source: trunk/MagicSoft/Mars/mcalib/MCalibrationCam.cc@ 3029

Last change on this file since 3029 was 3029, checked in by gaug, 21 years ago
*** empty log message ***
File size: 20.0 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15
16! *
17!
18!
19! Author(s): Markus Gaug 11/2003 <mailto:markus@ifae.es>
20!
21! Copyright: MAGIC Software Development, 2000-2001
22!
23!
24\* ======================================================================== */
25
26/////////////////////////////////////////////////////////////////////////////
27//
28// MCalibrationCam
29//
30// Hold the whole Calibration results of the camera:
31//
32// 1) MCalibrationCam initializes a TClonesArray whose elements are
33// pointers to MCalibrationPix Containers
34// 2) It initializes a pointer to an MCalibrationBlindPix container
35// 3) It initializes a pointer to an MCalibrationPINDiode container
36//
37// 4)
38//
39/////////////////////////////////////////////////////////////////////////////
40#include "MCalibrationCam.h"
41
42#include <TH2.h>
43#include <TCanvas.h>
44#include <TClonesArray.h>
45
46#include "MLog.h"
47#include "MLogManip.h"
48
49#include "MGeomCam.h"
50
51#include "MCalibrationPix.h"
52#include "MCalibrationConfig.h"
53#include "MCalibrationBlindPix.h"
54#include "MCalibrationPINDiode.h"
55
56#include "MHCalibrationPixel.h"
57
58ClassImp(MCalibrationCam);
59
60using namespace std;
61
62const Int_t MCalibrationCam::gkBlindPixelId = 559;
63const Int_t MCalibrationCam::gkPINDiodeId = 9999;
64const Float_t MCalibrationCam::gkTimeSliceWidth = 3.3;
65
66// --------------------------------------------------------------------------
67//
68// Default constructor.
69//
70// Creates a TClonesArray of MCalibrationPix containers, initialized to 1 entry
71// Later, a call to MCalibrationCam::InitSize(Int_t size) has to be performed
72//
73// Creates an MCalibrationBlindPix container
74// Creates an MCalibrationPINDiode container
75//
76MCalibrationCam::MCalibrationCam(const char *name, const char *title)
77 : fOffsets(NULL),
78 fSlopes(NULL),
79 fOffvsSlope(NULL)
80{
81 fName = name ? name : "MCalibrationCam";
82 fTitle = title ? title : "Storage container for the Calibration Information in the camera";
83
84 fPixels = new TClonesArray("MCalibrationPix",1);
85 fBlindPixel = new MCalibrationBlindPix();
86 fPINDiode = new MCalibrationPINDiode();
87
88 Clear();
89}
90
91// --------------------------------------------------------------------------
92//
93// Delete the TClonesArray of MCalibrationPix containers
94// Delete the MCalibrationPINDiode and the MCalibrationBlindPix
95//
96// Delete the histograms if they exist
97//
98MCalibrationCam::~MCalibrationCam()
99{
100
101 //
102 // delete fPixels should delete all Objects stored inside
103 //
104 delete fPixels;
105 delete fBlindPixel;
106 delete fPINDiode;
107
108 if (fOffsets)
109 delete fOffsets;
110 if (fSlopes)
111 delete fSlopes;
112 if (fOffvsSlope)
113 delete fOffvsSlope;
114
115}
116
117// -------------------------------------------------------------------
118//
119// This function simply allocates memory via the ROOT command:
120// (TObject**) TStorage::ReAlloc(fCont, newSize * sizeof(TObject*),
121// fSize * sizeof(TObject*));
122// newSize corresponds to size in our case
123// fSize is the old size (in most cases: 1)
124//
125void MCalibrationCam::InitSize(const UInt_t i)
126{
127
128 //
129 // check if we have already initialized to size
130 //
131 if (CheckBounds(i))
132 return;
133
134 fPixels->ExpandCreate(i);
135
136}
137
138// --------------------------------------------------------------------------
139//
140// This function returns the current size of the TClonesArray
141// independently if the MCalibrationPix is filled with values or not.
142//
143// It is the size of the array fPixels.
