/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Javier Lopez 12/2003 ! Author(s): Javier Rico 01/2004 ! Author(s): Markus Gaug 04/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MCalibrate // // This task takes the integrated charge from MExtractedSignal and apply // the calibration constants from MCalibraitionCam to convert the summed FADC // slices to photons. The number of photons obtained is stored in MCerPhotEvt. // // Selection of different calibration methods is possible through the // SetCalibrationMode member function // // The calibration modes which exclude non-valid pixels are the following: // // kFfactor: calibrates using the F-Factor method // kBlindpixel: calibrates using the BlindPixel method // kBlindpixel: calibrates using the BlindPixel method // kFlatCharge: perform a charge flat-flatfielding. Outer pixels are area-corrected. // kDummy: calibrates with fixed conversion factors of 1 and errors of 0. // // The calibration modes which include all pixels regardless of their validity is: // // kNone: calibrates with fixed conversion factors of 1 and errors of 0. // // Use the kDummy and kNone methods ONLY FOR DEBUGGING! // // Input Containers: // MExtractedSingal // MCalibrationChargeCam // // Output Containers: // MCerPhotEvt // ////////////////////////////////////////////////////////////////////////////// #include "MCalibrate.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MH.h" #include "MGeomCam.h" #include "MCalibrationChargeCam.h" #include "MCalibrationChargePix.h" #include "MCalibrationQECam.h" #include "MCalibrationQEPix.h" #include "MExtractedSignalCam.h" #include "MExtractedSignalPix.h" #include "MBadPixelsCam.h" #include "MBadPixelsPix.h" #include "MCerPhotEvt.h" ClassImp(MCalibrate); using namespace std; // -------------------------------------------------------------------------- // // Default constructor. // MCalibrate::MCalibrate(CalibrationMode_t calmode,const char *name, const char *title) : fGeomCam(NULL), fCalibrations(NULL), fQEs(NULL), fBadPixels(NULL), fSignals(NULL), fCerPhotEvt(NULL), fCalibrationMode(calmode) { fName = name ? name : "MCalibrate"; fTitle = title ? title : "Task to calculate the number of photons in one event"; } // -------------------------------------------------------------------------- // // The PreProcess searches for the following input containers: // - MGeomCam // - MCalibrationChargeCam // - MExtractedSignalCam // - MBadPixelsCam // // The following output containers are also searched and created if // they were not found: // // - MCerPhotEvt // Int_t MCalibrate::PreProcess(MParList *pList) { fSignals = (MExtractedSignalCam*)pList->FindObject(AddSerialNumber("MExtractedSignalCam")); if (!fSignals) { *fLog << err << AddSerialNumber("MExtractedSignalCam") << " not found ... aborting" << endl; return kFALSE; } fBadPixels = (MBadPixelsCam*)pList->FindObject(AddSerialNumber("MBadPixelsCam")); if (!fBadPixels) *fLog << warn << AddSerialNumber("MBadPixelsCam") << " not found ... no action" << endl; if(fCalibrationMode>kNone) { fCalibrations = (MCalibrationChargeCam*)pList->FindObject(AddSerialNumber("MCalibrationChargeCam")); if (!fCalibrations) { *fLog << err << AddSerialNumber("MCalibrationChargeCam") << " not found ... aborting." << endl; return kFALSE; } if (fCalibrationMode>kFlatCharge) { fQEs = (MCalibrationQECam*)pList->FindObject(AddSerialNumber("MCalibrationQECam")); if (!fQEs) { *fLog << err << AddSerialNumber("MCalibrationQECam") << " not found ... aborting." << endl; return kFALSE; } } } fCerPhotEvt = (MCerPhotEvt*)pList->FindCreateObj(AddSerialNumber("MCerPhotEvt")); if (!fCerPhotEvt) return kFALSE; fGeomCam = (MGeomCam*)pList->FindCreateObj(AddSerialNumber("MGeomCam")); if (!fGeomCam) return kFALSE; return kTRUE; } // -------------------------------------------------------------------------- // // Check for validity of the selected calibration method, switch to a // different one in case of need // Bool_t MCalibrate::ReInit(MParList *pList) { if(fCalibrationMode == kBlindPixel && !fQEs->IsBlindPixelMethodValid()) { *fLog << warn << GetDescriptor() << "Warning: Blind pixel calibration method not valid, switching to F-factor method" << endl; fCalibrationMode = kFfactor; } if(fCalibrationMode == kPinDiode && !fQEs->IsPINDiodeMethodValid()) { *fLog << warn << GetDescriptor() << "Warning: PIN diode calibration method not valid, switching to F-factor method" << endl; fCalibrationMode = kFfactor; } if(fCalibrationMode == kCombined && !fQEs->IsCombinedMethodValid()) { *fLog << warn << GetDescriptor() << "Warning: Combined calibration method not valid, switching to F-factor method" << endl; fCalibrationMode = kFfactor; } if (fCalibrationMode == kFlatCharge) { fGeomCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam")); if (!fGeomCam) { *fLog << err << AddSerialNumber("MGeomCam") << " not found ... aborting." << endl; return kFALSE; } } switch(fCalibrationMode) { case kBlindPixel: break; case kFfactor: break; case kPinDiode: *fLog << err << GetDescriptor() << ": PIN Diode Calibration mode not yet available " << endl; return kFALSE; break; case kCombined: *fLog << err << GetDescriptor() << ": Combined Calibration mode not yet available " << endl; return kFALSE; break; case kFlatCharge: *fLog << warn << GetDescriptor() << ": WARNING: Flat-fielding charges - only for Keiichi!!" << endl; break; case kDummy: *fLog << warn << GetDescriptor() << ": WARNING: Dummy calibration, no calibration applied!!" << endl; break; case kNone: *fLog << warn << GetDescriptor() << ": WARNING: No calibration applied!!" << endl; break; default: *fLog << warn << GetDescriptor() << ": WARNING: Calibration mode value (" <GetNumPixels() != (UInt_t)fSignals->GetSize()) { // FIXME: MExtractedSignal must be of variable size - // like MCerPhotEvt - because we must be able // to reduce size by zero supression // For the moment this check could be done in ReInit... *fLog << err << "MExtractedSignal and MCalibrationCam have different sizes... abort." << endl; return kFALSE; } */ UInt_t npix = fSignals->GetSize(); Float_t hiloconv = 0.; Float_t hiloconverr = 0.; Float_t calibConv = 0.; Float_t calibConvVar = 0.; Float_t calibFFactor = 0.; Float_t calibQE = 1.; Float_t calibQEVar = 0.; Float_t avMean = 1.; Float_t avMeanRelVar = 0.; if (fCalibrationMode == kFlatCharge) { MCalibrationChargePix &avpix = (MCalibrationChargePix&)fCalibrations->GetAverageArea(0); avMean = avpix.GetMean(); avMeanRelVar = avpix.GetMeanRelVar(); } for (UInt_t pixidx=0; pixidxGetPixRatio(pixidx) ; calibConvVar = (avMeanRelVar + pix.GetMeanRelVar()) * calibConv * calibConv; calibFFactor = pix.GetRSigmaPerCharge(); } else { MCalibrationQEPix &qe = (MCalibrationQEPix&) (*fQEs)[pixidx]; switch(fCalibrationMode) { case kBlindPixel: if (qe.IsBlindPixelMethodValid()) { calibQE = qe.GetQECascadesBlindPixel ( zenith ); calibQEVar = qe.GetQECascadesBlindPixelVar( zenith ); } else continue; break; case kPinDiode: if (qe.IsPINDiodeMethodValid()) { calibQE = qe.GetQECascadesPINDiode ( zenith ); calibQEVar = qe.GetQECascadesPINDiodeVar( zenith ); } else continue; break; case kFfactor: if (pix.IsFFactorMethodValid()) { calibQE = qe.GetQECascadesFFactor ( zenith ); calibQEVar = qe.GetQECascadesFFactorVar( zenith ); } else continue; break; case kCombined: if (qe.IsCombinedMethodValid()) { calibQE = qe.GetQECascadesCombined ( zenith ); calibQEVar = qe.GetQECascadesCombinedVar( zenith ); } else continue; break; case kDummy: hiloconv = 1.; hiloconverr = 0.; calibQE = 1.; calibQEVar = 0.; break; } /* switch calibration mode */ } /* else fCalibrationMode == kFlatCharge */ } /* if(fCalibrationMode!=kNone) */ else { hiloconv = 1.; hiloconverr = 0.; calibConv = 1./fGeomCam->GetPixRatio(pixidx); calibConvVar = 0.; calibFFactor = 0.; calibQE = 1.; calibQEVar = 0.; } MExtractedSignalPix &sig = (*fSignals)[pixidx]; Float_t signal; Float_t signalErr = 0.; Float_t nphot,nphotErr; if (sig.IsLoGainUsed()) { signal = sig.GetExtractedSignalLoGain()*hiloconv; signalErr = signal*hiloconverr; } else { if (sig.GetExtractedSignalHiGain() > 9999.) { signal = 0.; signalErr = 0.; } else signal = sig.GetExtractedSignalHiGain(); } nphot = signal*calibConv/calibQE; nphotErr = calibFFactor*TMath::Sqrt(TMath::Abs(nphot)); if (fCalibrationMode == kFlatCharge) nphotErr = calibFFactor * signal; // // The following part is the outcommented first version of the error calculation // Contact Markus Gaug for questions (or wait for the next documentation update...) // /* nphotErr = signal > 0 ? signalErr*signalErr / (signal * signal) : 0. + calibConv > 0 ? calibConvVar / (calibConv * calibConv ) : 0. + calibQE > 0 ? calibQEVar / (calibQE * calibQE ) : 0.; nphotErr = TMath::Sqrt(nphotErr) * nphot; */ MCerPhotPix *cpix = fCerPhotEvt->AddPixel(pixidx, nphot, nphotErr); if (sig.GetNumLoGainSaturated() > 0) cpix->SetPixelSaturated(); if (sig.GetNumHiGainSaturated() > 0) cpix->SetPixelHGSaturated(); } /* for (UInt_t pixidx=0; pixidxFixSize(); fCerPhotEvt->SetReadyToSave(); return kTRUE; }