1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MCalibrationChargeCalc
|
---|
28 | //
|
---|
29 | // Task to calculate the calibration conversion factors from the FADC
|
---|
30 | // time slices. The integrated time slices have to be delivered by an
|
---|
31 | // MExtractedSignalCam. The pedestals by an MPedestalCam.
|
---|
32 | //
|
---|
33 | // The output container MCalibrationCam holds one entry of type MCalibrationChargePix
|
---|
34 | // for every pixel. It is filled in the following way:
|
---|
35 | //
|
---|
36 | // ProProcess: Initialize MCalibrationCam
|
---|
37 | // Initialize pulser light wavelength
|
---|
38 | //
|
---|
39 | // ReInit: MCalibrationCam::InitSize(NumPixels) is called from MGeomApply (which allocates
|
---|
40 | // memory in a TClonesArray of type MCalibrationChargePix)
|
---|
41 | // Initializes pointer to MBadPixelsCam
|
---|
42 | //
|
---|
43 | // Process: Nothing done by this class, histograms are filled by
|
---|
44 | // MHCalibrationChargeCam
|
---|
45 | //
|
---|
46 | // PstProcess: Fit results from MHCalibrationChargeCam are retrieved
|
---|
47 | // and used for the calculation of the reduced sigma,
|
---|
48 | // the F-Factor method, the blind pixel method (photon flux
|
---|
49 | // inside plexiglass) and
|
---|
50 | // the PINDiode method (photon flux
|
---|
51 | // outside plexiglass)
|
---|
52 | //
|
---|
53 | // Hi-Gain vs. Lo-Gain Calibration (very memory-intensive)
|
---|
54 | // can be skipped with the command:
|
---|
55 | // MalibrationCam::SkipHiLoGainCalibration()
|
---|
56 | //
|
---|
57 | // Input Containers:
|
---|
58 | // MRawEvtData
|
---|
59 | // MPedestalCam
|
---|
60 | // MBadPixelsCam
|
---|
61 | //
|
---|
62 | // Output Containers:
|
---|
63 | // MCalibrationCam
|
---|
64 | // MBadPixelsCam
|
---|
65 | //
|
---|
66 | //
|
---|
67 | // Preliminary description of the calibration in photons (email from 12/02/04)
|
---|
68 | //
|
---|
69 | // Why calibrating in photons:
|
---|
70 | // ===========================
|
---|
71 | //
|
---|
72 | // At the Barcelona meeting in 2002, we decided to calibrate the camera in
|
---|
73 | // photons. This for the following reasons:
|
---|
74 | //
|
---|
75 | // * The physical quantity arriving at the camera are photons. This is
|
---|
76 | // the direct physical information from the air shower. The photons
|
---|
77 | // have a flux and a spectrum.
|
---|
78 | //
|
---|
79 | // * The photon fluxes depend mostly on the shower energy (with
|
---|
80 | // corrections deriving from the observation conditions), while the photon
|
---|
81 | // spectra depend mostly on the observation conditions: zenith angle,
|
---|
82 | // quality of the air, also the impact parameter of the shower.
|
---|
83 | //
|
---|
84 | // * The photomultiplier, in turn, has different response properties
|
---|
85 | // (quantum efficiencies) for photons of different colour. (Moreover,
|
---|
86 | // different pixels have slightly different quantum efficiencies).
|
---|
87 | // The resulting number of photo-electrons is then amplified (linearly)
|
---|
88 | // with respect to the photo-electron flux.
|
---|
89 | //
|
---|
90 | // * In the ideal case, one would like to disentagle the effects
|
---|
91 | // of the observation conditions from the primary particle energy (which
|
---|
92 | // one likes to measure). To do so, one needs:
|
---|
93 | //
|
---|
94 | // 1) A reliable calibration relating the FADC counts to the photo-electron
|
---|
95 | // flux -> This is accomplished with the F-Factor method.
