/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Javier Lopez 12/2003 ! Author(s): Javier Rico 01/2004 ! Author(s): Wolfgang Wittek 02/2004 ! Author(s): Markus Gaug 04/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MCalibrateData // // This task takes the integrated charge from MExtractedSignal and apply // the calibration constants from MCalibraitionCam to the charge. Then // stores number of photons obtained in MCerPhotEvt. Selection of different // calibration methods is allowed through SetCalibrationMode member function // // in ReInit the MPedPhotCam container is filled using the information from // MPedestalCam, MExtractedSignalCam and MCalibrationCam // // Input Containers: // MPedestalCam // MExtractedSingalCam // MCalibrationChargeCam // MCalibrationQECam // // Output Containers: // MPedPhotCam // MCerPhotEvt // ////////////////////////////////////////////////////////////////////////////// #include "MCalibrateData.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MH.h" #include "MGeomCam.h" #include "MPedestalCam.h" #include "MPedestalPix.h" #include "MCalibrationChargeCam.h" #include "MCalibrationChargePix.h" #include "MCalibrationQECam.h" #include "MCalibrationQEPix.h" #include "MExtractedSignalCam.h" #include "MExtractedSignalPix.h" #include "MPedPhotCam.h" #include "MPedPhotPix.h" #include "MBadPixelsCam.h" #include "MBadPixelsPix.h" #include "MCerPhotEvt.h" ClassImp(MCalibrateData); using namespace std; // -------------------------------------------------------------------------- // // Default constructor. // MCalibrateData::MCalibrateData(CalibrationMode_t calmode,const char *name, const char *title) : fCam(NULL), fPedestal(NULL), fBadPixels(NULL), fCalibrations(NULL), fSignals(NULL), fPedPhot(NULL), fCerPhotEvt(NULL), fCalibrationMode(calmode) { fName = name ? name : "MCalibrateData"; fTitle = title ? title : "Task to calculate the number of photons in one event"; } // -------------------------------------------------------------------------- // // The PreProcess searches for the following input containers: // - MGeomCam // - MPedestalCam // - MCalibrationChargeCam // - MCalibrationQECam // - MExtractedSignalCam // // The following output containers are also searched and created if // they were not found: // // - MPedPhotCam // - MCerPhotEvt // Int_t MCalibrateData::PreProcess(MParList *pList) { fPedestal = (MPedestalCam*)pList->FindObject(AddSerialNumber("MPedestalCam")); if (!fPedestal) { *fLog << err << AddSerialNumber("MPedestalCam") << " not found ... aborting" << endl; return kFALSE; } fSignals = (MExtractedSignalCam*)pList->FindObject(AddSerialNumber("MExtractedSignalCam")); if (!fSignals) { *fLog << err << AddSerialNumber("MExtractedSignalCam") << " not found ... aborting" << endl; return kFALSE; } fBadPixels = (MBadPixelsCam*)pList->FindObject(AddSerialNumber("MBadPixelsCam")); if (!fBadPixels) { *fLog << err << AddSerialNumber("MBadPixelsCam") << " not found ... aborting" << endl; return kFALSE; } if (fCalibrationMode>kNone) { fCalibrations = (MCalibrationChargeCam*)pList->FindObject(AddSerialNumber("MCalibrationChargeCam")); if (!fCalibrations) { *fLog << err << AddSerialNumber("MCalibrationChargeCam") << " not found ... aborting." << endl; return kFALSE; } fQEs = (MCalibrationQECam*)pList->FindObject(AddSerialNumber("MCalibrationQECam")); if (!fQEs) { *fLog << err << AddSerialNumber("MCalibrationQECam") << " not found ... aborting." << endl; return kFALSE; } } fPedPhot = (MPedPhotCam*)pList->FindCreateObj(AddSerialNumber("MPedPhotCam")); if (!fPedPhot) return kFALSE; fCerPhotEvt = (MCerPhotEvt*)pList->FindCreateObj(AddSerialNumber("MCerPhotEvt")); if (!fCerPhotEvt) return kFALSE; return kTRUE; } // -------------------------------------------------------------------------- // // Check for validity of the selected calibration method, switch to a // different one in case of need // // fill the MPedPhotCam container using the information from MPedestalCam, // MExtractedSignalCam and MCalibrationCam // // Bool_t MCalibrateData::ReInit(MParList *pList) { if(fCalibrationMode == kBlindPixel && !fQEs->IsBlindPixelMethodValid()) { *fLog << warn << GetDescriptor() << "Warning: Blind pixel calibration method not valid, switching to F-factor method" << endl; fCalibrationMode = kFfactor; } if(fCalibrationMode == kPinDiode && !fQEs->IsPINDiodeMethodValid()) { *fLog << warn << GetDescriptor() << "Warning: PIN diode calibration method not valid, switching to F-factor method" << endl; fCalibrationMode = kFfactor; } //--------------------------------------------- // fill MPedPhot container using the informations from // MPedestalCam, MExtractedSignalCam and MCalibrationCam fNumUsedHiGainFADCSlices = fSignals->GetNumUsedHiGainFADCSlices(); // is pixid equal to pixidx ? if ( (Int_t)(fPedestal->GetSize()) != fSignals->GetSize()) { *fLog << err << "MCalibrateData::ReInit(); sizes of MPedestalCam and MCalibrationCam are different" << endl; } *fLog << all << "MCalibrateData::ReInit(); fill MPedPhotCam container" << endl; *fLog << all << " fNumUsedHiGainADCSlices = " << fNumUsedHiGainFADCSlices << endl; *fLog << all << " pixid, calibrationConversionFactor, ped, pedRMS, pedphot, pedphotRMS :" << endl; for (Int_t pixid=0; pixidGetSize(); pixid++) { const MPedestalPix &ped = (*fPedestal)[pixid]; // pedestals/(used FADC slices) in [ADC] counts Float_t pedes = ped.GetPedestal() * fNumUsedHiGainFADCSlices; Float_t pedrms = ped.GetPedestalRms() * sqrt(fNumUsedHiGainFADCSlices); //---------------------------------- // get phe/ADC conversion factor Float_t hiloconv; Float_t hiloconverr; Float_t calibConv; Float_t calibFFactor; if ( !GetConversionFactor(pixid, hiloconv, hiloconverr, calibConv, calibFFactor )) continue; //---------------------------------- // pedestals/(used FADC slices) in [number of photons] Float_t pedphot = pedes * calibConv; Float_t pedphotrms = pedrms * calibConv; (*fPedPhot)[pixid].Set(pedphot, pedphotrms); *fLog << all << pixid << ", " << calibConv << ", " << ped.GetPedestal() << ", " << ped.GetPedestalRms() << ", " << pedphot << ", " << pedphotrms << endl; } //--------------------------------------------- fPedPhot->SetReadyToSave(); return kTRUE; } // -------------------------------------------------------------------------- // // Get conversion factor and its error from MCalibrationCam // // Bool_t MCalibrateData::GetConversionFactor(UInt_t pixidx, Float_t &hiloconv, Float_t &hiloconverr, Float_t &calibConv, Float_t &calibFFactor) { // // For the moment, we use only a dummy zenith for the calibration: // const Float_t zenith = -1.; hiloconv = 1.; hiloconverr = 0.; calibConv = 1.; calibFFactor = 0.; if(fCalibrationMode!=kNone) { MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCalibrations)[pixidx]; MCalibrationQEPix &qepix = (MCalibrationQEPix&) (*fQEs) [pixidx]; MBadPixelsPix &bad = (*fBadPixels)[pixidx]; if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun)) return kFALSE; hiloconv = pix.GetConversionHiLo(); hiloconverr= pix.GetConversionHiLoErr(); const Float_t pheConv = pix.GetMeanConvFADC2Phe(); calibFFactor = pix.GetMeanFFactorFADC2Phot(); Float_t calibQE = 1.; switch(fCalibrationMode) { case kBlindPixel: calibQE = qepix.GetQECascadesBlindPixel ( zenith ); // calibQEVar = qepix.GetQECascadesBlindPixelVar( zenith ); break; case kFfactor: calibQE = qepix.GetQECascadesFFactor ( zenith ); // calibQEVar = qepix.GetQECascadesFFactorVar( zenith ); break; default: *fLog << warn << "MCalibrateData::GetConversionFactor; Warning: Calibration mode value ("<GetNumPixels() != (UInt_t)fSignals->GetSize()) { // FIXME: MExtractedSignal must be of variable size - // like MCerPhotEvt - because we must be able // to reduce size by zero supression // For the moment this check could be done in ReInit... *fLog << err << "MExtractedSignal and MCalibrationCam have different sizes... abort." << endl; return kFALSE; } */ UInt_t npix = fSignals->GetSize(); Float_t hiloconv; Float_t hiloconverr; Float_t calibrationConversionFactor; Float_t calibrationConversionFactorErr; for (UInt_t pixidx=0; pixidx 9999.) { signal = 0.; signalErr = 0.; } else signal = sig.GetExtractedSignalHiGain(); } nphot = signal*calibrationConversionFactor; nphotErr = signal*calibrationConversionFactorErr *signal*calibrationConversionFactorErr +signalErr*calibrationConversionFactor *signalErr*calibrationConversionFactor; nphotErr = TMath::Sqrt(nphotErr); MCerPhotPix *cpix = fCerPhotEvt->AddPixel(pixidx, nphot, nphotErr); if (sig.GetNumHiGainSaturated() > 0) cpix->SetPixelHGSaturated(); if (sig.GetNumLoGainSaturated() > 0) cpix->SetPixelSaturated(); } fCerPhotEvt->FixSize(); fCerPhotEvt->SetReadyToSave(); return kTRUE; }