongs to week 1 of
506// the year give as argument. The returned Mjd might be a date in the
507// year before.
508//
509// see also MTime::Week()
510//
511Int_t MTime::GetMjdWeek1(Short_t year)
512{
513 MTime t;
514 t.Set(year, 1, 4);
515
516 return (Int_t)t.GetMjd() + t.WeekDay() - 6;
517}
518
519// --------------------------------------------------------------------------
520//
521// Get the week of the year. Valid week values are between 1 and 53.
522// If for a january date a week number above 50 is returned the
523// week belongs to the previous year. If for a december data 1 is
524// returned the week already belongs to the next year.
525//
526// The year to which the week belongs is returned in year.
527//
528// Die Kalenderwochen werden für Jahre ab 1976 berechnet, da mit
529// Geltung vom 1. Januar 1976 der Wochenbeginn auf Montag festgelegt
530// wurde. Die erste Woche ist definiert als die Woche, in der
531// mindestens 4 der ersten 7 Januartage fallen (also die Woche, in der
532// der 4. Januar liegt). Beides wurde damals festgelegt in der DIN 1355
533// (1974). Inhaltlich gleich regelt das die Internationale Norm
534// ISO 8601 (1988), die von der Europäischen Union als EN 28601 (1992)
535// übernommen und in Deutschland als DIN EN 28601 (1993) umgesetzt
536// wurde.
537//
538Int_t MTime::Week(Short_t &year) const
539{
540 // Possibilities for Week 1:
541 //
542 // Mo 4.Jan: Mo 4. - So 10. -0 6-6
543 // Di 4.Jan: Mo 3. - So 9. -1 6-5
544 // Mi 4.Jan: Mo 2. - So 8. -2 6-4
545 // Do 4.Jan: Mo 1. - So 7. -3 6-3
546 // Fr 4.Jan: Mo 31. - So 6. -4 6-2
547 // Sa 4.Jan: Mo 30. - So 5. -5 6-1
548 // So 4.Jan: Mo 29. - So 4. -6 6-0
549 //
550 const Int_t mjd2 = GetMjdWeek1(Year()-1);
551 const Int_t mjd0 = GetMjdWeek1(Year());
552 const Int_t mjd3 = GetMjdWeek1(Year()+1);
553
554 // Today
555 const Int_t mjd = (Int_t)GetMjd();
556
557 // Week belongs to last year, return week of last year
558 if (mjd<mjd0)
559 {
560 year = Year()-1;
561 return (mjd-mjd2)/7 + 1;
562 }
563
564 // Check if Week belongs to next year (can only be week 1)
565 if ((mjd3-mjd)/7==1)
566 {
567 year = Year()+1;
568 return 1;
569 }
570
571 // Return calculated Week
572 year = Year();
573 return (mjd-mjd0)/7 + 1;
574}
575
576// --------------------------------------------------------------------------
577//
578// Is the given year a leap year.
579// The calendar year is 365 days long, unless the year is exactly divisible
580// by 4, in which case an extra day is added to February to make the year
581// 366 days long. If the year is the last year of a century, eg. 1700, 1800,
582// 1900, 2000, then it is only a leap year if it is exactly divisible by
583// 400. Therefore, 1900 wasn't a leap year but 2000 was. The reason for
584// these rules is to bring the average length of the calendar year into
585// line with the length of the Earth's orbit around the Sun, so that the
586// seasons always occur during the same months each year.
587//
588Bool_t MTime::IsLeapYear() const
589{
590 const UInt_t y = Year();
591 return (y%4==0) && !((y%100==0) && (y%400>0));
592}
593
594// --------------------------------------------------------------------------
595//
596// Set the time to the current system time. The timezone is ignored.
597// If everything is set correctly you'll get UTC.