|
---|
96 | //
|
---|
97 | // 2) A reliable calibration of the wavelength-dependent quantum efficiency
|
---|
98 | // -> This is accomplished with the combination of the three methods,
|
---|
99 | // together with QE-measurements performed by David in order to do
|
---|
100 | // the interpolation.
|
---|
101 | //
|
---|
102 | // 3) A reliable calibration of the observation conditions. This means:
|
---|
103 | // - Tracing the atmospheric conditions -> LIDAR
|
---|
104 | // - Tracing the observation zenith angle -> Drive System
|
---|
105 | // 4) Some knowlegde about the impact parameter:
|
---|
106 | // - This is the only part which cannot be accomplished well with a
|
---|
107 | // single telescope. We would thus need to convolute the spectrum
|
---|
108 | // over the distribution of impact parameters.
|
---|
109 | //
|
---|
110 | //
|
---|
111 | // How an ideal calibration would look like:
|
---|
112 | // =========================================
|
---|
113 | //
|
---|
114 | // We know from the combined PIN-Diode and Blind-Pixel Method the response of
|
---|
115 | // each pixel to well-measured light fluxes in three representative
|
---|
116 | // wavelengths (green, blue, UV). We also know the response to these light
|
---|
117 | // fluxes in photo-electrons. Thus, we can derive:
|
---|
118 | //
|
---|
119 | // - conversion factors to photo-electrons
|
---|
120 | // - conversion factors to photons in three wavelengths.
|
---|
121 | //
|
---|
122 | // Together with David's measurements and some MC-simulation, we should be
|
---|
123 | // able to derive tables for typical Cherenkov-photon spectra - convoluted
|
---|
124 | // with the impact parameters and depending on the athmospheric conditions
|
---|
125 | // and the zenith angle (the "outer parameters").
|
---|
126 | //
|
---|
127 | // From these tables we can create "calibration tables" containing some
|
---|
128 | // effective quantum efficiency depending on these outer parameters and which
|
---|
129 | // are different for each pixel.
|
---|
130 | //
|
---|
131 | // In an ideal MCalibrate, one would thus have to convert first the FADC
|
---|
132 | // slices to Photo-electrons and then, depending on the outer parameters,
|
---|
133 | // look up the effective quantum efficiency and get the mean number of
|
---|
134 | // photons which is then used for the further analysis.
|
---|
135 | //
|
---|
136 | // How the (first) MAGIC calibration should look like:
|
---|
137 | // ===================================================
|
---|
138 | //
|
---|
139 | // For the moment, we have only one reliable calibration method, although
|
---|
140 | // with very large systematic errors. This is the F-Factor method. Knowing
|
---|
141 | // that the light is uniform over the whole camera (which I would not at all
|
---|
142 | // guarantee in the case of the CT1 pulser), one could in principle already
|
---|
143 | // perform a relative calibration of the quantum efficiencies in the UV.
|
---|
144 | // However, the spread in QE at UV is about 10-15% (according to the plot
|
---|
145 | // that Abelardo sent around last time. The spread in photo-electrons is 15%
|
---|
146 | // for the inner pixels, but much larger (40%) for the outer ones.
|
---|
147 | //
|
---|
148 | // I'm not sure if we can already say that we have measured the relative
|
---|
149 | // difference in quantum efficiency for the inner pixels and produce a first
|
---|
150 | // QE-table for each pixel. To so, I would rather check in other wavelengths
|
---|
151 | // (which we can do in about one-two weeks when the optical transmission of
|
---|
152 | // the calibration trigger is installed).
|
---|
153 | //
|
---|
154 | // Thus, for the moment being, I would join Thomas proposal to calibrate in
|
---|
155 | // photo-electrons and apply one stupid average quantum efficiency for all
|
---|
156 | // pixels. This keeping in mind that we will have much preciser information
|
---|
157 | // in about one to two weeks.
|
---|
158 | //
|
---|
159 | //
|
---|
160 | // What MCalibrate should calculate and what should be stored:
|
---|
161 | // ===========================================================
|
---|
162 | //
|
---|
163 | // It is clear that in the end, MCerPhotEvt will store photons.