144//
145Int_t MCalibrationCam::GetSize() const
146{
147 return fPixels->GetEntriesFast();
148}
149
150// --------------------------------------------------------------------------
151//
152// Check if position i is inside the current bounds of the TClonesArray
153//
154Bool_t MCalibrationCam::CheckBounds(Int_t i) const
155{
156 return i < GetSize();
157}
158
159
160// --------------------------------------------------------------------------
161//
162// Get i-th pixel (pixel number)
163//
164MCalibrationPix &MCalibrationCam::operator[](Int_t i)
165{
166 return *static_cast<MCalibrationPix*>(fPixels->UncheckedAt(i));
167}
168
169// --------------------------------------------------------------------------
170//
171// Get i-th pixel (pixel number)
172//
173MCalibrationPix &MCalibrationCam::operator[](Int_t i) const
174{
175 return *static_cast<MCalibrationPix*>(fPixels->UncheckedAt(i));
176}
177
178
179// --------------------------------------
180//
181void MCalibrationCam::Clear(Option_t *o)
182{
183
184 fPixels->ForEach(TObject, Clear)();
185 fBlindPixel->Clear();
186 fPINDiode->Clear();
187
188 fMeanPhotInsidePlexiglass = -1.;
189 fMeanPhotErrInsidePlexiglass = -1.;
190 fMeanPhotOutsidePlexiglass = -1.;
191 fMeanPhotErrOutsidePlexiglass = -1.;
192
193 fNumExcludedPixels = 0;
194
195 CLRBIT(fFlags,kBlindPixelMethodValid);
196 CLRBIT(fFlags,kPINDiodeMethodValid);
197 CLRBIT(fFlags,kNumPhotInsidePlexiglassAvailable);
198 CLRBIT(fFlags,kNumPhotOutsidePlexiglassAvailable);
199
200 return;
201}
202
203void MCalibrationCam::SetBlindPixelMethodValid(const Bool_t b)
204{
205
206 if (b)
207 SETBIT(fFlags, kBlindPixelMethodValid);
208 else
209 CLRBIT(fFlags, kBlindPixelMethodValid);
210
211}
212
213void MCalibrationCam::SetPINDiodeMethodValid(const Bool_t b)
214{
215
216 if (b)
217 SETBIT(fFlags, kPINDiodeMethodValid);
218 else
219 CLRBIT(fFlags, kPINDiodeMethodValid);
220
221
222}
223
224Bool_t MCalibrationCam::IsBlindPixelMethodValid() const
225{
226 return TESTBIT(fFlags,kBlindPixelMethodValid);
227}
228
229Bool_t MCalibrationCam::IsPINDiodeMethodValid() const
230{
231 return TESTBIT(fFlags,kPINDiodeMethodValid);
232}
233
234
235Bool_t MCalibrationCam::IsNumPhotInsidePlexiglassAvailable() const
236{
237 return TESTBIT(fFlags,kNumPhotInsidePlexiglassAvailable);
238}
239
240Bool_t MCalibrationCam::IsNumPhotOutsidePlexiglassAvailable() const
241{
242 return TESTBIT(fFlags,kNumPhotOutsidePlexiglassAvailable);
243}
244
245
246
247// --------------------------------------------------------------------------
248//
249// Print first the well fitted pixels
250// and then the ones which are not FitValid
251//
252void MCalibrationCam::Print(Option_t *o) const
253{
254
255 *fLog << all << GetDescriptor() << ":" << endl;
256 int id = 0;
257
258 *fLog << all << "Succesfully calibrated pixels:" << endl;
259 *fLog << all << endl;
260
261 TIter Next(fPixels);
262 MCalibrationPix *pix;
263 while ((pix=(MCalibrationPix*)Next()))
264 {
265
266 if (pix->IsChargeFitValid() && !pix->IsExcluded())
267 {
268
269 *fLog << all << pix->GetPixId() << " Pedestals: " << pix->GetPed() << " +- "
270 << pix->GetPedRms() << " Reduced Charge: " << pix->GetCharge() << " +- "
271 << pix->GetSigmaCharge() << " Reduced Sigma: " << pix->GetRSigmaCharge()
272 << " Nr Phe's: " << pix->GetPheFFactorMethod() << endl;
273 id++;
274 }
275 }
276
277 *fLog << all << id << " succesful pixels :-))" << endl;
278 id = 0;
279
280 *fLog << all << endl;
281 *fLog << all << "Pixels with errors:" << endl;
282 *fLog << all << endl;
283
284 TIter Next2(fPixels);
285 while ((pix=(MCalibrationPix*)Next2()))
286 {
287