598//
599void MTime::Now()
600{
601#ifdef __LINUX__
602 struct timeval tv;
603 if (gettimeofday(&tv, NULL)<0)
604 Clear();
605 else
606 Set(tv);
607#else
608 Clear();
609#endif
610}
611
612// --------------------------------------------------------------------------
613//
614// Return contents as a TString of the form:
615// "dd.mm.yyyy hh:mm:ss.fff"
616//
617TString MTime::GetString() const
618{
619 UShort_t y, ms;
620 Byte_t mon, d, h, m, s;
621
622 GetDate(y, mon, d);
623 GetTime(h, m, s, ms);
624
625 return TString(Form("%02d.%02d.%04d %02d:%02d:%02d.%03d", d, mon, y, h, m, s, ms));
626}
627
628// --------------------------------------------------------------------------
629//
630// Return contents as a string format'd with strftime:
631// Here is a short summary of the most important formats. For more
632// information see the man page (or any other description) of
633// strftime...
634//
635// %a The abbreviated weekday name according to the current locale.
636// %A The full weekday name according to the current locale.
637// %b The abbreviated month name according to the current locale.
638// %B The full month name according to the current locale.
639// %c The preferred date and time representation for the current locale.
640// %d The day of the month as a decimal number (range 01 to 31).
641// %e Like %d, the day of the month as a decimal number,
642// but a leading zero is replaced by a space.
643// %H The hour as a decimal number using a 24-hour clock (range 00 to 23)
644// %k The hour (24-hour clock) as a decimal number (range 0 to 23);
645// single digits are preceded by a blank.
646// %m The month as a decimal number (range 01 to 12).
647// %M The minute as a decimal number (range 00 to 59).
648// %R The time in 24-hour notation (%H:%M). For a
649// version including the seconds, see %T below.
650// %S The second as a decimal number (range 00 to 61).
651// %T The time in 24-hour notation (%H:%M:%S).
652// %x The preferred date representation for the current
653// locale without the time.
654// %X The preferred time representation for the current
655// locale without the date.
656// %y The year as a decimal number without a century (range 00 to 99).
657// %Y The year as a decimal number including the century.
658// %+ The date and time in date(1) format.
659//
660// The default is: Tuesday 16.February 2004 12:17:22
661//
662// The maximum size of the return string is 128 (incl. NULL)
663//
664// For dates before 1. 1.1902 a null string is returned
665// For dates after 31.12.2037 a null string is returned
666//
667// To change the localization use loc, eg loc = "da_DK", "de_DE".
668// Leaving the argument empty will just take the default localization.
669//
670// If loc is "", each part of the locale that should be modified is set
671// according to the environment variables. The details are implementation
672// dependent. For glibc, first (regardless of category), the environment
673// variable LC_ALL is inspected, next the environment variable with the
674// same name as the category (LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONE?
675// TARY, LC_NUMERIC, LC_TIME) and finally the environment variable LANG.
676// The first existing environment variable is used.
677//
678// A locale name is typically of the form language[_territory][.code?
679// set][@modifier], where language is an ISO 639 language code, territory
680// is an ISO 3166 country code, and codeset is a character set or encoding
681// identifier like ISO-8859-1 or UTF-8. For a list of all supported
682// locales, try "locale -a", cf. locale(1).
683//
684TString MTime::GetStringFmt(const char *fmt, const char *loc) const
685{
686 if (!fmt)
687 fmt = "%A %e.%B %Y %H:%M:%S";
688
689 UShort_t y, ms;
690 Byte_t mon, d, h, m, s;
691
692 GetDate(y, mon, d);
693 GetTime(h, m, s, ms);
694
695 // If date<1902 strftime crahses on my (tbretz) laptop
696 // it doesn't crash in the DC.
697 // if (y<1902 || y>2037)
698 // return "";
699
700 struct tm time;
701 time.tm_sec = s;
702 time.tm_min = m;
703 time.tm_hour = h;
704 time.tm_mday = d;
705 time.tm_mon = mon-1;
706 time.tm_year = y-1900;
707 time.tm_isdst = 0;
708
709 const TString locale = setlocale(LC_TIME, 0);
710
711 setlocale(LC_TIME, loc);
712
713 // recalculate tm_yday and tm_wday
714 mktime(&time);
715
716 char ret[128];
717 const size_t rc = strftime(ret, 127, fmt, &time);
718
719 setlocale(LC_TIME, locale);
720
721 return rc ? ret : "";
722}
723
724// --------------------------------------------------------------------------
725//
726// Set the time according to the format fmt.