|
---|
164 | // MCalibrationCam stores the conversionfactors to photo-electrons and also
|
---|
165 | // some tables of how to apply the conversion to photons, given the outer
|
---|
166 | // parameters. This is not yet implemented and not even discussed.
|
---|
167 | //
|
---|
168 | // To start, I would suggest that we define the "average quantum efficiency"
|
---|
169 | // (maybe something like 25+-3%) and apply them equally to all
|
---|
170 | // photo-electrons. Later, this average factor can be easily replaced by a
|
---|
171 | // pixel-dependent factor and later by a (pixel-dependent) table.
|
---|
172 | //
|
---|
173 | //
|
---|
174 | //
|
---|
175 | //////////////////////////////////////////////////////////////////////////////
|
---|
176 | #include "MCalibrationChargeCalc.h"
|
---|
177 |
|
---|
178 | #include <TSystem.h>
|
---|
179 | #include <TH1.h>
|
---|
180 |
|
---|
181 | #include "MLog.h"
|
---|
182 | #include "MLogManip.h"
|
---|
183 |
|
---|
184 | #include "MParList.h"
|
---|
185 |
|
---|
186 | #include "MGeomCam.h"
|
---|
187 | #include "MRawRunHeader.h"
|
---|
188 | #include "MRawEvtPixelIter.h"
|
---|
189 |
|
---|
190 | #include "MPedestalCam.h"
|
---|
191 | #include "MPedestalPix.h"
|
---|
192 |
|
---|
193 | #include "MCalibrationChargeCam.h"
|
---|
194 | #include "MCalibrationChargePix.h"
|
---|
195 | #include "MCalibrationChargePINDiode.h"
|
---|
196 | #include "MCalibrationChargeBlindPix.h"
|
---|
197 |
|
---|
198 | #include "MExtractedSignalCam.h"
|
---|
199 | #include "MExtractedSignalPix.h"
|
---|
200 |
|
---|
201 | #include "MBadPixelsCam.h"
|
---|
202 | #include "MBadPixelsPix.h"
|
---|
203 |
|
---|
204 |
|
---|
205 | ClassImp(MCalibrationChargeCalc);
|
---|
206 |
|
---|
207 | using namespace std;
|
---|
208 |
|
---|
209 | // --------------------------------------------------------------------------
|
---|
210 | //
|
---|
211 | // Default constructor.
|
---|
212 | //
|
---|
213 | MCalibrationChargeCalc::MCalibrationChargeCalc(const char *name, const char *title)
|
---|
214 | : fPedestals(NULL), fCam(NULL),
|
---|
215 | fRawEvt(NULL), fRunHeader(NULL), fGeom(NULL),
|
---|
216 | fBadPixels(NULL), fEvtTime(NULL),
|
---|
217 | fSignals(NULL), fPINDiode(NULL), fBlindPixel(NULL)
|
---|
218 | {
|
---|
219 |
|
---|
220 | fName = name ? name : "MCalibrationChargeCalc";
|
---|
221 | fTitle = title ? title : "Task to calculate the calibration constants and MCalibrationCam ";
|
---|
222 |
|
---|
223 | AddToBranchList("MRawEvtData.fHiGainPixId");
|
---|
224 | AddToBranchList("MRawEvtData.fLoGainPixId");
|
---|
225 | AddToBranchList("MRawEvtData.fHiGainFadcSamples");
|
---|
226 | AddToBranchList("MRawEvtData.fLoGainFadcSamples");
|
---|
227 |
|
---|
228 | Clear();
|
---|
229 | }
|
---|
230 |
|
---|
231 | void MCalibrationChargeCalc::Clear(const Option_t *o)
|
---|
232 | {
|
---|
233 |
|
---|
234 | SETBIT(fFlags, kUseQualityChecks);
|
---|
235 | SETBIT(fFlags, kHiLoGainCalibration);
|
---|
236 |
|
---|
237 | fNumHiGainSamples = 0.;
|
---|
238 | fNumLoGainSamples = 0.;
|
---|
239 | fConversionHiLo = 0;
