1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MCalibrationChargeCalc
|
---|
28 | //
|
---|
29 | // Task to calculate the calibration conversion factors from the FADC
|
---|
30 | // time slices. The integrated time slices have to be delivered by an
|
---|
31 | // MExtractedSignalCam. The pedestals by an MPedestalCam.
|
---|
32 | //
|
---|
33 | // The output container MCalibrationCam holds one entry of type MCalibrationChargePix
|
---|
34 | // for every pixel. It is filled in the following way:
|
---|
35 | //
|
---|
36 | // ProProcess: Initialize MCalibrationCam
|
---|
37 | // Initialize pulser light wavelength
|
---|
38 | //
|
---|
39 | // ReInit: MCalibrationCam::InitSize(NumPixels) is called from MGeomApply (which allocates
|
---|
40 | // memory in a TClonesArray of type MCalibrationChargePix)
|
---|
41 | // Initializes pointer to MBadPixelsCam
|
---|
42 | //
|
---|
43 | // Process: Nothing done by this class, histograms are filled by
|
---|
44 | // MHCalibrationChargeCam
|
---|
45 | //
|
---|
46 | // PostProcess: Fit results from MHCalibrationChargeCam are retrieved
|
---|
47 | // and used for the calculation of the reduced sigma,
|
---|
48 | // the F-Factor method, the blind pixel method (photon flux
|
---|
49 | // inside plexiglass) and
|
---|
50 | // the PINDiode method (photon flux
|
---|
51 | // outside plexiglass)
|
---|
52 | //
|
---|
53 | // Hi-Gain vs. Lo-Gain Calibration (very memory-intensive)
|
---|
54 | // can be skipped with the command:
|
---|
55 | // MalibrationCam::SkipHiLoGainCalibration()
|
---|
56 | //
|
---|
57 | // Input Containers:
|
---|
58 | // MRawEvtData
|
---|
59 | // MPedestalCam
|
---|
60 | // MBadPixelsCam
|
---|
61 | //
|
---|
62 | // Output Containers:
|
---|
63 | // MCalibrationCam
|
---|
64 | // MCalibrationQECam
|
---|
65 | // MBadPixelsCam
|
---|
66 | //
|
---|
67 | //
|
---|
68 | // Preliminary description of the calibration in photons (email from 12/02/04)
|
---|
69 | //
|
---|
70 | // Why calibrating in photons:
|
---|
71 | // ===========================
|
---|
72 | //
|
---|
73 | // At the Barcelona meeting in 2002, we decided to calibrate the camera in
|
---|
74 | // photons. This for the following reasons:
|
---|
75 | //
|
---|
76 | // * The physical quantity arriving at the camera are photons. This is
|
---|
77 | // the direct physical information from the air shower. The photons
|
---|
78 | // have a flux and a spectrum.
|
---|
79 | //
|
---|
80 | // * The photon fluxes depend mostly on the shower energy (with
|
---|
81 | // corrections deriving from the observation conditions), while the photon
|
---|
82 | // spectra depend mostly on the observation conditions: zenith angle,
|
---|
83 | // quality of the air, also the impact parameter of the shower.
|
---|
84 | //
|
---|
85 | // * The photomultiplier, in turn, has different response properties
|
---|
86 | // (quantum efficiencies) for photons of different colour. (Moreover,
|
---|
87 | // different pixels have slightly different quantum efficiencies).
|
---|
88 | // The resulting number of photo-electrons is then amplified (linearly)
|
---|
89 | // with respect to the photo-electron flux.
|
---|
90 | //
|
---|
91 | // * In the ideal case, one would like to disentagle the effects
|
---|
92 | // of the observation conditions from the primary particle energy (which
|
---|
93 | // one likes to measure). To do so, one needs:
|
---|
94 | //
|
---|
95 | // 1) A reliable calibration relating the FADC counts to the photo-electron
|
---|
96 | // flux -> This is accomplished with the F-Factor method.
|
---|
97 | //
|
---|
98 | // 2) A reliable calibration of the wavelength-dependent quantum efficiency
|
---|
99 | // -> This is accomplished with the combination of the three methods,
|
---|
100 | // together with QE-measurements performed by David in order to do
|
---|
101 | // the interpolation.
|
---|
102 | //
|
---|
103 | // 3) A reliable calibration of the observation conditions. This means:
|
---|
104 | // - Tracing the atmospheric conditions -> LIDAR
|
---|
105 | // - Tracing the observation zenith angle -> Drive System
|
---|
106 | // 4) Some knowlegde about the impact parameter:
|
---|
107 | // - This is the only part which cannot be accomplished well with a
|
---|
108 | // single telescope. We would thus need to convolute the spectrum
|
---|
109 | // over the distribution of impact parameters.
|
---|
110 | //
|
---|
111 | //
|
---|
112 | // How an ideal calibration would look like:
|
---|
113 | // =========================================
|
---|
114 | //
|
---|
115 | // We know from the combined PIN-Diode and Blind-Pixel Method the response of
|
---|
116 | // each pixel to well-measured light fluxes in three representative
|
---|
117 | // wavelengths (green, blue, UV). We also know the response to these light
|
---|
118 | // fluxes in photo-electrons. Thus, we can derive:
|
---|
119 | //
|
---|
120 | // - conversion factors to photo-electrons
|
---|
121 | // - conversion factors to photons in three wavelengths.
|
---|
122 | //
|
---|
123 | // Together with David's measurements and some MC-simulation, we should be
|
---|
124 | // able to derive tables for typical Cherenkov-photon spectra - convoluted
|
---|
125 | // with the impact parameters and depending on the athmospheric conditions
|
---|
126 | // and the zenith angle (the "outer parameters").
|
---|
127 | //
|
---|
128 | // From these tables we can create "calibration tables" containing some
|
---|
129 | // effective quantum efficiency depending on these outer parameters and which
|
---|
130 | // are different for each pixel.
|
---|
131 | //
|
---|
132 | // In an ideal MCalibrate, one would thus have to convert first the FADC
|
---|
133 | // slices to Photo-electrons and then, depending on the outer parameters,
|
---|
134 | // look up the effective quantum efficiency and get the mean number of
|
---|
135 | // photons which is then used for the further analysis.
|
---|
136 | //
|
---|
137 | // How the (first) MAGIC calibration should look like:
|
---|
138 | // ===================================================
|
---|
139 | //
|
---|
140 | // For the moment, we have only one reliable calibration method, although
|
---|
141 | // with very large systematic errors. This is the F-Factor method. Knowing
|
---|
142 | // that the light is uniform over the whole camera (which I would not at all
|
---|
143 | // guarantee in the case of the CT1 pulser), one could in principle already
|
---|
144 | // perform a relative calibration of the quantum efficiencies in the UV.
|
---|
145 | // However, the spread in QE at UV is about 10-15% (according to the plot
|
---|
146 | // that Abelardo sent around last time. The spread in photo-electrons is 15%
|
---|
147 | // for the inner pixels, but much larger (40%) for the outer ones.
|
---|
148 | //
|
---|
149 | // I'm not sure if we can already say that we have measured the relative
|
---|
150 | // difference in quantum efficiency for the inner pixels and produce a first
|
---|
151 | // QE-table for each pixel. To so, I would rather check in other wavelengths
|
---|
152 | // (which we can do in about one-two weeks when the optical transmission of
|
---|
153 | // the calibration trigger is installed).
|
---|
154 | //
|
---|
155 | // Thus, for the moment being, I would join Thomas proposal to calibrate in
|
---|
156 | // photo-electrons and apply one stupid average quantum efficiency for all
|
---|
157 | // pixels. This keeping in mind that we will have much preciser information
|
---|
158 | // in about one to two weeks.
|
---|
159 | //
|
---|
160 | //
|
---|
161 | // What MCalibrate should calculate and what should be stored:
|
---|
162 | // ===========================================================
|
---|
163 | //
|
---|
164 | // It is clear that in the end, MCerPhotEvt will store photons.
|
---|
165 | // MCalibrationCam stores the conversionfactors to photo-electrons and also
|
---|
166 | // some tables of how to apply the conversion to photons, given the outer
|
---|
167 | // parameters. This is not yet implemented and not even discussed.
|
---|
168 | //
|
---|
169 | // To start, I would suggest that we define the "average quantum efficiency"
|
---|
170 | // (maybe something like 25+-3%) and apply them equally to all
|
---|
171 | // photo-electrons. Later, this average factor can be easily replaced by a
|
---|
172 | // pixel-dependent factor and later by a (pixel-dependent) table.
