/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug 09/2003 ! ! Copyright: MAGIC Software Development, 2000-2001 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MCalibrationChargeCalc // // Task to calculate the calibration conversion factors from the FADC // time slices. The integrated time slices have to be delivered by an // MExtractedSignalCam. The pedestals by an MPedestalCam. // // The output container MCalibrationCam holds one entry of type MCalibrationPix // for every pixel. It is filled in the following way: // // ProProcess: Search for MPedestalCam, MExtractedSignalCam and MExtractedSignalBlindPixel // Initialize MCalibrationCam // Initialize pulser light wavelength // // ReInit: MCalibrationCam::InitSize(NumPixels) is called which allocates // memory in a TClonesArray of type MCalibrationPix // Initialize number of used FADC slices // Optionally exclude pixels from calibration // // Process: Every MCalibrationPix holds a histogram class, // MHCalibrationPixel which itself hold histograms of type: // HCharge(npix) (distribution of summed FADC time slice // entries) // HTime(npix) (distribution of position of maximum) // HChargevsN(npix) (distribution of charges vs. event number. // // PostProcess: All histograms HCharge(npix) are fitted to a Gaussian // All histograms HTime(npix) are fitted to a Gaussian // The histogram HBlindPixelCharge (blind pixel) is fitted to // a single PhE fit // // The histograms of the PIN Diode are fitted to Gaussians // // Fits can be excluded via the commands: // MalibrationCam::SkipBlindPixelFits() (skip all blind // pixel fits) // // Hi-Gain vs. Lo-Gain Calibration (very memory-intensive) // can be skipped with the command: // MalibrationCam::SkipHiLoGainCalibration() // // Input Containers: // MRawEvtData // MPedestalCam // MExtractedSignalCam // MExtractedSignalBlindPixel // // Output Containers: // MCalibrationCam // ////////////////////////////////////////////////////////////////////////////// #include "MCalibrationChargeCalc.h" // FXIME: Usage of fstream is a preliminary workaround! #include #include #include #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MGeomCam.h" #include "MRawRunHeader.h" #include "MRawEvtPixelIter.h" #include "MPedestalCam.h" #include "MPedestalPix.h" #include "MCalibrationChargeCam.h" #include "MCalibrationChargePINDiode.h" #include "MCalibrationPix.h" #include "MExtractedSignalCam.h" #include "MExtractedSignalPix.h" #include "MExtractedSignalBlindPixel.h" #include "MCalibrationBlindPix.h" ClassImp(MCalibrationChargeCalc); using namespace std; const UInt_t MCalibrationChargeCalc::fgBlindPixelIdx = 559; const UInt_t MCalibrationChargeCalc::fgPINDiodeIdx = 9999; const UInt_t MCalibrationChargeCalc::fgBlindPixelSinglePheCut = 400; // -------------------------------------------------------------------------- // // Default constructor. // MCalibrationChargeCalc::MCalibrationChargeCalc(const char *name, const char *title) : fPedestals(NULL), fCam(NULL), fRawEvt(NULL), fRunHeader(NULL), fEvtTime(NULL), fSignals(NULL), fBlindPixel(NULL), fPINDiode(NULL) { fName = name ? name : "MCalibrationChargeCalc"; fTitle = title ? title : "Task to calculate the calibration constants and MCalibrationCam "; AddToBranchList("MRawEvtData.fHiGainPixId"); AddToBranchList("MRawEvtData.fLoGainPixId"); AddToBranchList("MRawEvtData.fHiGainFadcSamples"); AddToBranchList("MRawEvtData.fLoGainFadcSamples"); Clear(); SetBlindPixelIdx(); SetPINDiodeIdx(); } void MCalibrationChargeCalc::Clear(const Option_t *o) { SETBIT(fFlags, kUseBlindPixelFit); SETBIT(fFlags, kUseQualityChecks); SETBIT(fFlags, kHiLoGainCalibration); CLRBIT(fFlags, kHiGainOverFlow); CLRBIT(fFlags, kLoGainOverFlow); fNumBlindPixelSinglePhe = 0; fNumBlindPixelPedestal = 0; fNumHiGainSamples = 0; fNumLoGainSamples = 0; fConversionHiLo = 0; fNumExcludedPixels = 0; } // -------------------------------------------------------------------------- // // The PreProcess searches for the following input containers: // - MRawEvtData // - MPedestalCam // // The following output containers are also searched and created if // they were not found: // // - MHCalibrationBlindPixel // - MCalibrationCam // // The following output containers are only searched, but not created // // - MTime // Int_t MCalibrationChargeCalc::PreProcess(MParList *pList) { fRawEvt = (MRawEvtData*)pList->FindObject("MRawEvtData"); if (!fRawEvt) { *fLog << err << dbginf << "MRawEvtData not found... aborting." << endl; return kFALSE; } const MRawRunHeader *runheader = (MRawRunHeader*)pList->FindObject("MRawRunHeader"); if (!runheader) *fLog << warn << dbginf << "Warning - cannot check file type, MRawRunHeader not found." << endl; else if (runheader->GetRunType() == kRTMonteCarlo) { return kTRUE; } fCam = (MCalibrationChargeCam*)pList->FindCreateObj("MCalibrationChargeCam"); if (!fCam) { *fLog << err << dbginf << "MCalibrationChargeCam could not be created ... aborting." << endl; return kFALSE; } fPINDiode = (MCalibrationChargePINDiode*)pList->FindCreateObj("MCalibrationChargePINDiode"); if (!fPINDiode) { *fLog << err << dbginf << "MCalibrationChargePINDiode could not be created ... aborting." << endl; return kFALSE; } fCam->SetPINDiode(fPINDiode); fEvtTime = (MTime*)pList->FindObject("MTime"); fPedestals = (MPedestalCam*)pList->FindObject("MPedestalCam"); if (!fPedestals) { *fLog << err << dbginf << "Cannot find MPedestalCam ... aborting" << endl; return kFALSE; } fSignals = (MExtractedSignalCam*)pList->FindObject("MExtractedSignalCam"); if (!fSignals) { *fLog << err << dbginf << "Cannot find MExtractedSignalCam ... aborting" << endl; return kFALSE; } fBlindPixel = (MExtractedSignalBlindPixel*)pList->FindObject("MExtractedSignalBlindPixel"); if (!fBlindPixel) { *fLog << err << dbginf << "Cannot find MExtractedSignalBlindPixel ... aborting" << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // The ReInit searches for the following input containers: // - MRawRunHeader // Bool_t MCalibrationChargeCalc::ReInit(MParList *pList ) { fRunHeader = (MRawRunHeader*)pList->FindObject("MRawRunHeader"); if (!fRunHeader) { *fLog << err << dbginf << ": MRawRunHeader not found... aborting." << endl; return kFALSE; } MGeomCam *cam = (MGeomCam*)pList->FindObject("MGeomCam"); if (!cam) { *fLog << err << GetDescriptor() << ": No MGeomCam found... aborting." << endl; return kFALSE; } fCam->SetGeomCam(cam); fNumHiGainSamples = fSignals->GetNumUsedHiGainFADCSlices(); fNumLoGainSamples = fSignals->GetNumUsedLoGainFADCSlices(); fSqrtHiGainSamples = TMath::Sqrt((Float_t)fNumHiGainSamples); UInt_t npixels = cam->GetNumPixels(); for (UInt_t i=0; iGetFirstUsedSliceHiGain(), fSignals->GetLastUsedSliceHiGain()); pix.SetAbsTimeBordersLoGain(fSignals->GetFirstUsedSliceLoGain(), fSignals->GetLastUsedSliceLoGain()); if (!TESTBIT(fFlags,kUseQualityChecks)) pix.SetExcludeQualityCheck(); // Exclude the blind pixel and the PIN Diode from normal pixel calibration: if (i == fBlindPixelIdx) pix.SetExcluded(); if (i == fPINDiodeIdx) pix.SetExcluded(); } // // Look for file to exclude pixels from analysis // if (!fExcludedPixelsFile.IsNull()) { fExcludedPixelsFile = gSystem->ExpandPathName(fExcludedPixelsFile.Data()); // // Initialize reading the file // ifstream in(fExcludedPixelsFile.Data(),ios::in); if (in) { *fLog << inf << "Use excluded pixels from file: '" << fExcludedPixelsFile.Data() << "'" << endl; // // Read the file and count the number of entries // UInt_t pixel = 0; while (++fNumExcludedPixels) { in >> pixel; if (!in.good()) break; // // Check for out of range // if (pixel > npixels) { *fLog << warn << "WARNING: To be excluded pixel: " << pixel << " is out of range " << endl; continue; } // // Exclude pixel // MCalibrationPix &pix = (*fCam)[pixel]; pix.SetExcluded(); *fLog << GetDescriptor() << inf << ": Exclude Pixel: " << pixel << endl; } if (--fNumExcludedPixels == 0) *fLog << warn << "WARNING: File '" << fExcludedPixelsFile.Data() << "'" << " is empty " << endl; else fCam->SetNumPixelsExcluded(fNumExcludedPixels); } else *fLog << warn << dbginf << "Cannot open file '" << fExcludedPixelsFile.Data() << "'" << endl; } return kTRUE; } // -------------------------------------------------------------------------- // // Calculate the integral of the FADC time slices and store them as a new // pixel in the MCerPhotEvt container. // Int_t MCalibrationChargeCalc::Process() { MRawEvtPixelIter pixel(fRawEvt); // // Create a loop to fill the calibration histograms // Search for: a signal in MExtractedSignalCam // Search for: a signal in MExtractedSignalBlindPixel // Fill histograms with: // charge // charge vs. event nr. // // // Initialize pointers to blind pixel and individual pixels // // FIXME: filling the bind pixel histograms in this class is preliminary // and will be replaced soon to fill them with MFillH // MCalibrationBlindPix &blindpixel = *(fCam->GetBlindPixel()); MExtractedSignalBlindPixel &blindsig = (*fBlindPixel); const UInt_t signal = blindsig.GetExtractedSignal(); if (!blindpixel.FillCharge(signal)) *fLog << warn << "Overflow or Underflow occurred filling Blind Pixel sum = " << signal << endl; blindpixel.FillGraphs(signal,0); TH1I *hist; if (signal > fBlindPixelSinglePheCut) { hist = (blindpixel.GetHist())->GetHSinglePheFADCSlices(); fNumBlindPixelSinglePhe++; } else { hist = (blindpixel.GetHist())->GetHPedestalFADCSlices(); fNumBlindPixelPedestal++; } pixel.Jump(fBlindPixelIdx); const Byte_t *ptr = pixel.GetHiGainSamples(); for (Int_t i=1;i<16;i++) hist->Fill(i,*ptr++); ptr = pixel.GetLoGainSamples(); for (Int_t i=16;i<31;i++) hist->Fill(i,*ptr++); pixel.Reset(); while (pixel.Next()) { const UInt_t pixid = pixel.GetPixelId(); MCalibrationPix &pix = (*fCam)[pixid]; MExtractedSignalPix &sig = (*fSignals) [pixid]; const Float_t sumhi = sig.GetExtractedSignalHiGain(); const Float_t sumlo = sig.GetExtractedSignalLoGain(); Float_t abstime = 0.; if (sig.IsLoGainUsed()) abstime = (Float_t)pixel.GetIdxMaxLoGainSample(); else abstime = (Float_t)pixel.GetIdxMaxHiGainSample(); if (pix.IsExcluded()) continue; pix.FillGraphs(sumhi,sumlo); if (sig.IsLoGainUsed()) { if (!pix.FillChargeLoGain(sumlo)) *fLog << warn << "Could not fill Lo Gain Charge of pixel: " << pixid << " signal = " << sumlo << endl; if (!pix.FillAbsTimeLoGain(abstime)) *fLog << warn << "Could not fill Lo Gain Abs. Time of pixel: " << pixid << " time = " << abstime << endl; } else { if (!pix.FillChargeHiGain(sumhi)) *fLog << warn << "Could not fill Hi Gain Charge of pixel: " << pixid << " signal = " << sumhi << endl; if (!pix.FillAbsTimeHiGain(abstime)) *fLog << warn << "Could not fill Hi Gain Abs. Time of pixel: " << pixid << " time = " << abstime << endl; } } /* while (pixel.Next()) */ return kTRUE; } Int_t MCalibrationChargeCalc::PostProcess() { *fLog << inf << GetDescriptor() << ": Cut Histogram Edges" << endl; // // Cut edges to make fits and viewing of the hists easier // fCam->CutEdges(); // // Fit the blind pixel // if (TESTBIT(fFlags,kUseBlindPixelFit)) { // // Get pointer to blind pixel // MCalibrationBlindPix &blindpixel = *(fCam->GetBlindPixel()); *fLog << inf << GetDescriptor() << ": Fitting the Blind Pixel" << endl; // // retrieve the histogram containers // MHCalibrationBlindPixel *hist = blindpixel.GetHist(); // // retrieve mean and sigma of the blind pixel pedestal, // so that we can use it for the fit // // FIXME: This part has to be migrated into the future MHCalibrationChargeBlindPix class // const UInt_t nentries = fPedestals->GetTotalEntries(); const UInt_t nslices = 12; const Float_t sqrslice = TMath::Sqrt((Float_t)nslices); MPedestalPix &pedpix = (*fPedestals)[fBlindPixelIdx]; if (&pedpix) { const Float_t pedestal = pedpix.GetPedestal()*nslices; const Float_t pederr = pedpix.GetPedestalRms()*nslices/nentries; const Float_t pedsigma = pedpix.GetPedestalRms()*sqrslice; const Float_t pedsigmaerr = pederr/2.; hist->SetMeanPedestal(pedestal); hist->SetMeanPedestalErr(pederr); hist->SetSigmaPedestal(pedsigma); hist->SetSigmaPedestalErr(pedsigmaerr); } if (!blindpixel.FitCharge()) { *fLog << warn << "Could not fit the blind pixel! " << endl; *fLog << warn << "Setting bit kBlindPixelMethodValid to FALSE in MCalibrationCam" << endl; fCam->SetBlindPixelMethodValid(kFALSE); } else fCam->SetBlindPixelMethodValid(kTRUE); if (blindpixel.CheckOscillations()) fCam->SetBlindPixelMethodValid(kFALSE); TH1I *sphehist = hist->GetHSinglePheFADCSlices(); TH1I *pedhist = hist->GetHPedestalFADCSlices(); if (fNumBlindPixelSinglePhe > 1) sphehist->Scale(1./fNumBlindPixelSinglePhe); if (fNumBlindPixelPedestal > 1) pedhist->Scale(1./fNumBlindPixelPedestal); blindpixel.DrawClone(); } else *fLog << inf << GetDescriptor() << ": Skipping Blind Pixel Fit " << endl; *fLog << inf << "total: " << GetNumExecutions() << " sphe: " << fNumBlindPixelSinglePhe << " ped: " << fNumBlindPixelPedestal << endl; *fLog << inf << GetDescriptor() << ": Fitting the Normal Pixels" << endl; // // loop over the pedestal events and check if we have calibration // for (Int_t pixid=0; pixidGetSize(); pixid++) { MCalibrationPix &pix = (*fCam)[pixid]; // // Check if the pixel has been excluded from the fits // if (pix.IsExcluded()) continue; // // get the pedestals // const Float_t ped = (*fPedestals)[pixid].GetPedestal(); const Float_t prms = (*fPedestals)[pixid].GetPedestalRms(); // // set them in the calibration camera // pix.SetPedestal(ped,prms,(Float_t)fNumHiGainSamples,(Float_t)fNumLoGainSamples); // // perform the Gauss fits to the charges // pix.FitCharge(); // // check also for oscillations // pix.CheckOscillations(); // // calculate the F-Factor method // pix.CalcFFactorMethod(); } if (TESTBIT(fFlags,kUseBlindPixelFit) && fCam->IsBlindPixelMethodValid()) { if (!fCam->CalcFluxInsidePlexiglass()) { *fLog << warn << "Could not calculate the number of photons from the blind pixel " << endl; *fLog << "You can try to calibrate using the MCalibrationChargeCalc::SkipBlindPixelFit()" << endl; fCam->SetBlindPixelMethodValid(kFALSE); } } else *fLog << inf << GetDescriptor() << ": Skipping Blind Pixel Calibration! " << endl; if (!fPINDiode->CalcFluxOutsidePlexiglass()) { *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, will skip PIN Diode Calibration " << endl; fCam->SetPINDiodeMethodValid(kFALSE); } else { fCam->SetPINDiodeMethodValid(kTRUE); } fCam->SetReadyToSave(); return kTRUE; }