|
---|
240 |
|
---|
241 | }
|
---|
242 |
|
---|
243 |
|
---|
244 | // --------------------------------------------------------------------------
|
---|
245 | //
|
---|
246 | // The PreProcess searches for the following input containers:
|
---|
247 | // - MRawEvtData
|
---|
248 | // - MPedestalCam
|
---|
249 | //
|
---|
250 | // The following output containers are also searched and created if
|
---|
251 | // they were not found:
|
---|
252 | //
|
---|
253 | // - MCalibrationCam
|
---|
254 | //
|
---|
255 | // The following output containers are only searched, but not created
|
---|
256 | //
|
---|
257 | // - MTime
|
---|
258 | //
|
---|
259 | Int_t MCalibrationChargeCalc::PreProcess(MParList *pList)
|
---|
260 | {
|
---|
261 |
|
---|
262 | fRawEvt = (MRawEvtData*)pList->FindObject("MRawEvtData");
|
---|
263 | if (!fRawEvt)
|
---|
264 | {
|
---|
265 | *fLog << err << "MRawEvtData not found... aborting." << endl;
|
---|
266 | return kFALSE;
|
---|
267 | }
|
---|
268 |
|
---|
269 | fCam = (MCalibrationChargeCam*)pList->FindCreateObj("MCalibrationChargeCam");
|
---|
270 | if (!fCam)
|
---|
271 | return kFALSE;
|
---|
272 |
|
---|
273 | fPINDiode = (MCalibrationChargePINDiode*)pList->FindCreateObj("MCalibrationChargePINDiode");
|
---|
274 | if (!fPINDiode)
|
---|
275 | return kFALSE;
|
---|
276 |
|
---|
277 | fBlindPixel = (MCalibrationChargeBlindPix*)pList->FindCreateObj("MCalibrationChargeBlindPix");
|
---|
278 | if (!fBlindPixel)
|
---|
279 | return kFALSE;
|
---|
280 |
|
---|
281 | fCam->SetPINDiode(fPINDiode);
|
---|
282 | fCam->SetBlindPixel(fBlindPixel);
|
---|
283 |
|
---|
284 | fEvtTime = (MTime*)pList->FindObject("MTime");
|
---|
285 |
|
---|
286 | fPedestals = (MPedestalCam*)pList->FindObject("MPedestalCam");
|
---|
287 | if (!fPedestals)
|
---|
288 | {
|
---|
289 | *fLog << err << "MPedestalCam not found... aborting" << endl;
|
---|
290 | return kFALSE;
|
---|
291 | }
|
---|
292 |
|
---|
293 | fSignals = (MExtractedSignalCam*)pList->FindObject("MExtractedSignalCam");
|
---|
294 | if (!fSignals)
|
---|
295 | {
|
---|
296 | *fLog << err << "MExtractedSignalCam not found... aborting" << endl;
|
---|
297 | return kFALSE;
|
---|
298 | }
|
---|
299 |
|
---|
300 | return kTRUE;
|
---|
301 | }
|
---|
302 |
|
---|
303 |
|
---|
304 | // --------------------------------------------------------------------------
|
---|
305 | //
|
---|
306 | // The ReInit searches for the following input containers:
|
---|
307 | // - MRawRunHeader
|
---|
308 | //
|
---|
309 | Bool_t MCalibrationChargeCalc::ReInit(MParList *pList )
|
---|
310 | {
|
---|
311 |
|
---|
312 | fRunHeader = (MRawRunHeader*)pList->FindObject("MRawRunHeader");
|
---|
313 | if (!fRunHeader)
|
---|
314 | {
|
---|
315 | *fLog << err << "MRawRunHeader not found... aborting." << endl;
|
---|
316 | return kFALSE;
|
---|
317 | }
|
---|
318 |
|
---|
319 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam");
|
---|
320 | if (!fGeom)
|
---|
321 | {
|
---|
322 | *fLog << err << "No MGeomCam found... aborting." << endl;
|
---|
323 | return kFALSE;