288 if (!pix->IsChargeFitValid() && !pix->IsExcluded())
289 {
290
291 *fLog << all << pix->GetPixId() << " Pedestals: " << pix->GetPed() << " +- "
292 << pix->GetPedRms() << " Reduced Charge: " << pix->GetCharge() << " +- "
293 << pix->GetSigmaCharge() << " Reduced Sigma: " << pix->GetRSigmaCharge() << endl;
294 id++;
295 }
296 }
297 *fLog << all << id << " pixels with errors :-((" << endl;
298
299 *fLog << all << endl;
300 *fLog << all << "Excluded pixels:" << endl;
301 *fLog << all << endl;
302
303 TIter Next3(fPixels);
304 while ((pix=(MCalibrationPix*)Next3()))
305 if (pix->IsExcluded())
306 *fLog << all << pix->GetPixId() << endl;
307
308 *fLog << all << fNumExcludedPixels << " excluded pixels " << endl;
309}
310
311// --------------------------------------------------------------------------
312//
313// Return true if pixel is inside bounds of the TClonesArray fPixels
314//
315Bool_t MCalibrationCam::IsPixelUsed(Int_t idx) const
316{
317 if (!CheckBounds(idx))
318 return kFALSE;
319
320 return kTRUE;
321}
322
323// --------------------------------------------------------------------------
324//
325// Return true if pixel has already been fitted once (independent of the result)
326//
327Bool_t MCalibrationCam::IsPixelFitted(Int_t idx) const
328{
329
330 if (!CheckBounds(idx))
331 return kFALSE;
332
333 return (*this)[idx].IsFitted();
334}
335
336// --------------------------------------------------------------------------
337//
338// Sets the user ranges of all histograms such that
339// empty bins at the edges are not used. Additionally, it rebins the
340// histograms such that in total, 50 bins are used.
341//
342void MCalibrationCam::CutEdges()
343{
344
345 fBlindPixel->GetHist()->CutAllEdges();
346 fPINDiode->GetHist()->CutAllEdges();
347
348 TIter Next(fPixels);
349 MCalibrationPix *pix;
350 while ((pix=(MCalibrationPix*)Next()))
351 {
352 pix->GetHist()->CutAllEdges();
353 }
354
355 return;
356}
357
358
359// The types are as follows:
360//
361// 0: Fitted Charge
362// 1: Error of fitted Charge
363// 2: Sigma of fitted Charge
364// 3: Error of Sigma of fitted Charge
365// 4: Returned probability of Gauss fit to Charge distribution
366// 5: Mean arrival time
367// 6: Sigma of the arrival time
368// 7: Chi-square of the Gauss fit to the arrival times
369// 8: Pedestal
370// 9: Pedestal RMS
371// 10: Reduced Sigma Square
372// 11: Number of Photo-electrons after the F-Factor method
373// 12: Error on the Number of Photo-electrons after the F-Factor method
374// 13: Mean conversion factor after the F-Factor method
375// 14: Error on the conversion factor after the F-Factor method
376// 15: Number of Photons after the Blind Pixel method
377// 16: Mean conversion factor after the Blind Pixel method
378//
379Bool_t MCalibrationCam::GetPixelContent(Double_t &val, Int_t idx, const MGeomCam &cam, Int_t type) const
380{
381
382 if (idx > GetSize())
383 return kFALSE;
384
385 if ( (!(*this)[idx].IsChargeFitValid()) || (*this)[idx].IsExcluded())
386 return kFALSE;
387
388 if (idx == gkBlindPixelId)
389 return kFALSE;
390
391 if (idx == gkPINDiodeId)
392 return kFALSE;
393
394 switch (type)
395 {
396 case 0:
397 val = (*this)[idx].GetCharge();
398 break;
399 case 1:
400 val = (*this)[idx].GetErrCharge();
401 break;
402 case 2:
403 val = (*this)[idx].GetSigmaCharge();
404 break;
405 case 3:
406 val = (*this)[idx].GetErrSigmaCharge();
407 break;
408 case 4:
409 val = (*this)[idx].GetChargeProb();
410 break;
411 case 5:
412 if (!(*this)[idx].IsTimeFitValid())
413 return kFALSE;
414 val = (*this)[idx].GetMeanTimeOffset() * gkTimeSliceWidth;
415 break;
416 case 6:
417 if (!(*this)[idx].IsTimeFitValid())