|
---|
173 | //
|
---|
174 | //
|
---|
175 | //
|
---|
176 | //////////////////////////////////////////////////////////////////////////////
|
---|
177 | #include "MCalibrationChargeCalc.h"
|
---|
178 |
|
---|
179 | #include <TSystem.h>
|
---|
180 | #include <TH1.h>
|
---|
181 |
|
---|
182 | #include "MLog.h"
|
---|
183 | #include "MLogManip.h"
|
---|
184 |
|
---|
185 | #include "MParList.h"
|
---|
186 |
|
---|
187 | #include "MRawRunHeader.h"
|
---|
188 | #include "MRawEvtPixelIter.h"
|
---|
189 |
|
---|
190 | #include "MGeomCam.h"
|
---|
191 | #include "MGeomPix.h"
|
---|
192 |
|
---|
193 | #include "MPedestalCam.h"
|
---|
194 | #include "MPedestalPix.h"
|
---|
195 |
|
---|
196 | #include "MCalibrationChargeCam.h"
|
---|
197 | #include "MCalibrationChargePix.h"
|
---|
198 | #include "MCalibrationChargePINDiode.h"
|
---|
199 | #include "MCalibrationChargeBlindPix.h"
|
---|
200 |
|
---|
201 | #include "MExtractedSignalCam.h"
|
---|
202 | #include "MExtractedSignalPix.h"
|
---|
203 | #include "MExtractedSignalBlindPixel.h"
|
---|
204 | #include "MExtractedSignalPINDiode.h"
|
---|
205 |
|
---|
206 | #include "MBadPixelsCam.h"
|
---|
207 | #include "MBadPixelsPix.h"
|
---|
208 |
|
---|
209 | #include "MCalibrationQECam.h"
|
---|
210 | #include "MCalibrationQEPix.h"
|
---|
211 |
|
---|
212 | #include "MCalibrationCam.h"
|
---|
213 |
|
---|
214 | ClassImp(MCalibrationChargeCalc);
|
---|
215 |
|
---|
216 | using namespace std;
|
---|
217 |
|
---|
218 | const Float_t MCalibrationChargeCalc::fgChargeLimit = 3.;
|
---|
219 | const Float_t MCalibrationChargeCalc::fgChargeErrLimit = 0.;
|
---|
220 | const Float_t MCalibrationChargeCalc::fgChargeRelErrLimit = 1.;
|
---|
221 | const Float_t MCalibrationChargeCalc::fgLambdaErrLimit = 0.2;
|
---|
222 | const Float_t MCalibrationChargeCalc::fgLambdaCheckLimit = 0.2;
|
---|
223 | const Float_t MCalibrationChargeCalc::fgPheErrLimit = 5.;
|
---|
224 | const Float_t MCalibrationChargeCalc::fgTimeLowerLimit = 1.;
|
---|
225 | const Float_t MCalibrationChargeCalc::fgTimeUpperLimit = 2.;
|
---|
226 | // --------------------------------------------------------------------------
|
---|
227 | //
|
---|
228 | // Default constructor.
|
---|
229 | //
|
---|
230 | // Sets all pointers to NULL
|
---|
231 | //
|
---|
232 | // Calls AddToBranchList for:
|
---|
233 | // - MRawEvtData.fHiGainPixId
|
---|
234 | // - MRawEvtData.fLoGainPixId
|
---|
235 | // - MRawEvtData.fHiGainFadcSamples
|
---|
236 | // - MRawEvtData.fLoGainFadcSamples
|
---|
237 | //
|
---|
238 | // Initializes:
|
---|
239 | // - fChargeLimit to fgChargeLimit
|
---|
240 | // - fChargeErrLimit to fgChargeErrLimit
|
---|
241 | // - fChargeRelErrLimit to fgChargeRelErrLimit
|
---|
242 | // - fLambdaCheckLimit to fgLambdaCheckLimit
|
---|
243 | // - fLambdaErrLimit to fgLambdaErrLimit
|
---|
244 | // - fTimeLowerLimit to fgTimeLowerLimit
|
---|
245 | // - fTimeUpperLimit to fgTimeUpperLimit
|
---|
246 | // - fPheErrLimit to fgPheErrLimit
|
---|
247 | // - fPulserColor to MCalibrationCam::kCT1
|
---|
248 | //
|
---|
249 | // Calls:
|
---|
250 | // - Clear()
|
---|
251 | //
|
---|
252 | MCalibrationChargeCalc::MCalibrationChargeCalc(const char *name, const char *title)
|
---|
253 | : fPedestals(NULL), fCam(NULL), fQECam(NULL),
|
---|
254 | fRawEvt(NULL), fRunHeader(NULL), fGeom(NULL),
|
---|
255 | fBadPixels(NULL), fEvtTime(NULL),
|
---|
256 | fSignals(NULL), fSigBlind(NULL), fSigPIN(NULL),
|
---|
257 | fPINDiode(NULL), fBlindPixel(NULL)
|
---|
258 | {
|
---|
259 |
|
---|
260 | fName = name ? name : "MCalibrationChargeCalc";
|
---|
261 | fTitle = title ? title : "Task to calculate the calibration constants and MCalibrationCam ";
|
---|
262 |
|
---|
263 | AddToBranchList("MRawEvtData.fHiGainPixId");
|
---|
264 | AddToBranchList("MRawEvtData.fLoGainPixId");
|
---|
265 | AddToBranchList("MRawEvtData.fHiGainFadcSamples");
|
---|
266 | AddToBranchList("MRawEvtData.fLoGainFadcSamples");
|
---|
267 |
|
---|
268 | SetChargeLimit();
|
---|
269 | SetChargeErrLimit();
|
---|
270 | SetChargeRelErrLimit();
|
---|
271 | SetLambdaCheckLimit();
|
---|
272 | SetLambdaErrLimit();
|
---|
273 | SetPheErrLimit();
|
---|
274 | SetPulserColor(MCalibrationCam::kCT1);
|
---|
275 | SetTimeLowerLimit();
|
---|
276 | SetTimeUpperLimit();
|
---|
277 |
|
---|
278 | Clear();
|
---|
279 |
|
---|
280 | }
|
---|
281 |
|
---|
282 | void MCalibrationChargeCalc::Clear(const Option_t *o)
|
---|
283 | {
|
---|
284 |
|
---|
285 | SETBIT(fFlags, kUseQualityChecks);
|
---|
286 | SETBIT(fFlags, kHiLoGainCalibration);
|
---|
287 |
|
---|
288 | fNumHiGainSamples = 0.;
|
---|
289 | fNumLoGainSamples = 0.;
|
---|
290 | fSqrtHiGainSamples = 0.;
|
---|
291 | fSqrtLoGainSamples = 0.;
|
---|
292 | fConversionHiLo = 0 ;
|
---|
293 | SkipQualityChecks ( kFALSE );
|
---|
294 | SkipHiLoGainCalibration( kFALSE );
|
---|
295 | }
|
---|
296 |
|
---|
297 |
|
---|
298 | // --------------------------------------------------------------------------
|
---|
299 | //
|
---|
300 | // The PreProcess searches for the following input containers:
|
---|
301 | // - MRawEvtData
|
---|
302 | // - MPedestalCam
|
---|
303 | // - MExtractedSignalCam
|
---|
304 | // - MExtractedSignalBlindPixel
|
---|
305 | // - MExtractedSignalPINDiode
|
---|
306 | //
|
---|
307 | // The following output containers are also searched and created if
|
---|
308 | // they were not found:
|
---|
309 | //
|
---|
310 | // - MCalibrationChargeCam
|
---|
311 | // - MCalibrationQECam
|
---|
312 | //
|
---|
313 | // The following output containers are only searched, but not created
|
---|
314 | //
|
---|
315 | // - MTime
|
---|
316 | //
|
---|
317 | // Sets the pulser colour in MCalibrationChargeCam
|
---|
318 | //
|
---|
319 | Int_t MCalibrationChargeCalc::PreProcess(MParList *pList)
|
---|
320 | {
|
---|
321 |
|
---|
322 | fRawEvt = (MRawEvtData*)pList->FindObject("MRawEvtData");
|
---|
323 | if (!fRawEvt)
|
---|
324 | {
|
---|
325 | *fLog << err << "MRawEvtData not found... aborting." << endl;
|
---|
326 | return kFALSE;
|
---|
327 | }
|
---|
328 |
|
---|
329 | fPedestals = (MPedestalCam*)pList->FindObject("MPedestalCam");
|
---|
330 | if (!fPedestals)
|
---|
331 | {
|
---|
332 | *fLog << err << "MPedestalCam not found... aborting" << endl;
|
---|
333 | return kFALSE;
|
---|
334 | }
|
---|
335 |
|
---|
336 | fSignals = (MExtractedSignalCam*)pList->FindObject("MExtractedSignalCam");
|
---|
337 | if (!fSignals)
|
---|
338 | {
|
---|
339 | *fLog << err << "MExtractedSignalCam not found... aborting" << endl;
|
---|
340 | return kFALSE;
|
---|
341 | }
|
---|
342 |
|
---|
343 | fSigBlind = (MExtractedSignalBlindPixel*)pList->FindObject("MExtractedSignalBlindPixel");
|
---|
344 | if (!fSigBlind)
|
---|
345 | *fLog << warn << "MExtractedSignalBlindPixel not found... no blind pixel method! " << endl;
|
---|
346 | else
|
---|
347 | {
|
---|
348 | fBlindPixel = (MCalibrationChargeBlindPix*)pList->FindCreateObj("MCalibrationChargeBlindPix");
|
---|
349 | if (!fBlindPixel)
|
---|
350 | {
|
---|