|
---|
324 | }
|
---|
325 |
|
---|
326 | fBadPixels = (MBadPixelsCam*)pList->FindCreateObj("MBadPixelsCam");
|
---|
327 | if (!fBadPixels)
|
---|
328 | {
|
---|
329 | *fLog << err << "Could not find or create MBadPixelsCam ... aborting." << endl;
|
---|
330 | return kFALSE;
|
---|
331 | }
|
---|
332 |
|
---|
333 | fCam->SetGeomCam(fGeom);
|
---|
334 | fCam->SetBadPixelsCam(fBadPixels);
|
---|
335 |
|
---|
336 | fNumHiGainSamples = fSignals->GetNumUsedHiGainFADCSlices();
|
---|
337 | fNumLoGainSamples = fSignals->GetNumUsedLoGainFADCSlices();
|
---|
338 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
339 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
340 |
|
---|
341 | UInt_t npixels = fGeom->GetNumPixels();
|
---|
342 |
|
---|
343 | for (UInt_t i=0; i<npixels; i++)
|
---|
344 | {
|
---|
345 | MCalibrationChargePix &pix = (*fCam)[i];
|
---|
346 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
347 |
|
---|
348 | pix.DefinePixId(i);
|
---|
349 |
|
---|
350 | if (bad.IsBad())
|
---|
351 | {
|
---|
352 | pix.SetExcluded();
|
---|
353 | continue;
|
---|
354 | }
|
---|
355 |
|
---|
356 | pix.SetAbsTimeBordersHiGain(fSignals->GetFirstUsedSliceHiGain(),
|
---|
357 | fSignals->GetLastUsedSliceHiGain());
|
---|
358 | pix.SetAbsTimeBordersLoGain(fSignals->GetFirstUsedSliceLoGain(),
|
---|
359 | fSignals->GetLastUsedSliceLoGain());
|
---|
360 | }
|
---|
361 |
|
---|
362 | return kTRUE;
|
---|
363 | }
|
---|
364 |
|
---|
365 |
|
---|
366 | // --------------------------------------------------------------------------
|
---|
367 | //
|
---|
368 | // Calculate the integral of the FADC time slices and store them as a new
|
---|
369 | // pixel in the MCerPhotEvt container.
|
---|
370 | //
|
---|
371 | Int_t MCalibrationChargeCalc::Process()
|
---|
372 | {
|
---|
373 | return kTRUE;
|
---|
374 | }
|
---|
375 |
|
---|
376 | Int_t MCalibrationChargeCalc::PostProcess()
|
---|
377 | {
|
---|
378 |
|
---|
379 | //
|
---|
380 | // loop over the pedestal events and check if we have calibration
|
---|
381 | //
|
---|
382 | Int_t nvalid = 0;
|
---|
383 | Float_t avinnerped = 0;
|
---|
384 | Float_t avinnerprms = 0;
|
---|
385 | Float_t avinnernum = 0;
|
---|
386 | Float_t avouterped = 0;
|
---|
387 | Float_t avouterprms = 0;
|
---|
388 | Float_t avouternum = 0;
|
---|
389 |
|
---|
390 | for (Int_t pixid=0; pixid<fPedestals->GetSize(); pixid++)
|
---|
391 | {
|
---|
392 |
|
---|
393 | MCalibrationChargePix &pix = (*fCam)[pixid];
|
---|
394 | MBadPixelsPix &bad = (*fBadPixels)[pixid];
|
---|
395 |
|
---|
396 | //
|
---|
397 | // Check if the pixel has been excluded from the fits
|
---|
398 | //
|
---|
399 | if (pix.IsExcluded())
|
---|
400 | continue;
|
---|
401 |
|
---|
402 | //
|
---|
403 | // get the pedestals
|
---|
404 | //
|
---|
405 | const Float_t ped = (*fPedestals)[pixid].GetPedestal();
|
---|
406 | const Float_t prms = (*fPedestals)[pixid].GetPedestalRms();
|
---|
407 | const Float_t num = TMath::Sqrt((Float_t)fPedestals->GetTotalEntries());
|
---|
408 |
|
---|
409 | if (fGeom->GetPixRatio(pixid) == 1.)