418 return kFALSE;
419 val = (*this)[idx].GetTimingPrecision() * gkTimeSliceWidth;
420 break;
421 case 7:
422 if (!(*this)[idx].IsTimeFitValid())
423 return kFALSE;
424 val = (*this)[idx].GetTimeProb();
425 break;
426 case 8:
427 val = (*this)[idx].GetPed();
428 break;
429 case 9:
430 val = (*this)[idx].GetPedRms();
431 break;
432 case 10:
433 val = (*this)[idx].GetRSigmaCharge();
434 break;
435 case 11:
436 val = (*this)[idx].GetPheFFactorMethod();
437 break;
438 case 12:
439 val = (*this)[idx].GetPheFFactorMethodError();
440 break;
441 case 13:
442 val = (*this)[idx].GetMeanConversionFFactorMethod();
443 break;
444 case 14:
445 val = (*this)[idx].GetErrorConversionFFactorMethod();
446 break;
447 case 15:
448 if (idx < 397)
449 val = (double)fMeanPhotInsidePlexiglass;
450 else
451 val = (double)fMeanPhotInsidePlexiglass*gkCalibrationOutervsInnerPixelArea;
452 break;
453 case 16:
454 if (idx < 397)
455 val = (*this)[idx].GetMeanConversionBlindPixelMethod();
456 else
457 val = (*this)[idx].GetMeanConversionBlindPixelMethod()*gkCalibrationOutervsInnerPixelArea;
458 break;
459 case 17:
460 val = (*this)[idx].GetRSigmaCharge() / (*this)[idx].GetCharge();
461 break;
462 case 18:
463 if (!(*this)[idx].IsTimeFitValid())
464 return kFALSE;
465 val = (*this)[idx].GetAbsTimeMean();
466 break;
467 case 19:
468 if (!(*this)[idx].IsTimeFitValid())
469 return kFALSE;
470 val = (*this)[idx].GetAbsTimeMeanErr();
471 break;
472 case 20:
473 if (!(*this)[idx].IsTimeFitValid())
474 return kFALSE;
475 val = (*this)[idx].GetAbsTimeRms();
476 break;
477 case 21:
478 if (!(*this)[idx].IsTimeFitValid())
479 return kFALSE;
480 val = (*this)[idx].GetAbsTimeMeanErr()/TMath::Sqrt(2.);
481 break;
482 default:
483 return kFALSE;
484 }
485 return val!=-1.;
486}
487
488// --------------------------------------------------------------------------
489//
490// What MHCamera needs in order to draw an individual pixel in the camera
491//
492void MCalibrationCam::DrawPixelContent(Int_t idx) const
493{
494 (*this)[idx].Draw();
495}
496
497
498// --------------------------------------------------------------------------
499//
500//
501//
502Bool_t MCalibrationCam::CalcNumPhotInsidePlexiglass()
503{
504
505 if (!fBlindPixel->IsFitOK())
506 return kFALSE;
507
508 const Float_t mean = fBlindPixel->GetLambda();
509 const Float_t merr = fBlindPixel->GetErrLambda();
510
511 switch (fColor)
512 {
513 case kECGreen:
514 fMeanPhotInsidePlexiglass = (mean / gkCalibrationBlindPixelQEGreen) // real photons
515 *TMath::Power(10,gkCalibrationBlindPixelAttGreen) // correct for absorption
516 * gkCalibrationInnerPixelArea; // correct for area
517
518
519 break;
520 case kECBlue:
521 fMeanPhotInsidePlexiglass = (mean / gkCalibrationBlindPixelQEBlue )
522 *TMath::Power(10,gkCalibrationBlindPixelAttBlue)
523 * gkCalibrationInnerPixelArea;
524 break;
525 case kECUV:
526 fMeanPhotInsidePlexiglass = (mean / gkCalibrationBlindPixelQEUV )
527 *TMath::Power(10,gkCalibrationBlindPixelAttUV)
528 * gkCalibrationInnerPixelArea;
529 break;
530 case kECCT1:
531 default:
532 fMeanPhotInsidePlexiglass = (mean / gkCalibrationBlindPixelQECT1 )
533 *TMath::Power(10,gkCalibrationBlindPixelAttCT1)
534 * gkCalibrationInnerPixelArea;
535 break;
536 }
537
538 SETBIT(fFlags,kNumPhotInsidePlexiglassAvailable);
539
540 *fLog << inf << endl;
541 *fLog << inf << "Mean number of Photons for an Inner Pixel (inside Plexiglass): "
542 << fMeanPhotInsidePlexiglass << endl;
543
544 TIter Next(fPixels);
545 MCalibrationPix *pix;
546 while ((pix=(MCalibrationPix*)Next()))
547 {
548 if((pix->GetCharge() > 0.) && (fMeanPhotInsidePlexiglass > 0.))