351 | *fLog << err << "Cannot find nor create MCalibrationChargeBlindPix... aborting" << endl;
|
---|
352 | return kFALSE;
|
---|
353 | }
|
---|
354 | fBlindPixel->SetColor( fPulserColor );
|
---|
355 | }
|
---|
356 |
|
---|
357 | fSigPIN = (MExtractedSignalPINDiode*)pList->FindObject("MExtractedSignalPINDiode");
|
---|
358 | if (!fSigPIN)
|
---|
359 | *fLog << warn << "MExtractedSignalPINDiode not found... no PIN Diode method! " << endl;
|
---|
360 | else
|
---|
361 | {
|
---|
362 | fPINDiode = (MCalibrationChargePINDiode*)pList->FindCreateObj("MCalibrationChargePINDiode");
|
---|
363 | if (!fPINDiode)
|
---|
364 | {
|
---|
365 | *fLog << err << "Cannot find nor create MCalibrationChargePINDiode... aborting" << endl;
|
---|
366 | return kFALSE;
|
---|
367 | }
|
---|
368 | fPINDiode->SetColor( fPulserColor );
|
---|
369 | }
|
---|
370 |
|
---|
371 | fCam = (MCalibrationChargeCam*)pList->FindCreateObj("MCalibrationChargeCam");
|
---|
372 | if (!fCam)
|
---|
373 | {
|
---|
374 | *fLog << err << "Cannot find nor create MCalibrationChargeCam... aborting" << endl;
|
---|
375 | return kFALSE;
|
---|
376 | }
|
---|
377 |
|
---|
378 | fCam->SetPulserColor( fPulserColor );
|
---|
379 |
|
---|
380 | fQECam = (MCalibrationQECam*)pList->FindCreateObj("MCalibrationQECam");
|
---|
381 | if (!fQECam)
|
---|
382 | {
|
---|
383 | *fLog << err << "Cannot find nor create MCalibrationQECam... aborting" << endl;
|
---|
384 | return kFALSE;
|
---|
385 | }
|
---|
386 |
|
---|
387 | fEvtTime = (MTime*)pList->FindObject("MTime");
|
---|
388 |
|
---|
389 | return kTRUE;
|
---|
390 | }
|
---|
391 |
|
---|
392 |
|
---|
393 | // --------------------------------------------------------------------------
|
---|
394 | //
|
---|
395 | // The ReInit searches for the following input containers:
|
---|
396 | // - MRawRunHeader
|
---|
397 | // - MGeomCam
|
---|
398 | // - MBadPixelsCam
|
---|
399 | //
|
---|
400 | // It retrieves the following variables from MExtractedSignalCam:
|
---|
401 | //
|
---|
402 | // fNumHiGainSamples
|
---|
403 | // fNumLoGainSamples
|
---|
404 | //
|
---|
405 | // fFirstUsedSliceHiGain
|
---|
406 | // fLastUsedSliceHiGain
|
---|
407 | // fFirstUsedSliceLoGain
|
---|
408 | // fLastUsedSliceLoGain
|
---|
409 | //
|
---|
410 | // It defines the PixId of every pixel in MCalibrationChargeCam and MCalibrationQECam
|
---|
411 | // It sets all pixels excluded which have the flag fBadBixelsPix::IsBad() set.
|
---|
412 | //
|
---|
413 | Bool_t MCalibrationChargeCalc::ReInit(MParList *pList )
|
---|
414 | {
|
---|
415 |
|
---|
416 | fRunHeader = (MRawRunHeader*)pList->FindObject("MRawRunHeader");
|
---|
417 | if (!fRunHeader)
|
---|
418 | {
|
---|
419 | *fLog << err << "MRawRunHeader not found... aborting." << endl;
|
---|
420 | return kFALSE;
|
---|
421 | }
|
---|
422 |
|
---|
423 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam");
|
---|
424 | if (!fGeom)
|
---|
425 | {
|
---|
426 | *fLog << err << "No MGeomCam found... aborting." << endl;
|
---|
427 | return kFALSE;
|
---|
428 | }
|
---|
429 |
|
---|
430 | fBadPixels = (MBadPixelsCam*)pList->FindCreateObj("MBadPixelsCam");
|
---|
431 | if (!fBadPixels)
|
---|
432 | {
|
---|
433 | *fLog << err << "Could not find or create MBadPixelsCam ... aborting." << endl;
|
---|
434 | return kFALSE;
|
---|
435 | }
|
---|
436 |
|
---|
437 | fNumHiGainSamples = fSignals->GetNumUsedHiGainFADCSlices();
|
---|
438 | fNumLoGainSamples = fSignals->GetNumUsedLoGainFADCSlices();
|
---|
439 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
440 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
441 |
|
---|
442 | UInt_t npixels = fGeom->GetNumPixels();
|
---|
443 |
|
---|
444 | for (UInt_t i=0; i<npixels; i++)
|
---|
445 | {
|
---|
446 |
|
---|
447 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam) [i];
|
---|
448 | MCalibrationQEPix &pqe = (MCalibrationQEPix&) (*fQECam)[i];
|
---|
449 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
450 |
|
---|
451 | pix.SetPixId(i);
|
---|
452 | pqe.SetPixId(i);
|
---|
453 |
|
---|
454 | if (bad.IsBad())
|
---|
455 | {
|
---|
456 | pix.SetExcluded();
|
---|
457 | pqe.SetExcluded();
|
---|
458 | continue;
|
---|
459 | }
|
---|
460 |
|
---|
461 | }
|
---|
462 |
|
---|
463 | return kTRUE;
|
---|
464 | }
|
---|
465 |
|
---|
466 |
|
---|
467 | // ----------------------------------------------------------------------------------
|
---|
468 | //
|
---|
469 | // Nothing to be done in Process, but have a look at MHCalibrationChargeCam, instead
|
---|
470 | //
|
---|
471 | Int_t MCalibrationChargeCalc::Process()
|
---|
472 | {
|
---|
473 | return kTRUE;
|
---|
474 | }
|
---|
475 |
|
---|
476 | // ----------------------------------------------------------------------------------
|
---|
477 | //
|
---|
478 | // Finalize pedestals:
|
---|
479 | //
|
---|
480 | // - Retrieve pedestal and pedestal RMS from MPedestalPix
|
---|
481 | // - Retrieve total entries from MPedestalCam
|
---|
482 | // - Sum up pedestal and pedestalRMS for the average pixel
|
---|
483 | // - Set pedestal*number of used samples in MCalibrationChargePix
|
---|
484 | // - Set pedestal RMS * sqrt of number of used samples in MCalibrationChargePix
|
---|
485 | //
|
---|
486 | //
|
---|
487 | void MCalibrationChargeCalc::FinalizePedestals(const MPedestalPix &ped, MCalibrationChargePix &cal,
|
---|
488 | Float_t &avped, Float_t &avrms)
|
---|
489 | {
|
---|
490 |
|
---|
491 | //
|
---|
492 | // get the pedestals
|
---|
493 | //
|
---|
494 | const Float_t pedes = ped.GetPedestal();
|
---|
495 | const Float_t prms = ped.GetPedestalRms();
|
---|
496 | const Float_t num = TMath::Sqrt((Float_t)fPedestals->GetTotalEntries());
|
---|
497 |
|
---|
498 | //
|
---|
499 | // Calculate the average pedestal
|
---|
500 | //
|
---|
501 | avped += pedes;
|
---|
502 | avrms += prms;
|
---|
503 |
|
---|
504 | //
|
---|
505 | // set them in the calibration camera
|
---|
506 | //
|
---|
507 | if (cal.IsHiGainSaturation())
|
---|
508 | {
|
---|
509 | cal.SetPedestal(pedes* fNumLoGainSamples,
|
---|
510 | prms * fSqrtLoGainSamples,
|
---|
511 | prms * fNumLoGainSamples / num);
|
---|
512 | cal.CalcLoGainPedestal((Float_t)fNumLoGainSamples);
|
---|
513 | }
|
---|
514 | else
|
---|
515 | {
|
---|
516 | cal.SetPedestal(pedes* fNumHiGainSamples,
|
---|
517 | prms * fSqrtHiGainSamples,
|
---|
518 | prms * fNumHiGainSamples / num);
|
---|
519 | }
|
---|
520 |
|
---|
521 | }
|
---|
522 |
|
---|
523 | void MCalibrationChargeCalc::FinalizeAvPedestals(MCalibrationChargePix &cal,
|
---|
524 | Float_t avped, Float_t avrms, Int_t avnum)
|
---|
525 | {
|
---|
526 |
|
---|
527 | //
|
---|
528 | // set the pedestans in the calibration camera
|
---|
529 | //
|
---|
530 | if (cal.IsHiGainSaturation())
|
---|
531 | {
|
---|
532 | cal.SetPedestal(avped/avnum * fNumLoGainSamples,
|
---|
533 | avrms/avnum * fSqrtLoGainSamples,
|
---|
534 | avrms/avnum * fSqrtLoGainSamples/avnum);
|
---|
535 | cal.CalcLoGainPedestal((Float_t)fNumLoGainSamples);
|
---|
536 | }
|
---|
537 | else
|
---|
538 | {
|
---|
539 | cal.SetPedestal(avped/avnum * fNumHiGainSamples,