|
---|
410 | {
|
---|
411 | avinnerped += ped;
|
---|
412 | avinnerprms += prms;
|
---|
413 | avinnernum++;
|
---|
414 | }
|
---|
415 | else
|
---|
416 | {
|
---|
417 | avouterped += ped;
|
---|
418 | avouterprms += prms;
|
---|
419 | avouternum++;
|
---|
420 | }
|
---|
421 | //
|
---|
422 | // set them in the calibration camera
|
---|
423 | //
|
---|
424 | if (pix.IsHiGainSaturation())
|
---|
425 | {
|
---|
426 | pix.SetPedestal(ped * fNumLoGainSamples,
|
---|
427 | prms * fSqrtLoGainSamples,
|
---|
428 | prms * fNumLoGainSamples / num);
|
---|
429 | pix.SetNumLoGainSamples(fNumLoGainSamples);
|
---|
430 | pix.ApplyLoGainConversion();
|
---|
431 | }
|
---|
432 | else
|
---|
433 | {
|
---|
434 | pix.SetPedestal(ped * fNumHiGainSamples,
|
---|
435 | prms * fSqrtHiGainSamples,
|
---|
436 | prms * fNumHiGainSamples / num);
|
---|
437 | }
|
---|
438 |
|
---|
439 | pix.CheckChargeValidity(&bad);
|
---|
440 | pix.CheckTimeValidity(&bad);
|
---|
441 |
|
---|
442 | if (!bad.IsCalibrationSignalOK())
|
---|
443 | continue;
|
---|
444 |
|
---|
445 | nvalid++;
|
---|
446 |
|
---|
447 | if (!pix.CalcReducedSigma())
|
---|
448 | continue;
|
---|
449 |
|
---|
450 | pix.CalcFFactorMethod();
|
---|
451 |
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 |
|
---|
456 | //
|
---|
457 | // The Michele check ...
|
---|
458 | //
|
---|
459 | if (nvalid == 0)
|
---|
460 | {
|
---|
461 | *fLog << err << GetDescriptor() << ": Dear Michele! All pixels have non-valid calibration. "
|
---|
462 | << "Did you forget to fill the histograms (filling MHCalibrationChargeCam from MExtractedSignalCam using MFillH) ? " << endl;
|
---|
463 | return kFALSE;
|
---|
464 | }
|
---|
465 |
|
---|
466 | MCalibrationChargePix *avinnerpix = fCam->GetAverageInnerPix();
|
---|
467 | MCalibrationChargePix *avouterpix = fCam->GetAverageOuterPix();
|
---|
468 | //
|
---|
469 | // set the pedestans in the calibration camera
|
---|
470 | //
|
---|
471 | if (avinnerpix->IsHiGainSaturation())
|
---|
472 | {
|
---|
473 | avinnerpix->SetPedestal(avinnerped/avinnernum * fNumLoGainSamples,
|
---|
474 | avinnerprms/avinnernum * fSqrtLoGainSamples,
|
---|
475 | avinnerprms/avinnernum * fSqrtLoGainSamples/avinnernum);
|
---|
476 | avinnerpix->SetNumLoGainSamples(fNumLoGainSamples);
|
---|
477 | avinnerpix->ApplyLoGainConversion();
|
---|
478 | }
|
---|
479 | else
|
---|
480 | {
|
---|
481 | avinnerpix->SetPedestal(avinnerped/avinnernum * fNumHiGainSamples,
|
---|
482 | avinnerprms/avinnernum * fSqrtHiGainSamples,
|
---|
483 | avinnerprms/avinnernum * fSqrtHiGainSamples/avinnernum);
|
---|
484 | }
|
---|
485 |
|
---|
486 | if (avouterpix->IsHiGainSaturation())
|
---|
487 | {
|
---|
488 | avouterpix->SetPedestal(avouterped/avouternum * fNumLoGainSamples,