549 {
550
551 Float_t conversion = fMeanPhotInsidePlexiglass/pix->GetCharge();
552 Float_t conversionerr = 0.;
553 Float_t conversionsigma = 0.;
554 pix->SetConversionBlindPixelMethod(conversion, conversionerr, conversionsigma);
555
556 if (conversionerr/conversion < 0.1)
557 pix->SetBlindPixelMethodValid();
558 }
559 }
560 return kTRUE;
561}
562
563
564Bool_t MCalibrationCam::CalcNumPhotOutsidePlexiglass()
565{
566
567 if (!fPINDiode->IsChargeFitValid())
568 return kFALSE;
569
570 const Float_t mean = fPINDiode->GetCharge();
571 const Float_t merr = fPINDiode->GetErrCharge();
572
573 switch (fColor)
574 {
575 case kECGreen:
576 fMeanPhotOutsidePlexiglass = (mean / gkCalibrationPINDiodeQEGreen) // real photons
577 * gkCalibrationInnerPixelvsPINDiodeArea; // correct for area
578 break;
579 case kECBlue:
580 fMeanPhotOutsidePlexiglass = (mean / gkCalibrationPINDiodeQEBlue )
581 * gkCalibrationInnerPixelvsPINDiodeArea;
582 break;
583 case kECUV:
584 fMeanPhotOutsidePlexiglass = (mean / gkCalibrationPINDiodeQEUV )
585 * gkCalibrationInnerPixelvsPINDiodeArea;
586 break;
587 case kECCT1:
588 default:
589 fMeanPhotOutsidePlexiglass = (mean / gkCalibrationPINDiodeQECT1 )
590 * gkCalibrationInnerPixelvsPINDiodeArea;
591 break;
592 }
593
594 SETBIT(fFlags,kNumPhotOutsidePlexiglassAvailable);
595
596 *fLog << inf << endl;
597 *fLog << inf << mean << " Mean number of Photons for an Inner Pixel (outside Plexiglass): "
598 << fMeanPhotOutsidePlexiglass << endl;
599 *fLog << inf << endl;
600
601 TIter Next(fPixels);
602 MCalibrationPix *pix;
603 while ((pix=(MCalibrationPix*)Next()))
604 {
605
606 if((pix->GetCharge() > 0.) && (fMeanPhotInsidePlexiglass > 0.))
607 pix->SetConversionPINDiodeMethod(fMeanPhotOutsidePlexiglass/pix->GetCharge(), 0., 0.);
608 }
609 return kTRUE;
610}
611
612
613
614Bool_t MCalibrationCam::GetConversionFactorBlindPixel(Int_t ipx, Float_t &mean, Float_t &err, Float_t &sigma)
615{
616
617 if (ipx < 0 || !IsPixelFitted(ipx))
618 return kFALSE;
619
620 if (!IsNumPhotInsidePlexiglassAvailable())
621 if (!CalcNumPhotInsidePlexiglass())
622 return kFALSE;
623
624 mean = (*this)[ipx].GetMeanConversionBlindPixelMethod();
625 err = (*this)[ipx].GetErrorConversionBlindPixelMethod();
626 sigma = (*this)[ipx].GetSigmaConversionBlindPixelMethod();
627
628 return kTRUE;
629}
630
631
632Bool_t MCalibrationCam::GetConversionFactorFFactor(Int_t ipx, Float_t &mean, Float_t &err, Float_t &sigma)
633{
634
635 if (ipx < 0 || !IsPixelFitted(ipx))
636 return kFALSE;
637
638 Float_t conv = (*this)[ipx].GetMeanConversionFFactorMethod();
639
640 if (conv < 0.)
