#ifndef MARS_MCalibrationChargeCalc #define MARS_MCalibrationChargeCalc #ifndef MARS_MTask #include "MTask.h" #endif #ifndef ROOT_TArrayC #include #endif #ifndef MARS_MBadPixelsPix #include "MBadPixelsPix.h" #endif #ifndef MARS_MCalibrationCam #include "MCalibrationCam.h" #endif class MCalibrationPattern; class MPedestalCam; class MPedestalPix; class MCalibrationChargePINDiode; class MHCalibrationChargeBlindCam; class MCalibrationBlindCam; class MCalibrationChargePix; class MCalibrationChargeCam; class MHCalibrationChargeCam; class MCalibrationQECam; class MGeomCam; class MExtractedSignalCam; class MBadPixelsCam; class MExtractor; class MCalibrationChargeCalc : public MTask { private: static const Float_t fgChargeLimit; //! Default for fChargeLimit (now set to: 2.5) static const Float_t fgChargeErrLimit; //! Default for fChargeErrLimit (now set to: 0.) static const Float_t fgChargeRelErrLimit; //! Default for fChargeRelErrLimit (now set to: 1.) static const Float_t fgLambdaCheckLimit; //! Default for fLambdaCheckLimit (now set to: 0.2) static const Float_t fgLambdaErrLimit; //! Default for fLabmdaErrLimit (now set to: 0.5) static const Float_t fgPheErrLowerLimit; //! Default for fPheErrLowerLimit (now set to: 9.0) static const Float_t fgPheErrUpperLimit; //! Default for fPheErrUpperLimit (now set to: 4.5) static const Float_t fgFFactorErrLimit; //! Default for fFFactorErrLimit (now set to: 4.5) static const Float_t fgArrTimeRmsLimit; //! Default for fArrTimeRmsLimit (now set to: 3.5) static const Float_t fgUnsuitablesLimit; //! Default for fUnsuitableLimit (now set to: 0.1) static const Float_t fgUnreliablesLimit; //! Default for fUnreliableLimit (now set to: 0.3) static const TString fgNamePedestalCam; //! "MPedestalCam" // Variables Float_t fArrTimeRmsLimit; // Limit acceptance RMS of absolute arrival times Float_t fChargeLimit; // Limit acceptance mean charge (in units of PedRMS) Float_t fChargeErrLimit; // Limit acceptance charge error (in abs. numbers) Float_t fChargeRelErrLimit; // Limit acceptance rel. error mean (in abs. numbers) Float_t fFFactorErrLimit; // Limit acceptance F-Factor w.r.t. area idx mean Float_t fLambdaCheckLimit; // Limit rel. diff. lambda and lambdacheck in Blind Pixel Float_t fLambdaErrLimit; // Limit acceptance lambda error in Blind Pixel Float_t fNumHiGainSamples; // Number High-Gain FADC slices used by extractor Float_t fNumLoGainSamples; // Number Low -Gain FADC slices used by extractor Float_t fPheErrLowerLimit; // Lower limit acceptance nr. phe's w.r.t. area idx mean (in sigmas) Float_t fPheErrUpperLimit; // Upper limit acceptance nr. phe's w.r.t. area idx mean (in sigmas) Float_t fSqrtHiGainSamples; // Square root nr. High-Gain FADC slices used by extractor Float_t fSqrtLoGainSamples; // Square root nr. Low -Gain FADC slices used by extractor Float_t fUnsuitablesLimit; // Limit for relative number of unsuitable pixels Float_t fUnreliablesLimit; // Limit for relative number of unreliable pixels Float_t fExternalNumPhes; // External mean number of photo-electrons set from outside Float_t fExternalNumPhesRelVar; // External rel. var. number of photo-electrons set from outside MCalibrationCam::PulserColor_t fPulserColor; // Calibration LEDs colour Float_t fStrength; // Calibration LEDs strength Int_t fNumInnerFFactorMethodUsed; // Number of inner pixels used for F-Factor Method calibration TString fNamePedestalCam; // Name of the 'MPedestalCam' container Int_t fNumProcessed; // Number of processed events (for Intensity calibration) Bool_t fContinousCalibration; // Pointers MBadPixelsCam *fBadPixels; //! Bad Pixels MCalibrationChargeCam *fCam; //! Calibrated Charges results of all pixels MHCalibrationChargeCam *fHCam; //! Charges histograms of all pixels MCalibrationBlindCam *fBlindCam; //! Calibrated Charges of the Blind Pixels MHCalibrationChargeBlindCam *fHBlindCam; //! Charges histograms of the Blind Pixels MCalibrationChargePINDiode *fPINDiode; //! Calibrated Charges of the PIN Diode MCalibrationQECam *fQECam; //! Calibrated Quantum Efficiencies of all pixels MGeomCam *fGeom; //! Camera geometry MExtractedSignalCam *fSignal; //! Extracted Signal MCalibrationPattern *fCalibPattern; //! Calibration DM pattern MPedestalCam *fPedestals; //! Pedestals all pixels (calculated previously from ped.file) MExtractor *fExtractor; //! Signal Extractor // enums enum Check_t { kCheckDeadPixels, kCheckExtractionWindow, kCheckHistOverflow, kCheckDeviatingBehavior, kCheckOscillations, kCheckArrivalTimes }; // Possible Checks Byte_t fCheckFlags; // Bit-field to hold the possible check flags enum FitResult_t { kPheFitOK, kFFactorFitOK, kBlindPixelFitOK, kBlindPixelPedFitOK, kPINDiodeFitOK }; // Possible Fit Result flags TArrayC fResultFlags; // Bit-fields for the fitting results (one field per area index) TArrayC fBlindPixelFlags; // Bit-fields for the blind pixel flags (one field per blind pixel) TArrayC fPINDiodeFlags; // Bit-fields for the PIN Diode flags (one field per PIN Diode ) enum { kDebug, kUseExtractorRes, kUseUnreliables, kUseExternalNumPhes }; // Possible general flags Byte_t fFlags; // Bit-field to hold the general flags // functions void FinalizeBadPixels (); Bool_t FinalizeBlindCam (); void FinalizeBlindPixelQECam (); Bool_t FinalizeCharges ( MCalibrationChargePix &cal, MBadPixelsPix &bad, const char* what); void FinalizeCombinedQECam (); void FinalizeFFactorQECam (); Bool_t FinalizeFFactorMethod (); void FinalizePedestals ( const MPedestalPix &ped, MCalibrationChargePix &cal, const Int_t aidx ); Bool_t FinalizePINDiode (); void FinalizePINDiodeQECam (); Bool_t FinalizeUnsuitablePixels(); void FinalizeAbsTimes(); const char* GetOutputFile(); // Query checks Bool_t IsCheckDeadPixels () const { return TESTBIT(fCheckFlags,kCheckDeadPixels); } Bool_t IsCheckDeviatingBehavior() const { return TESTBIT(fCheckFlags,kCheckDeviatingBehavior); } Bool_t IsCheckExtractionWindow () const { return TESTBIT(fCheckFlags,kCheckExtractionWindow); } Bool_t IsCheckHistOverflow () const { return TESTBIT(fCheckFlags,kCheckHistOverflow); } Bool_t IsCheckOscillations () const { return TESTBIT(fCheckFlags,kCheckOscillations); } Bool_t IsCheckArrivalTimes () const { return TESTBIT(fCheckFlags,kCheckArrivalTimes); } Bool_t IsDebug () const { return TESTBIT(fFlags,kDebug); } Bool_t IsUseExtractorRes () const { return TESTBIT(fFlags,kUseExtractorRes); } Bool_t IsUseUnreliables () const { return TESTBIT(fFlags,kUseUnreliables); } Bool_t IsUseExternalNumPhes () const { return TESTBIT(fFlags,kUseExternalNumPhes); } void PrintUncalibrated( MBadPixelsPix::UncalibratedType_t typ, const char *text) const; // Global fit results void SetPheFitOK (const Int_t aidx, const Bool_t b=kTRUE) { b ? SETBIT(fResultFlags[aidx], kPheFitOK) : CLRBIT(fResultFlags[aidx], kPheFitOK); } void SetFFactorFitOK (const Int_t aidx, const Bool_t b=kTRUE) { b ? SETBIT(fResultFlags[aidx], kFFactorFitOK) : CLRBIT(fResultFlags[aidx], kFFactorFitOK); } void SetBlindPixelFitOK (const Int_t idx, const Bool_t b=kTRUE) { b ? SETBIT(fBlindPixelFlags[idx], kBlindPixelFitOK) : CLRBIT(fBlindPixelFlags[idx], kBlindPixelFitOK); } void SetBlindPixelPedFitOK(const Int_t idx, const Bool_t