|
---|
489 | avouterprms/avouternum * fSqrtLoGainSamples,
|
---|
490 | avouterprms/avouternum * fSqrtLoGainSamples/avouternum);
|
---|
491 | avouterpix->SetNumLoGainSamples(fNumLoGainSamples);
|
---|
492 | avouterpix->ApplyLoGainConversion();
|
---|
493 | }
|
---|
494 | else
|
---|
495 | {
|
---|
496 | avouterpix->SetPedestal(avouterped/avouternum * fNumHiGainSamples,
|
---|
497 | avouterprms/avouternum * fSqrtHiGainSamples,
|
---|
498 | avouterprms/avouternum * fSqrtHiGainSamples/avouternum);
|
---|
499 | }
|
---|
500 |
|
---|
501 | MBadPixelsPix *bad = fCam->GetAverageInnerBadPix();
|
---|
502 |
|
---|
503 | avinnerpix->CheckChargeValidity(bad);
|
---|
504 | avinnerpix->CheckTimeValidity(bad);
|
---|
505 |
|
---|
506 | if (bad->IsCalibrationSignalOK())
|
---|
507 | if (!avinnerpix->CalcReducedSigma())
|
---|
508 | avinnerpix->CalcFFactorMethod();
|
---|
509 |
|
---|
510 | bad = fCam->GetAverageInnerBadPix();
|
---|
511 |
|
---|
512 | avouterpix->CheckChargeValidity(bad);
|
---|
513 | avouterpix->CheckTimeValidity(bad);
|
---|
514 |
|
---|
515 | if (bad->IsCalibrationSignalOK())
|
---|
516 | if (!avouterpix->CalcReducedSigma())
|
---|
517 | avouterpix->CalcFFactorMethod();
|
---|
518 |
|
---|
519 | if (!fBlindPixel->CheckChargeFitValidity())
|
---|
520 | {
|
---|
521 | *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, charge fit not valid " << endl;
|
---|
522 | fCam->SetBlindPixelMethodValid(kFALSE);
|
---|
523 | }
|
---|
524 | else
|
---|
525 | {
|
---|
526 | if (!fBlindPixel->CalcFluxInsidePlexiglass())
|
---|
527 | {
|
---|
528 | *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, will skip PIN Diode Calibration " << endl;
|
---|
529 | fCam->SetBlindPixelMethodValid(kFALSE);
|
---|
530 | }
|
---|
531 | else
|
---|
532 | {
|
---|
533 | fCam->SetBlindPixelMethodValid(kTRUE);
|
---|
534 | fCam->ApplyBlindPixelCalibration();
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | if (!fPINDiode->CheckChargeFitValidity() || !fPINDiode->CheckTimeFitValidity())
|
---|
539 | {
|
---|
540 | *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, charge fit not valid " << endl;
|
---|
541 | fCam->SetPINDiodeMethodValid(kFALSE);
|
---|
542 | }
|
---|
543 | else
|
---|
544 | {
|
---|
545 | if (!fPINDiode->CalcFluxOutsidePlexiglass())
|
---|
546 | {
|
---|
547 | *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, will skip PIN Diode Calibration " << endl;
|
---|
548 | fCam->SetPINDiodeMethodValid(kFALSE);
|
---|
549 | }
|
---|
550 | else
|
---|
551 | {
|
---|
552 | fCam->SetPINDiodeMethodValid(kTRUE);
|
---|
553 | fCam->ApplyPINDiodeCalibration();
|
---|
554 | }
|
---|
555 | }
|
---|
556 | fCam->SetReadyToSave();
|
---|
557 |
|
---|
558 | return kTRUE;
|
---|
559 | }
|
---|