|
---|
540 | avrms/avnum * fSqrtHiGainSamples,
|
---|
541 | avrms/avnum * fSqrtHiGainSamples/avnum);
|
---|
542 | }
|
---|
543 | }
|
---|
544 |
|
---|
545 | // ---------------------------------------------------------------------
|
---|
546 | //
|
---|
547 | // Finalize charges per pixel:
|
---|
548 | // - Check chage validity
|
---|
549 | // - Check absolute time validity
|
---|
550 | // - Calculate the reduced sigma
|
---|
551 | // - Calculate the number of photo-electrons
|
---|
552 | //
|
---|
553 | Bool_t MCalibrationChargeCalc::FinalizeCharges(MCalibrationChargePix &cal, MBadPixelsPix &bad)
|
---|
554 | {
|
---|
555 |
|
---|
556 | //
|
---|
557 | // The check return kTRUE if:
|
---|
558 | //
|
---|
559 | // 1) Pixel has a fitted charge greater than fChargeLimit*PedRMS
|
---|
560 | // 2) Pixel has a fit error greater than fChargeVarLimit
|
---|
561 | // 3) Pixel has a fitted charge greater its fChargeRelVarLimit times its charge error
|
---|
562 | // 4) Pixel has a charge sigma bigger than its Pedestal RMS
|
---|
563 | //
|
---|
564 | if (cal.GetMean() < fChargeLimit*cal.GetPedRms())
|
---|
565 | {
|
---|
566 | *fLog << warn << GetDescriptor() << ": Fitted Charge: " << cal.GetMean() << " is smaller than "
|
---|
567 | << fChargeLimit << " Pedestal RMS: " << cal.GetPedRms() << " in Pixel " << cal.GetPixId() << endl;
|
---|
568 | bad.SetUncalibrated( MBadPixelsPix::kChargeIsPedestal);
|
---|
569 | }
|
---|
570 |
|
---|
571 | if (cal.GetMeanErr() < fChargeErrLimit)
|
---|
572 | {
|
---|
573 | *fLog << warn << GetDescriptor() << ": Sigma of Fitted Charge: " << cal.GetMeanErr()
|
---|
574 | << " is smaller than " << fChargeErrLimit << " in Pixel " << cal.GetPixId() << endl;
|
---|
575 | bad.SetUncalibrated( MBadPixelsPix::kChargeErrNotValid );
|
---|
576 | }
|
---|
577 |
|
---|
578 | if (cal.GetMean() < fChargeRelErrLimit*cal.GetMeanErr())
|
---|
579 | {
|
---|
580 | *fLog << warn << GetDescriptor() << ": Fitted Charge: " << cal.GetMean() << " is smaller than "
|
---|
581 | << fChargeRelErrLimit << "* its error: " << cal.GetMeanErr()
|
---|
582 | << " in Pixel " << cal.GetPixId() << endl;
|
---|
583 | bad.SetUncalibrated( MBadPixelsPix::kChargeRelErrNotValid );
|
---|
584 | }
|
---|
585 |
|
---|
586 | if (cal.GetSigma() < cal.GetPedRms())
|
---|
587 | {
|
---|
588 | *fLog << warn << GetDescriptor() << ": Sigma of Fitted Charge: " << cal.GetSigma()
|
---|
589 | << " smaller than Pedestal RMS: " << cal.GetPedRms() << " in Pixel " << cal.GetPixId() << endl;
|
---|
590 | bad.SetUncalibrated( MBadPixelsPix::kChargeSigmaNotValid );
|
---|
591 | }
|
---|
592 |
|
---|
593 | //
|
---|
594 | // The check returns kTRUE if:
|
---|
595 | //
|
---|
596 | // The mean arrival time is at least fTimeLowerLimit slices from the lower edge
|
---|
597 | // and fUpperLimit slices from the upper edge
|
---|
598 | //
|
---|
599 | const Byte_t loweredge = cal.IsHiGainSaturation() ? fSignals->GetFirstUsedSliceLoGain()
|
---|
600 | : fSignals->GetFirstUsedSliceHiGain();
|
---|
601 | const Byte_t upperedge = cal.IsHiGainSaturation() ? fSignals->GetLastUsedSliceLoGain()
|
---|
602 | : fSignals->GetLastUsedSliceHiGain();
|
---|
603 |
|
---|
604 | const Float_t lowerlimit = (Float_t)loweredge + fTimeLowerLimit;
|
---|
605 | const Float_t upperlimit = (Float_t)upperedge + fTimeUpperLimit;
|
---|
606 |
|
---|
607 | if ( cal.GetAbsTimeMean() < lowerlimit)
|
---|
608 | {
|
---|
609 | *fLog << warn << GetDescriptor() << ": Mean ArrivalTime in first " << fTimeLowerLimit
|
---|
610 | << " extraction bin of the Pixel " << cal.GetPixId() << endl;
|
---|
611 | *fLog << cal.GetAbsTimeMean() << " " << lowerlimit << endl;
|
---|
612 | bad.SetUncalibrated( MBadPixelsPix::kMeanTimeInFirstBin );
|
---|
613 | }
|
---|
614 |
|
---|
615 | if ( cal.GetAbsTimeMean() > upperlimit )
|
---|
616 | {
|
---|
617 | *fLog << warn << GetDescriptor() << ": Mean ArrivalTime in last " << fTimeUpperLimit
|
---|
618 | << " two extraction bins of the Pixel " << cal.GetPixId() << endl;
|
---|
619 | *fLog << cal.GetAbsTimeMean() << " " << upperlimit << endl;
|
---|
620 | bad.SetUncalibrated( MBadPixelsPix::kMeanTimeInLast2Bins );
|
---|
621 | }
|
---|
622 |
|
---|
623 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
624 | return kFALSE;
|
---|
625 |
|
---|
626 | if (!cal.CalcReducedSigma())
|
---|
627 | {
|
---|
628 | *fLog << warn << GetDescriptor()
|
---|
629 | << ": Could not calculate reduced sigmas of pixel: " << cal.GetPixId() << endl;
|
---|
630 | bad.SetUncalibrated(MBadPixelsPix::kChargeIsPedestal);
|
---|
631 | return kFALSE;
|
---|
632 | }
|
---|
633 |
|
---|
634 | if (!cal.CalcFFactorMethod())
|
---|
635 | {
|
---|
636 | *fLog << warn << GetDescriptor()
|
---|
637 | << ": Could not calculate F-Factor of pixel: " << cal.GetPixId() << endl;
|
---|
638 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
639 | return kFALSE;
|
---|
640 | }
|
---|
641 | return kTRUE;
|
---|
642 | }
|
---|
643 |
|
---|
644 | // ------------------------------------------------------------------------
|
---|
645 | //
|
---|
646 | // Returns kFALSE if pointer to MExtractedSignalPINDiode is NULL
|
---|
647 | // Returns kFALSE if pointer to MCalibrationChargePINDiode is NULL
|
---|
648 | //
|
---|
649 | // The check returns kFALSE if:
|
---|
650 | //
|
---|
651 | // 1) PINDiode has a fitted charge smaller than fChargeLimit*PedRMS
|
---|
652 | // 2) PINDiode has a fit error smaller than fChargeErrLimit
|
---|
653 | // 3) PINDiode has a fitted charge smaller its fChargeRelErrLimit times its charge error
|
---|
654 | // 4) PINDiode has a charge sigma smaller than its Pedestal RMS
|
---|
655 | // 5) The mean arrival time is in fTimeLowerLimit slices from the lower edge
|
---|
656 | // and fUpperLimit slices from the upper edge
|
---|
657 | //
|
---|
658 | // Calls:
|
---|
659 | // - MCalibrationChargePINDiode::CalcFluxOutsidePlexiglass()
|
---|
660 | //
|
---|
661 | Bool_t MCalibrationChargeCalc::FinalizePINDiode()
|
---|
662 | {
|
---|
663 |
|
---|
664 | if (!fSigPIN)
|
---|
665 | return kFALSE;
|
---|
666 |
|
---|
667 | if (!fPINDiode)
|
---|
668 | return kFALSE;
|
---|
669 |
|
---|
670 | if (fPINDiode->GetMean() < fChargeLimit*fPINDiode->GetPedRms())
|
---|
671 | {
|
---|
672 | *fLog << warn << GetDescriptor() << ": Fitted Charge is smaller than "
|
---|
673 | << fChargeLimit << " Pedestal RMS in PINDiode " << endl;
|
---|
674 | return kFALSE;
|
---|
675 | }
|
---|
676 |
|
---|
677 | if (fPINDiode->GetMeanErr() < fChargeErrLimit)
|
---|
678 | {
|
---|
679 | *fLog << warn << GetDescriptor() << ": Error of Fitted Charge is smaller than "
|
---|
680 | << fChargeErrLimit << " in PINDiode " << endl;
|
---|
681 | return kFALSE;
|
---|
682 | }
|
---|
683 |
|
---|
684 | if (fPINDiode->GetMean() < fChargeRelErrLimit*fPINDiode->GetMeanErr())
|
---|
685 | {
|
---|
686 | *fLog << warn << GetDescriptor() << ": Fitted Charge is smaller than "
|
---|
687 | << fChargeRelErrLimit << "* its error in PINDiode " << endl;
|
---|
688 | return kFALSE;
|
---|
689 | }
|
---|
690 |