b=kTRUE) { b ? SETBIT(fBlindPixelFlags[idx], kBlindPixelPedFitOK): CLRBIT(fBlindPixelFlags[idx], kBlindPixelPedFitOK); } void SetPINDiodeFitOK (const Int_t idx, const Bool_t b=kTRUE) { b ? SETBIT(fPINDiodeFlags[idx], kPINDiodeFitOK): CLRBIT(fPINDiodeFlags[idx], kPINDiodeFitOK); } Int_t PreProcess (MParList *pList); Bool_t ReInit (MParList *pList); Int_t Process (); Int_t PostProcess(); Int_t ReadEnv(const TEnv &env, TString prefix, Bool_t print); public: MCalibrationChargeCalc(const char *name=NULL, const char *title=NULL); void Clear(const Option_t *o=""); void ResetNumProcessed() { fNumProcessed=0; } Int_t Finalize(); void SetChargeLimit (const Float_t f=fgChargeLimit ) { fChargeLimit = f; } void SetChargeErrLimit (const Float_t f=fgChargeErrLimit ) { fChargeErrLimit = f; } void SetChargeRelErrLimit(const Float_t f=fgChargeRelErrLimit) { fChargeRelErrLimit = f; } // Checks void SetCheckArrivalTimes(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckArrivalTimes) : CLRBIT(fCheckFlags,kCheckArrivalTimes); } void SetCheckDeadPixels(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckDeadPixels) : CLRBIT(fCheckFlags,kCheckDeadPixels); } void SetCheckDeviatingBehavior(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckDeviatingBehavior) : CLRBIT(fCheckFlags,kCheckDeviatingBehavior); } void SetCheckExtractionWindow(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckExtractionWindow) : CLRBIT(fCheckFlags,kCheckExtractionWindow); } void SetCheckHistOverflow(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckHistOverflow) : CLRBIT(fCheckFlags,kCheckHistOverflow); } void SetCheckOscillations(const Bool_t b=kTRUE) { b ? SETBIT(fCheckFlags,kCheckOscillations) : CLRBIT(fCheckFlags,kCheckOscillations); } void SetDebug(const Bool_t b=kTRUE) { b ? SETBIT(fFlags, kDebug) : CLRBIT(fFlags, kDebug); } void SetUseExtractorRes(const Bool_t b=kTRUE) { b ? SETBIT(fFlags, kUseExtractorRes) : CLRBIT(fFlags, kUseExtractorRes); } void SetUseUnreliables(const Bool_t b=kTRUE) { b ? SETBIT(fFlags, kUseUnreliables) : CLRBIT(fFlags, kUseUnreliables); } void SetUseExternalNumPhes(const Bool_t b=kTRUE) { b ? SETBIT(fFlags, kUseExternalNumPhes) : CLRBIT(fFlags, kUseExternalNumPhes); } void SetContinousCalibration(const Bool_t b=kTRUE) { fContinousCalibration = b; } // pointers void SetPedestals(MPedestalCam *cam) { fPedestals=cam; } void SetExtractor(MExtractor *ext) { fExtractor=ext; } // limits void SetArrTimeRmsLimit (const Float_t f=fgArrTimeRmsLimit ) { fArrTimeRmsLimit = f; } void SetFFactorErrLimit (const Float_t f=fgFFactorErrLimit ) { fFFactorErrLimit = f; } void SetLambdaErrLimit (const Float_t f=fgLambdaErrLimit ) { fLambdaErrLimit = f; } void SetLambdaCheckLimit(const Float_t f=fgLambdaCheckLimit) { fLambdaCheckLimit = f; } void SetUnsuitablesLimit(const Float_t f=fgUnsuitablesLimit) { fUnsuitablesLimit = f; } void SetUnreliablesLimit(const Float_t f=fgUnreliablesLimit) { fUnreliablesLimit = f; } // others void SetExternalNumPhes ( const Float_t f=0. ) { fExternalNumPhes = f; } void SetExternalNumPhesRelVar( const Float_t f=0. ) { fExternalNumPhesRelVar = f; } void SetNamePedestalCam ( const char *name=fgNamePedestalCam.Data()) { fNamePedestalCam = name; } void SetPheErrLowerLimit ( const Float_t f=fgPheErrLowerLimit ) { fPheErrLowerLimit = f; } void SetPheErrUpperLimit ( const Float_t f=fgPheErrUpperLimit ) { fPheErrUpperLimit = f; } void SetPulserColor ( const MCalibrationCam::PulserColor_t col ) { fPulserColor = col; } ClassDef(MCalibrationChargeCalc, 6) // Task calculating Calibration Containers and Quantum Efficiencies }; #endif