727// Default is "%A %e.%B %Y %H:%M:%S"
728//
729// For more information see GetStringFmt
730//
731Bool_t MTime::SetStringFmt(const char *time, const char *fmt, const char *loc)
732{
733 if (!fmt)
734 fmt = "%A %e.%B %Y %H:%M:%S";
735
736 struct tm t;
737 memset(&t, 0, sizeof(struct tm));
738
739 const TString locale = setlocale(LC_TIME, 0);
740
741 setlocale(LC_TIME, loc);
742 strptime(time, fmt, &t);
743 setlocale(LC_TIME, locale);
744
745 return Set(t.tm_year+1900, t.tm_mon+1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec);
746}
747
748// --------------------------------------------------------------------------
749//
750// Return contents as a TString of the form:
751// "yyyy-mm-dd hh:mm:ss"
752//
753TString MTime::GetSqlDateTime() const
754{
755 return GetStringFmt("%Y-%m-%d %H:%M:%S");
756}
757
758// --------------------------------------------------------------------------
759//
760// Return contents as a TString of the form:
761// "yyyymmddhhmmss"
762//
763TString MTime::GetSqlTimeStamp() const
764{
765 return GetStringFmt("%Y%m%d%H%M%S");
766}
767
768// --------------------------------------------------------------------------
769//
770// Return contents as a TString of the form:
771// "yyyymmdd_hhmmss"
772//
773TString MTime::GetFileName() const
774{
775 return GetStringFmt("%Y%m%d_%H%M%S");
776}
777
778// --------------------------------------------------------------------------
779//
780// Print MTime as string
781//
782void MTime::Print(Option_t *) const
783{
784 UShort_t yea, ms;
785 Byte_t mon, day, h, m, s;
786
787 GetDate(yea, mon, day);
788 GetTime(h, m, s, ms);
789
790 *fLog << all << GetDescriptor() << ": ";
791 *fLog << GetString() << Form(" (+%dns)", fNanoSec) << endl;
792}
793
794istream &MTime::ReadBinary(istream &fin)
795{
796 UShort_t y;
797 Byte_t mon, d, h, m, s;
798
799 fin.read((char*)&y, 2);
800 fin.read((char*)&mon, 1);
801 fin.read((char*)&d, 1);
802 fin.read((char*)&h, 1);
803 fin.read((char*)&m, 1);
804 fin.read((char*)&s, 1); // Total=7
805
806 Set(y, mon, d, h, m, s, 0);
807
808 return fin;
809}
810
811void MTime::AddMilliSeconds(UInt_t ms)
812{
813 fTime += ms;
814
815 fTime += 11*kHour;
816 fMjd += (Long_t)fTime/kDay;
817 fTime = (Long_t)fTime%kDay;
818 fTime -= 11*kHour;
819}
820
821void MTime::Plus1ns()
822{
823 fNanoSec++;
824
825 if (fNanoSec<1000000)
826 return;
827
828 fNanoSec = 0;
829 fTime += 1;
830
831 if ((Long_t)fTime<(Long_t)kDay*13)
832 return;
833
834 fTime = 11*kDay;
835 fMjd++;
836}
837
838void MTime::Minus1ns()
839{
840 if (fNanoSec>0)
841 {
842 fNanoSec--;
843 return;
844 }
845
846 fTime -= 1;
847 fNanoSec = 999999;
848
849 if ((Long_t)fTime>=-(Long_t)kDay*11)
850 return;
851
852 fTime = 13*kDay-1;
853 fMjd--;
854}
855
856/*
857MTime MTime::operator-(const MTime &tm1)
858{
859 const MTime &tm0 = *this;