|
---|
691 | if (fPINDiode->GetSigma() < fPINDiode->GetPedRms())
|
---|
692 | {
|
---|
693 | *fLog << warn << GetDescriptor() << ": Sigma of Fitted Charge smaller than Pedestal RMS in PINDiode " << endl;
|
---|
694 | return kFALSE;
|
---|
695 | }
|
---|
696 |
|
---|
697 | const Byte_t loweredge = fSigPIN->GetFirstUsedSlice();
|
---|
698 | const Byte_t upperedge = fSigPIN->GetLastUsedSlice();
|
---|
699 | const Float_t lowerlimit = (Float_t)loweredge + fTimeLowerLimit;
|
---|
700 | const Float_t upperlimit = (Float_t)upperedge + fTimeUpperLimit;
|
---|
701 |
|
---|
702 | if (fPINDiode->GetAbsTimeMean() < lowerlimit)
|
---|
703 | {
|
---|
704 | *fLog << warn << GetDescriptor() << ": Mean ArrivalTime in first " << fTimeLowerLimit
|
---|
705 | << " extraction bin in PIN Diode " << endl;
|
---|
706 | *fLog << fPINDiode->GetAbsTimeMean() << " " << lowerlimit << endl;
|
---|
707 | return kFALSE;
|
---|
708 | }
|
---|
709 |
|
---|
710 | if ( fPINDiode->GetAbsTimeMean() > upperlimit )
|
---|
711 | {
|
---|
712 | *fLog << warn << GetDescriptor() << ": Mean ArrivalTime in last " << fTimeUpperLimit
|
---|
713 | << " two extraction bins in PIN Diode " << endl;
|
---|
714 | *fLog << fPINDiode->GetAbsTimeMean() << " " << upperlimit << endl;
|
---|
715 | return kFALSE;
|
---|
716 | }
|
---|
717 |
|
---|
718 | if (!fPINDiode->CalcFluxOutsidePlexiglass())
|
---|
719 | {
|
---|
720 | *fLog << warn << "Could not calculate the flux of photons from the PIN Diode, "
|
---|
721 | << "will skip PIN Diode Calibration " << endl;
|
---|
722 | return kFALSE;
|
---|
723 | }
|
---|
724 |
|
---|
725 | return kTRUE;
|
---|
726 | }
|
---|
727 |
|
---|
728 | // ------------------------------------------------------------------------
|
---|
729 | //
|
---|
730 | // Returns kFALSE if pointer to MExtractedSignalBlindPixel is NULL
|
---|
731 | // Returns kFALSE if pointer to MCalibrationChargeBlindPix is NULL
|
---|
732 | //
|
---|
733 | // The check returns kFALSE if:
|
---|
734 | //
|
---|
735 | // 1) fLambda and fLambdaCheck are separated relatively to each other by more than fLambdaCheckLimit
|
---|
736 | // 2) BlindPixel has an fLambdaErr greater than fLambdaErrLimit
|
---|
737 | //
|
---|
738 | // Calls:
|
---|
739 | // - MCalibrationChargeBlindPix::CalcFluxInsidePlexiglass()
|
---|
740 | //
|
---|
741 | Bool_t MCalibrationChargeCalc::FinalizeBlindPixel()
|
---|
742 | {
|
---|
743 |
|
---|
744 | if (!fSigBlind)
|
---|
745 | return kFALSE;
|
---|
746 |
|
---|
747 | if (!fBlindPixel)
|
---|
748 | return kFALSE;
|
---|
749 |
|
---|
750 | const Float_t lambda = fBlindPixel->GetLambda();
|
---|
751 | const Float_t lambdaerr = fBlindPixel->GetLambdaErr();
|
---|
752 | const Float_t lambdacheck = fBlindPixel->GetLambdaCheck();
|
---|
753 |
|
---|
754 | if (2.*(lambdacheck-lambda)/(lambdacheck+lambda) < fLambdaCheckLimit)
|
---|
755 | {
|
---|
756 | *fLog << warn << GetDescriptor() << ": Lambda and Lambda-Check differ by more than "
|
---|
757 | << fLambdaCheckLimit << " in the Blind Pixel " << endl;
|
---|
758 | return kFALSE;
|
---|
759 | }
|
---|
760 |
|
---|
761 | if (lambdaerr < fLambdaErrLimit)
|
---|
762 | {
|
---|
763 | *fLog << warn << GetDescriptor() << ": Error of Fitted Lambda is greater than "
|
---|
764 | << fLambdaErrLimit << " in Blind Pixel " << endl;
|
---|
765 | return kFALSE;
|
---|
766 | }
|
---|
767 |
|
---|
768 | if (!fBlindPixel->CalcFluxInsidePlexiglass())
|
---|
769 | {
|
---|
770 | *fLog << warn << "Could not calculate the flux of photons from the Blind Pixel, "
|
---|
771 | << "will skip Blind Pixel Calibration " << endl;
|
---|
772 | return kFALSE;
|
---|
773 | }
|
---|
774 |
|
---|
775 | return kTRUE;
|
---|
776 | }
|
---|
777 |
|
---|
778 | // ------------------------------------------------------------------------
|
---|
779 | //
|
---|
780 | //
|
---|
781 | Bool_t MCalibrationChargeCalc::FinalizeFFactorMethod()
|
---|
782 | {
|
---|
783 |
|
---|
784 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
785 | const UInt_t nareas = fGeom->GetNumAreas();
|
---|
786 | const UInt_t nsectors = fGeom->GetNumSectors();
|
---|
787 |
|
---|
788 | Float_t lowlim [nareas];
|
---|
789 | Float_t upplim [nareas];
|
---|
790 | Float_t areavars [nareas];
|
---|
791 | Float_t areaweights [nareas], sectorweights [nsectors];
|
---|
792 | Float_t areaphes [nareas], sectorphes [nsectors];
|
---|
793 | Int_t numareavalid[nareas], numsectorvalid[nsectors];
|
---|
794 |
|
---|
795 | memset(lowlim ,0, nareas * sizeof(Float_t));
|
---|
796 | memset(upplim ,0, nareas * sizeof(Float_t));
|
---|
797 | memset(areaphes ,0, nareas * sizeof(Float_t));
|
---|
798 | memset(areavars ,0, nareas * sizeof(Float_t));
|
---|
799 | memset(areaweights ,0, nareas * sizeof(Float_t));
|
---|
800 | memset(numareavalid ,0, nareas * sizeof(Int_t ));
|
---|
801 | memset(sectorweights ,0, nsectors * sizeof(Float_t));
|
---|
802 | memset(sectorphes ,0, nsectors * sizeof(Float_t));
|
---|
803 | memset(numsectorvalid,0, nsectors * sizeof(Int_t ));
|
---|
804 |
|
---|
805 | //
|
---|
806 | // First loop: Get mean number of photo-electrons and the RMS
|
---|
807 | // The loop is only to recognize later pixels with very deviating numbers
|
---|
808 | //
|
---|
809 | for (UInt_t i=0; i<npixels; i++)
|
---|
810 | {
|
---|
811 |
|
---|
812 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam) [i];
|
---|
813 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
814 |
|
---|
815 | if (!pix.IsFFactorMethodValid())
|
---|
816 | continue;
|
---|
817 |
|
---|
818 | if (!bad.IsCalibrationResultOK())
|
---|
819 | {
|
---|
820 | pix.SetFFactorMethodValid(kFALSE);
|
---|
821 | continue;
|
---|
822 | }
|
---|
823 |
|
---|
824 | const Float_t nphe = pix.GetPheFFactorMethod();
|
---|
825 | const Float_t nvar = pix.GetPheFFactorMethodVar();
|
---|
826 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
827 |
|
---|
828 | if (nvar > 0.)
|
---|
829 | {
|
---|
830 | areaphes [aidx] += nphe;
|
---|
831 | areavars [aidx] += nvar;
|
---|
832 | numareavalid[aidx] ++;
|
---|
833 | }
|
---|
834 | }
|
---|
835 |
|
---|
836 | for (UInt_t i=0; i<nareas; i++)
|
---|
837 | {
|
---|
838 | if (numareavalid[i] == 0)
|
---|
839 | {
|
---|
840 | *fLog << warn << GetDescriptor() << ": No pixels with valid number of photo-electrons found "
|
---|
841 | << "in area index: " << i << endl;
|
---|
842 | continue;
|
---|
843 | }
|
---|
844 |
|
---|
845 | areaphes[i] = areaphes[i] / numareavalid[i];
|
---|
846 | areavars[i] = areavars[i] / numareavalid[i];
|
---|
847 | lowlim [i] = areaphes[i] - fPheErrLimit*TMath::Sqrt(areavars[i]);
|
---|
848 | upplim [i] = areaphes[i] + fPheErrLimit*TMath::Sqrt(areavars[i]);
|
---|
849 | }
|
---|
850 |
|
---|
851 | memset(numareavalid,0,nareas*sizeof(Int_t));
|
---|
852 | memset(areaphes ,0,nareas*sizeof(Int_t));
|
---|
853 | memset(areavars ,0,nareas*sizeof(Int_t));
|
---|
854 |
|
---|
855 | //
|
---|
856 | // Second loop: Get weighted mean number of photo-electrons and its RMS excluding
|
---|
857 | // pixels deviating by more than fPheErrLimit sigma.