641 return kFALSE;
642
643 mean = conv;
644 err = (*this)[ipx].GetErrorConversionFFactorMethod();
645 sigma = (*this)[ipx].GetSigmaConversionFFactorMethod();
646
647 return kTRUE;
648}
649
650
651//-----------------------------------------------------------------------------------
652//
653// Calculates the conversion factor between the integral of FADCs slices
654// (as defined in the signal extractor MExtractSignal.cc)
655// and the number of photons reaching the plexiglass for one Inner Pixel
656//
657// FIXME: The PINDiode is still not working and so is the code
658//
659Bool_t MCalibrationCam::GetConversionFactorPINDiode(Int_t ipx, Float_t &mean, Float_t &err, Float_t &sigma)
660{
661
662 if (ipx < 0 || !IsPixelFitted(ipx))
663 return kFALSE;
664
665 if (!IsNumPhotOutsidePlexiglassAvailable())
666 if (!CalcNumPhotOutsidePlexiglass())
667 return kFALSE;
668
669 mean = (*this)[ipx].GetMeanConversionPINDiodeMethod();
670 err = (*this)[ipx].GetErrorConversionPINDiodeMethod();
671 sigma = (*this)[ipx].GetSigmaConversionPINDiodeMethod();
672
673 return kFALSE;
674
675}
676
677//-----------------------------------------------------------------------------------
678//
679// Calculates the best combination of the three used methods possible
680// between the integral of FADCs slices
681// (as defined in the signal extractor MExtractSignal.cc)
682// and the number of photons reaching one Inner Pixel.
683// The procedure is not yet defined.
684//
685// FIXME: The PINDiode is still not working and so is the code
686//
687Bool_t MCalibrationCam::GetConversionFactorCombined(Int_t ipx, Float_t &mean, Float_t &err, Float_t &sigma)
688{
689
690 if (ipx < 0 || !IsPixelFitted(ipx))
691 return kFALSE;
692
693 return kFALSE;
694
695}
696
697
698void MCalibrationCam::DrawHiLoFits()
699{
700
701 if (!fOffsets)
702 fOffsets = new TH1D("pp","Offsets of the HiGain LoGain Fit",100,-600.,400.);
703 if (!fSlopes)
704 fSlopes = new TH1D("mm","Slopes of the HiGain LoGain Fit",100,-2.,2.);
705 if (!fOffvsSlope)
706 fOffvsSlope = new TH2D("aa","Slopes vs Offsets of the HiGain LoGain Fit",100,-600.,400.,100,-2.,2.);
707
708 TIter Next(fPixels);
709 MCalibrationPix *pix;
710 MHCalibrationPixel *hist;
711 while ((pix=(MCalibrationPix*)Next()))
712 {
713 hist = pix->GetHist();
714 hist->FitHiGainvsLoGain();
715 fOffsets->Fill(hist->GetOffset(),1.);
716 fSlopes->Fill(hist->GetSlope(),1.);
717 fOffvsSlope->Fill(hist->GetOffset(),hist->GetSlope(),1.);
718 }
719
720 TCanvas *c1 = new TCanvas();
721
722 c1->Divide(1,3);
723 c1->cd(1);
724 fOffsets->Draw();
725 gPad->Modified();
726 gPad->Update();
727
728 c1->cd(2);
729 fSlopes->Draw();
730 gPad->Modified();
731 gPad->Update();
732
733 c1->cd(3);
734 fOffvsSlope->Draw("col1");
735 gPad->Modified();
736 gPad->Update();
737}
738
Note: See TracBrowser for help on using the repository browser.