860
861 MTime t0 = tm0>tm1 ? tm0 : tm1;
862 const MTime &t1 = tm0>tm1 ? tm1 : tm0;
863
864 if (t0.fNanoSec<t1.fNanoSec)
865 {
866 t0.fNanoSec += 1000000;
867 t0.fTime -= 1;
868 }
869
870 t0.fNanoSec -= t1.fNanoSec;
871 t0.fTime -= t1.fTime;
872
873 if ((Long_t)t0.fTime<-(Long_t)kHour*11)
874 {
875 t0.fTime += kDay;
876 t0.fMjd--;
877 }
878
879 t0.fMjd -= t1.fMjd;
880
881 return t0;
882}
883
884void MTime::operator-=(const MTime &t)
885{
886 *this = *this-t;
887}
888
889MTime MTime::operator+(const MTime &t1)
890{
891 MTime t0 = *this;
892
893 t0.fNanoSec += t1.fNanoSec;
894
895 if (t0.fNanoSec>999999)
896 {
897 t0.fNanoSec -= 1000000;
898 t0.fTime += kDay;
899 }
900
901 t0.fTime += t1.fTime;
902
903 if ((Long_t)t0.fTime>=(Long_t)kHour*13)
904 {
905 t0.fTime -= kDay;
906 t0.fMjd++;
907 }
908
909 t0.fMjd += t1.fMjd;
910
911 return t0;
912}
913
914void MTime::operator+=(const MTime &t)
915{
916 *this = *this+t;
917}
918*/
919
920void MTime::SetMean(const MTime &t0, const MTime &t1)
921{
922 // This could be an operator+
923 *this = t0;
924
925 fNanoSec += t1.fNanoSec;
926
927 if (fNanoSec>999999)
928 {
929 fNanoSec -= 1000000;
930 fTime += kDay;
931 }
932
933 fTime += t1.fTime;
934
935 if ((Long_t)fTime>=(Long_t)kHour*13)
936 {
937 fTime -= kDay;
938 fMjd++;
939 }
940
941 fMjd += t1.fMjd;
942
943 // This could be an operator/
944 if ((Long_t)fTime<0)
945 {
946 fTime += kDay;
947 fMjd--;
948 }
949
950 Int_t reminder = fMjd%2;
951 fMjd /= 2;
952
953 fTime += reminder*kDay;
954 reminder = (Long_t)fTime%2;
955 fTime /= 2;
956
957 fNanoSec += reminder*1000000;
958 fNanoSec /= 2;
959
960 fTime += 11*kHour;
961 fMjd += (Long_t)fTime/kDay;
962 fTime = (Long_t)fTime%kDay;
963 fTime -= 11*kHour;
964}
965
966void MTime::SetMean(Double_t t0, Double_t t1)
967{
968 const Double_t mean = (t0+t1)*(500./kDay);
969 SetMjd(mean);
970}
971
972void MTime::AsciiRead(istream &fin)
973{
974 fin >> *this;
975}
976
977Bool_t MTime::AsciiWrite(ostream &out) const
978{
979 out << *this;
980 return out;
981}
982
983// --------------------------------------------------------------------------
984//
985// Calculate the day of easter for the given year.
986// MTime() is returned if this was not possible.
987//
988// In case of the default argument or the year less than zero
989// the date of eastern of the current year (the year corresponding to
990// MTime(-1)) is returned.
991//
992// for more information see: MAstro::GetDayOfEaster()
993//
994MTime MTime::GetEaster(Short_t year)
995{
996 if (year<0)
997 year = MTime(-1).Year();
998
999 const Int_t day = MAstro::GetEasterOffset(year);
1000 if (day<0)
1001 return MTime();
1002
1003 MTime t;
1004 t.Set(year, 3, 1);
1005 t.SetMjd(t.GetMjd() + day);
1006
1007 return t;
1008}
Note: See TracBrowser for help on using the repository browser.