|
---|
858 | // Set the conversion factor FADC counts to photo-electrons
|
---|
859 | //
|
---|
860 | for (UInt_t i=0; i<npixels; i++)
|
---|
861 | {
|
---|
862 |
|
---|
863 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
864 |
|
---|
865 | if (!pix.IsFFactorMethodValid())
|
---|
866 | continue;
|
---|
867 |
|
---|
868 | const Float_t nvar = pix.GetPheFFactorMethodVar();
|
---|
869 |
|
---|
870 | if (nvar <= 0.)
|
---|
871 | {
|
---|
872 | pix.SetFFactorMethodValid(kFALSE);
|
---|
873 | continue;
|
---|
874 | }
|
---|
875 |
|
---|
876 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
877 |
|
---|
878 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
879 | const Int_t sector = (*fGeom)[i].GetSector();
|
---|
880 | const Float_t nphe = pix.GetPheFFactorMethod();
|
---|
881 |
|
---|
882 | if ( nphe < lowlim[aidx] || nphe > upplim[aidx] )
|
---|
883 | {
|
---|
884 | *fLog << warn << GetDescriptor() << ": Deviating number of photo-electrons: "
|
---|
885 | << Form("%4.2f",nphe) << " out of accepted limits: ["
|
---|
886 | << Form("%4.2f%s%4.2f",lowlim[aidx],",",upplim[aidx]) << "] in pixel " << i << endl;
|
---|
887 | bad.SetUncalibrated( MBadPixelsPix::kDeviatingNumPhes );
|
---|
888 | bad.SetUnsuitable ( MBadPixelsPix::kUnreliableRun );
|
---|
889 | continue;
|
---|
890 | }
|
---|
891 |
|
---|
892 | const Float_t weight = 1./nvar;
|
---|
893 |
|
---|
894 | areaweights [aidx] += weight;
|
---|
895 | areaphes [aidx] += weight*nphe;
|
---|
896 | numareavalid [aidx] ++;
|
---|
897 | sectorweights [sector] += weight;
|
---|
898 | sectorphes [sector] += weight*nphe;
|
---|
899 | numsectorvalid[sector] ++;
|
---|
900 | }
|
---|
901 |
|
---|
902 | for (UInt_t aidx=0; aidx<nareas; aidx++)
|
---|
903 | {
|
---|
904 |
|
---|
905 | MCalibrationChargePix &apix = (MCalibrationChargePix&)fCam->GetAverageArea(aidx);
|
---|
906 |
|
---|
907 | if (areaweights[aidx] <= 0. || areaphes[aidx] <= 0.)
|
---|
908 | {
|
---|
909 | *fLog << warn << " Mean number of phe's from area index " << aidx << " cannot be calculated: "
|
---|
910 | << " Sum of weights: " << areaweights[aidx]
|
---|
911 | << " Sum of weighted phes: " << areaphes[aidx] << endl;
|
---|
912 | apix.SetFFactorMethodValid(kFALSE);
|
---|
913 | continue;
|
---|
914 | }
|
---|
915 |
|
---|
916 | *fLog << inf << "Replacing number photo-electrons of average area idx " << aidx << ": "
|
---|
917 | << Form("%5.3f%s%5.3f",apix.GetPheFFactorMethod()," +- ",apix.GetPheFFactorMethodErr()) << endl;
|
---|
918 | *fLog << inf << " by average number of photo-electrons from area idx " << aidx << ": "
|
---|
919 | << Form("%5.3f%s%5.3f",areaphes[aidx] / areaweights[aidx]," +- ",
|
---|
920 | TMath::Sqrt(1./areaweights[aidx])) << endl;
|
---|
921 |
|
---|
922 | apix.SetPheFFactorMethod ( areaphes[aidx]/ areaweights[aidx] );
|
---|
923 | apix.SetPheFFactorMethodVar( 1. / areaweights[aidx] );
|
---|
924 | apix.SetFFactorMethodValid ( kTRUE );
|
---|
925 |
|
---|
926 | }
|
---|
927 |
|
---|
928 | for (UInt_t sector=0; sector<nsectors; sector++)
|
---|
929 | {
|
---|
930 |
|
---|
931 | MCalibrationChargePix &spix = (MCalibrationChargePix&)fCam->GetAverageSector(sector);
|
---|
932 |
|
---|
933 | if (sectorweights[sector] <= 0. || sectorphes[sector] <= 0.)
|
---|
934 | {
|
---|
935 | *fLog << warn << " Mean number of phe's from sector " << sector << " cannot be calculated: "
|
---|
936 | << " Sum of weights: " << sectorweights[sector]
|
---|
937 | << " Sum of weighted phes: " << sectorphes[sector] << endl;
|
---|
938 | spix.SetFFactorMethodValid(kFALSE);
|
---|
939 | continue;
|
---|
940 | }
|
---|
941 |
|
---|
942 | *fLog << inf << "Replacing number photo-electrons of average sector " << sector << ": "
|
---|
943 | << Form("%5.3f%s%5.3f",spix.GetPheFFactorMethod()," +- ",spix.GetPheFFactorMethodErr()) << endl;
|
---|
944 | *fLog << inf << " by average number photo-electrons from sector " << sector << ": "
|
---|
945 | << Form("%5.3f%s%5.3f",sectorphes[sector]/ sectorweights[sector]," +- ",
|
---|
946 | TMath::Sqrt(1./sectorweights[sector])) << endl;
|
---|
947 |
|
---|
948 | spix.SetPheFFactorMethod ( sectorphes[sector]/ sectorweights[sector] );
|
---|
949 | spix.SetPheFFactorMethodVar( 1. / sectorweights[sector] );
|
---|
950 | spix.SetFFactorMethodValid ( kTRUE );
|
---|
951 |
|
---|
952 | }
|
---|
953 |
|
---|
954 | return kTRUE;
|
---|
955 | }
|
---|
956 |
|
---|
957 |
|
---|
958 | // ----------------------------------------------------------------------
|
---|
959 | //
|
---|
960 | // Sets all pixels to MBadPixelsPix::kUnsuitableRun, if following flags are set:
|
---|
961 | // - MBadPixelsPix::kChargeIsPedestal
|
---|
962 | // - MBadPixelsPix::kChargeErrNotValid
|
---|
963 | // - MBadPixelsPix::kChargeRelErrNotValid
|
---|
964 | // - MBadPixelsPix::kChargeSigmaNotValid
|
---|
965 | // - MBadPixelsPix::kMeanTimeInFirstBin
|
---|
966 | // - MBadPixelsPix::kMeanTimeInLast2Bins
|
---|
967 | //
|
---|
968 | // Sets all pixels to MBadPixelsPix::kUnreliableRun, if following flags are set:
|
---|
969 | // - MBadPixelsPix::kDeviatingNumPhes
|
---|
970 | //
|
---|
971 | void MCalibrationChargeCalc::FinalizeBadPixels()
|
---|
972 | {
|
---|
973 |
|
---|
974 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
975 | {
|
---|
976 |
|
---|
977 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
978 |
|
---|
979 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeIsPedestal))
|
---|
980 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
981 |
|
---|
982 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeErrNotValid ))
|
---|
983 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
984 |
|
---|
985 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeRelErrNotValid ))
|
---|
986 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
987 |
|
---|
988 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeSigmaNotValid ))
|
---|
989 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
990 |
|
---|
991 | if (bad.IsUncalibrated( MBadPixelsPix::kMeanTimeInFirstBin ))
|
---|
992 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
993 |
|
---|
994 | if (bad.IsUncalibrated( MBadPixelsPix::kMeanTimeInLast2Bins ))
|
---|
995 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
996 |
|
---|
997 | if (bad.IsUncalibrated( MBadPixelsPix::kDeviatingNumPhes ))
|
---|
998 | bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun );
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | // ------------------------------------------------------------------------
|
---|
1003 | //
|
---|
1004 | //
|
---|
1005 | void MCalibrationChargeCalc::FinalizeFFactorQECam()
|
---|
1006 | {
|
---|
1007 |
|
---|
1008 | MCalibrationChargePix &avpix = (MCalibrationChargePix&)fCam->GetAverageArea(0);
|
---|
1009 | MCalibrationQEPix &qepix = (MCalibrationQEPix&) fQECam->GetAverageArea(0);
|
---|
1010 |
|
---|
1011 | const Float_t avphotonflux = avpix.GetPheFFactorMethod()
|
---|
1012 | / qepix.GetQEFFactor(fPulserColor)
|
---|
1013 | / fQECam->GetPlexiglassQE();
|
---|
1014 |
|
---|
1015 | const Float_t avfluxrelvar = avpix.GetPheFFactorMethodRelVar()
|
---|
1016 | + qepix.GetQEFFactorRelVar(fPulserColor)
|
---|
1017 | + fQECam->GetPlexiglassQERelVar();
|
---|
1018 |
|
---|
1019 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
1020 |
|
---|
1021 | for (UInt_t i=0; i<npixels; i++)
|
---|
1022 | {
|
---|
1023 |
|
---|
1024 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1025 | MCalibrationQEPix &qepix = (MCalibrationQEPix&) (*fQECam)[i];
|
---|
1026 |
|
---|
1027 | if (!pix.IsFFactorMethodValid())
|
---|
1028 | {
|
---|
1029 | qepix.SetFFactorMethodValid(kFALSE,fPulserColor);
|
---|
1030 | continue;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | const Float_t photons = avphotonflux / fGeom->GetPixRatio(i);
|
---|
1034 | const Float_t qe = pix.GetPheFFactorMethod() / photons ;
|
---|
1035 |
|
---|
1036 | if (!pix.CalcMeanFFactor( photons , avfluxrelvar ))
|
---|
1037 | {
|
---|
1038 | pix.SetFFactorMethodValid(kFALSE);
|
---|
1039 | qepix.SetFFactorMethodValid(kFALSE, fPulserColor);
|
---|
1040 | (*fBadPixels)[i].SetUncalibrated( MBadPixelsPix::kDeviatingNumPhes );
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | const Float_t qerelvar = avfluxrelvar + pix.GetPheFFactorMethodRelVar();
|
---|
1044 |
|
---|
1045 | qepix.SetQEFFactor ( qe , fPulserColor );
|
---|
1046 | qepix.SetQEFFactorVar ( qerelvar*qe*qe, fPulserColor );
|
---|
1047 | qepix.UpdateFFactorMethod();
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | // ------------------------------------------------------------------------
|
---|
1052 | //
|
---|
1053 | //
|
---|
1054 | void MCalibrationChargeCalc::FinalizeBlindPixelQECam()
|
---|
1055 | {
|
---|
1056 |
|
---|
1057 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
1058 |
|
---|
1059 | //
|
---|
1060 | // With the knowledge of the overall photon flux, calculate the
|
---|
1061 | // quantum efficiencies after the Blind Pixel and PIN Diode method
|
---|
1062 | //
|
---|
1063 | for (UInt_t i=0; i<npixels; i++)
|
---|
1064 | {
|
---|
1065 |
|
---|
1066 | MCalibrationQEPix &qepix = (MCalibrationQEPix&) (*fQECam)[i];
|
---|
1067 |
|
---|
1068 | if (!fBlindPixel)
|
---|
1069 | {
|
---|
1070 | qepix.SetBlindPixelMethodValid(kFALSE, fPulserColor);
|
---|
1071 | continue;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | if (!fBlindPixel->IsFluxInsidePlexiglassAvailable())
|
---|
1075 | {
|
---|
1076 | qepix.SetBlindPixelMethodValid(kFALSE, fPulserColor);
|
---|
1077 | continue;
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1081 |
|
---|
1082 | if (!bad.IsUnsuitable (MBadPixelsPix::kUnsuitableRun))
|
---|
1083 | {
|
---|
1084 | qepix.SetBlindPixelMethodValid(kFALSE, fPulserColor);
|
---|
1085 | continue;
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1089 | MGeomPix &geo = (*fGeom)[i];
|
---|
1090 |
|
---|
1091 | const Float_t conv = fBlindPixel->GetFluxInsidePlexiglass()
|
---|
1092 | * geo.GetA()
|
---|
1093 | / fQECam->GetPlexiglassQE()
|
---|
1094 | / pix.GetPheFFactorMethod();
|
---|
1095 |
|
---|
1096 | const Float_t convrelvar = fBlindPixel->GetFluxInsidePlexiglassRelVar()
|
---|
1097 | + fQECam->GetPlexiglassQERelVar()
|
---|
1098 | + pix.GetPheFFactorMethodRelVar();
|
---|
1099 |
|
---|
1100 | qepix.SetQEBlindPixel ( conv , fPulserColor );
|
---|
1101 | qepix.SetQEBlindPixelVar ( convrelvar * conv * conv, fPulserColor );
|
---|
1102 | qepix.UpdateBlindPixelMethod();
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | // ------------------------------------------------------------------------
|
---|
1107 | //
|
---|
1108 | //
|
---|
1109 | void MCalibrationChargeCalc::FinalizePINDiodeQECam()
|
---|
1110 | {
|
---|
1111 |
|
---|
1112 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
1113 |
|
---|
1114 | //
|
---|
1115 | // With the knowledge of the overall photon flux, calculate the
|
---|
1116 | // quantum efficiencies after the PIN Diode method
|
---|
1117 | //
|
---|
1118 | for (UInt_t i=0; i<npixels; i++)
|
---|
1119 | {
|
---|
1120 |
|
---|
1121 | MCalibrationQEPix &qepix = (MCalibrationQEPix&) (*fQECam)[i];
|
---|
1122 |
|
---|
1123 | if (!fPINDiode)
|
---|
1124 | {
|
---|
1125 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
1126 | continue;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | if (!fPINDiode->IsFluxOutsidePlexiglassAvailable())
|
---|
1130 | {
|
---|
1131 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
1132 | continue;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1136 |
|
---|
1137 | if (!bad.IsUnsuitable (MBadPixelsPix::kUnsuitableRun))
|
---|
1138 | {
|
---|
1139 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
1140 | continue;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1144 | MGeomPix &geo = (*fGeom)[i];
|
---|
1145 |
|
---|
1146 | const Float_t conv = fPINDiode->GetFluxOutsidePlexiglass() * geo.GetA() / pix.GetPheFFactorMethod();
|
---|
1147 | const Float_t convrelvar = fPINDiode->GetFluxOutsidePlexiglassRelVar() + pix.GetPheFFactorMethodRelVar();
|
---|
1148 |
|
---|
1149 | qepix.SetQEPINDiode ( conv , fPulserColor );
|
---|
1150 | qepix.SetQEPINDiodeVar ( convrelvar * conv * conv, fPulserColor );
|
---|
1151 | qepix.UpdateBlindPixelMethod();
|
---|
1152 | }
|
---|
1153 | }
|
---|
1154 |
|
---|
1155 |
|
---|
1156 | // -----------------------------------------------------------------------
|
---|
1157 | //
|
---|
1158 | // - Finalize the pedestals
|
---|
1159 | // - Do the quality checks
|
---|
1160 | // - Calculate the reduced sigma
|
---|
1161 | // - Calculate the F-Factor Method
|
---|
1162 | //
|
---|
1163 | Int_t MCalibrationChargeCalc::PostProcess()
|
---|
1164 | {
|
---|
1165 |
|
---|
1166 | if (GetNumExecutions()==0)
|
---|
1167 | return kFALSE;
|
---|
1168 |
|
---|
1169 | //
|
---|
1170 | // loop over the pedestal events and check if we have calibration
|
---|
1171 | //
|
---|
1172 | Int_t nvalid = 0;
|
---|
1173 | Float_t avinnerped = 0.;
|
---|
1174 | Float_t avinnerprms = 0.;
|
---|
1175 | Int_t avinnernum = 0;
|
---|
1176 | Float_t avouterped = 0.;
|
---|
1177 | Float_t avouterprms = 0.;
|
---|
1178 | Int_t avouternum = 0;
|
---|
1179 |
|
---|
1180 | for (Int_t pixid=0; pixid<fPedestals->GetSize(); pixid++)
|
---|
1181 | {
|
---|
1182 |
|
---|
1183 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[pixid];
|
---|
1184 | //
|
---|
1185 | // Check if the pixel has been excluded from the fits
|
---|
1186 | //
|
---|
1187 | if (pix.IsExcluded())
|
---|
1188 | continue;
|
---|
1189 |
|
---|
1190 | MPedestalPix &ped = (*fPedestals)[pixid];
|
---|
1191 | MBadPixelsPix &bad = (*fBadPixels)[pixid];
|
---|
1192 |
|
---|
1193 | if (fGeom->GetPixRatio(pixid) == 1.)
|
---|
1194 | {
|
---|
1195 | FinalizePedestals(ped,pix,avinnerped,avinnerprms);
|
---|
1196 | avinnernum++;
|
---|
1197 | }
|
---|
1198 | else
|
---|
1199 | {
|
---|
1200 | FinalizePedestals(ped,pix,avouterped,avouterprms);
|
---|
1201 | avouternum++;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | if (FinalizeCharges(pix,bad))
|
---|
1205 | nvalid++;
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | //
|
---|
1209 | // The Michele check ...
|
---|
1210 | //
|
---|
1211 | if (nvalid == 0)
|
---|
1212 | {
|
---|
1213 | *fLog << err << GetDescriptor() << ": All pixels have non-valid calibration. "
|
---|
1214 | << "Did you forget to fill the histograms "
|
---|
1215 | << "(filling MHCalibrationChargeCam from MExtractedSignalCam using MFillH) ? " << endl;
|
---|
1216 | *fLog << err << GetDescriptor() << ": Or, maybe, you have used a pedestal run "
|
---|
1217 | << "instead of a calibration run " << endl;
|
---|
1218 | return kFALSE;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 | for (UInt_t aidx=0; aidx<fGeom->GetNumAreas(); aidx++)
|
---|
1222 | {
|
---|
1223 |
|
---|
1224 | FinalizeAvPedestals((MCalibrationChargePix&)fCam->GetAverageArea(aidx),
|
---|
1225 | avinnerped, avinnerprms,avinnernum);
|
---|
1226 | FinalizeCharges((MCalibrationChargePix&)fCam->GetAverageArea(aidx),
|
---|
1227 | fCam->GetAverageBadArea(aidx));
|
---|
1228 | }
|
---|
1229 |
|
---|
1230 | for (UInt_t sector=0; sector<fGeom->GetNumSectors(); sector++)
|
---|
1231 | {
|
---|
1232 |
|
---|
1233 | FinalizeAvPedestals((MCalibrationChargePix&)fCam->GetAverageSector(sector),
|
---|
1234 | avinnerped, avinnerprms,avinnernum);
|
---|
1235 | FinalizeCharges((MCalibrationChargePix&)fCam->GetAverageSector(sector),
|
---|
1236 | fCam->GetAverageBadSector(sector));
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | //
|
---|
1240 | // Finalize Bad Pixels
|
---|
1241 | //
|
---|
1242 | FinalizeBadPixels();
|
---|
1243 |
|
---|
1244 | //
|
---|
1245 | // Finalize F-Factor method
|
---|
1246 | //
|
---|
1247 | if (!FinalizeFFactorMethod())
|
---|
1248 | {
|
---|
1249 | *fLog << warn << "Could not calculate the photons flux from the F-Factor method " << endl;
|
---|
1250 | fCam->SetFFactorMethodValid(kFALSE);
|
---|
1251 | return kFALSE;
|
---|
1252 | }
|
---|
1253 | else
|
---|
1254 | fCam->SetFFactorMethodValid(kTRUE);
|
---|
1255 |
|
---|
1256 | //
|
---|
1257 | // Finalize Blind Pixel
|
---|
1258 | //
|
---|
1259 | if (FinalizeBlindPixel())
|
---|
1260 | fQECam->SetBlindPixelMethodValid(kTRUE);
|
---|
1261 | else
|
---|
1262 | fQECam->SetBlindPixelMethodValid(kFALSE);
|
---|
1263 |
|
---|
1264 | //
|
---|
1265 | // Finalize PIN Diode
|
---|
1266 | //
|
---|
1267 | if (FinalizePINDiode())
|
---|
1268 | fQECam->SetPINDiodeMethodValid(kTRUE);
|
---|
1269 | else
|
---|
1270 | fQECam->SetPINDiodeMethodValid(kFALSE);
|
---|
1271 |
|
---|
1272 | //
|
---|
1273 | // Finalize QE Cam
|
---|
1274 | //
|
---|
1275 | FinalizeFFactorQECam();
|
---|
1276 | FinalizeBlindPixelQECam();
|
---|
1277 | FinalizePINDiodeQECam();
|
---|
1278 |
|
---|
1279 | fCam ->SetReadyToSave();
|
---|
1280 | fQECam ->SetReadyToSave();
|
---|
1281 | fBadPixels->SetReadyToSave();
|
---|
1282 |
|
---|
1283 | *fLog << inf << endl;
|
---|
1284 | *fLog << GetDescriptor() << ": Calibration statistics:" << endl;
|
---|
1285 | *fLog << dec << setfill(' ');
|
---|
1286 |
|
---|
1287 | UInt_t countinner = 0;
|
---|
1288 | UInt_t countouter = 0;
|
---|
1289 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
1290 | {
|
---|
1291 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1292 | if (bad.IsOK())
|
---|
1293 | {
|
---|
1294 | if (fGeom->GetPixRatio(i) == 1.)
|
---|
1295 | countinner++;
|
---|
1296 | else
|
---|
1297 | countouter++;
|
---|
1298 | }
|
---|
1299 | }
|
---|
1300 |
|
---|
1301 | *fLog << " " << setw(7) << "Successfully calibrated Pixels: "
|
---|
1302 | << "Inner: " << countinner << " Outer: " << countouter << endl;
|
---|
1303 |
|
---|
1304 | PrintUnsuitable(MBadPixelsPix::kUnsuitableRun, "Bad Pixels: ");
|
---|
1305 | PrintUnsuitable(MBadPixelsPix::kUnreliableRun, "Unreliable Pixels: ");
|
---|
1306 |
|
---|
1307 | *fLog << inf << endl;
|
---|
1308 | *fLog << GetDescriptor() << ": Errors statistics:" << endl;
|
---|
1309 |
|
---|
1310 | PrintUncalibrated(MBadPixelsPix::kChargeIsPedestal,
|
---|
1311 | Form("%s%2.1f%s","Signal less than ",fChargeLimit," Pedestal RMS: "));
|
---|
1312 | PrintUncalibrated(MBadPixelsPix::kChargeErrNotValid,
|
---|
1313 | Form("%s%2.1f%s","Signal Error smaller than ",fChargeErrLimit,": "));
|
---|
1314 | PrintUncalibrated(MBadPixelsPix::kChargeRelErrNotValid,
|
---|
1315 | Form("%s%2.1f%s","Signal Error bigger than ",fChargeRelErrLimit," times Mean Signal: "));
|
---|
1316 | PrintUncalibrated(MBadPixelsPix::kChargeSigmaNotValid,
|
---|
1317 | "Signal Sigma smaller than Pedestal RMS: ");
|
---|
1318 | PrintUncalibrated(MBadPixelsPix::kLoGainSaturation,
|
---|
1319 | "Pixels with Low Gain Saturation: ");
|
---|
1320 | PrintUncalibrated(MBadPixelsPix::kMeanTimeInFirstBin,
|
---|
1321 | Form("%s%2.1f%s","Mean Abs. Arr. Time in First ",fTimeLowerLimit," Bin(s): "));
|
---|
1322 | PrintUncalibrated(MBadPixelsPix::kMeanTimeInLast2Bins,
|
---|
1323 | Form("%s%2.1f%s","Mean Abs. Arr. Time in Last ",fTimeUpperLimit," Bin(s): "));
|
---|
1324 | PrintUncalibrated(MBadPixelsPix::kHiGainOscillating,
|
---|
1325 | "Pixels with changing Hi Gain signal over time: ");
|
---|
1326 | PrintUncalibrated(MBadPixelsPix::kLoGainOscillating,
|
---|
1327 | "Pixels with changing Lo Gain signal over time: ");
|
---|
1328 | PrintUncalibrated(MBadPixelsPix::kDeviatingNumPhes,
|
---|
1329 | "Pixels with deviating number of phes: ");
|
---|
1330 | PrintUncalibrated(MBadPixelsPix::kHiGainNotFitted,
|
---|
1331 | "Pixels with unsuccesful Gauss fit to the Hi Gain: ");
|
---|
1332 | PrintUncalibrated(MBadPixelsPix::kLoGainNotFitted,
|
---|
1333 | "Pixels with unsuccesful Gauss fit to the Lo Gain: ");
|
---|
1334 |
|
---|
1335 | return kTRUE;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | void MCalibrationChargeCalc::PrintUnsuitable(MBadPixelsPix::UnsuitableType_t typ, const char *text) const
|
---|
1339 | {
|
---|
1340 |
|
---|
1341 | UInt_t countinner = 0;
|
---|
1342 | UInt_t countouter = 0;
|
---|
1343 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
1344 | {
|
---|
1345 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1346 | if (bad.IsUnsuitable(typ))
|
---|
1347 | {
|
---|
1348 | if (fGeom->GetPixRatio(i) == 1.)
|
---|
1349 | countinner++;
|
---|
1350 | else
|
---|
1351 | countouter++;
|
---|
1352 | }
|
---|
1353 | }
|
---|
1354 |
|
---|
1355 | *fLog << " " << setw(7) << text
|
---|
1356 | << Form("%s%3i%s%3i","Inner: ",countinner," Outer: ",countouter) << endl;
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | void MCalibrationChargeCalc::PrintUncalibrated(MBadPixelsPix::UncalibratedType_t typ, const char *text) const
|
---|
1360 | {
|
---|
1361 |
|
---|
1362 | UInt_t countinner = 0;
|
---|
1363 | UInt_t countouter = 0;
|
---|
1364 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
1365 | {
|
---|
1366 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1367 | if (bad.IsUncalibrated(typ))
|
---|
1368 | {
|
---|
1369 | if (fGeom->GetPixRatio(i) == 1.)
|
---|
1370 | countinner++;
|
---|
1371 | else
|
---|
1372 | countouter++;
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 |
|
---|
1376 | *fLog << " " << setw(7) << text
|
---|
1377 | << Form("%s%3i%s%3i","Inner: ",countinner," Outer: ",countouter) << endl;
|
---|
1378 | }
|
---|
1379 |
|
---|