1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 11/2003 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 | /////////////////////////////////////////////////////////////////////////////
|
---|
25 | //
|
---|
26 | // MCalibrationIntensityChargeCam
|
---|
27 | //
|
---|
28 | // Storage container for intensity charge calibration results.
|
---|
29 | //
|
---|
30 | // Individual MCalibrationChargeCam's can be retrieved with:
|
---|
31 | // - GetCam() yielding the current cam.
|
---|
32 | // - GetCam("name") yielding the current camera with name "name".
|
---|
33 | // - GetCam(i) yielding the i-th camera.
|
---|
34 | //
|
---|
35 | // See also: MCalibrationIntensityCam, MCalibrationChargeCam,
|
---|
36 | // MCalibrationChargePix, MCalibrationChargeCalc, MCalibrationQECam
|
---|
37 | // MCalibrationBlindCam, MCalibrationChargePINDiode
|
---|
38 | // MHCalibrationChargePix, MHCalibrationChargeCam
|
---|
39 | //
|
---|
40 | /////////////////////////////////////////////////////////////////////////////
|
---|
41 | #include "MCalibrationIntensityChargeCam.h"
|
---|
42 | #include "MCalibrationChargeCam.h"
|
---|
43 | #include "MCalibrationChargePix.h"
|
---|
44 |
|
---|
45 | #include "MGeomCam.h"
|
---|
46 | #include "MGeomPix.h"
|
---|
47 |
|
---|
48 | #include <TOrdCollection.h>
|
---|
49 | #include <TGraphErrors.h>
|
---|
50 | #include <TH2F.h>
|
---|
51 | #include <TF1.h>
|
---|
52 |
|
---|
53 | ClassImp(MCalibrationIntensityChargeCam);
|
---|
54 |
|
---|
55 | using namespace std;
|
---|
56 |
|
---|
57 | // --------------------------------------------------------------------------
|
---|
58 | //
|
---|
59 | // Default constructor.
|
---|
60 | //
|
---|
61 | MCalibrationIntensityChargeCam::MCalibrationIntensityChargeCam(const char *name, const char *title)
|
---|
62 | {
|
---|
63 |
|
---|
64 | fName = name ? name : "MCalibrationIntensityChargeCam";
|
---|
65 | fTitle = title ? title : "Results of the Intensity Calibration";
|
---|
66 |
|
---|
67 | InitSize(1);
|
---|
68 | }
|
---|
69 |
|
---|
70 | // -------------------------------------------------------------------
|
---|
71 | //
|
---|
72 | // Add MCalibrationChargeCam's in the ranges from - to.
|
---|
73 | //
|
---|
74 | void MCalibrationIntensityChargeCam::Add(const UInt_t from, const UInt_t to)
|
---|
75 | {
|
---|
76 | for (UInt_t i=from; i<to; i++)
|
---|
77 | fCams->AddAt(new MCalibrationChargeCam,i);
|
---|
78 | }
|
---|
79 |
|
---|
80 | // -------------------------------------------------------------------
|
---|
81 | //
|
---|
82 | // Returns a TGraphErrors with the number of photo-electrons vs.
|
---|
83 | // the extracted signal of pixel "pixid".
|
---|
84 | //
|
---|
85 | TGraphErrors *MCalibrationIntensityChargeCam::GetPheVsCharge( const UInt_t pixid, const MCalibrationCam::PulserColor_t col)
|
---|
86 | {
|
---|
87 |
|
---|
88 | const Int_t size = GetSize();
|
---|
89 |
|
---|
90 | TArrayF phe(size);
|
---|
91 | TArrayF pheerr(size);
|
---|
92 | TArrayF sig(size);
|
---|
93 | TArrayF sigerr(size);
|
---|
94 |
|
---|
95 | for (Int_t i=0;i<size;i++)
|
---|
96 | {
|
---|
97 | //
|
---|
98 | // Get the calibration cam from the intensity cam
|
---|
99 | //
|
---|
100 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
101 |
|
---|
102 | if (col != MCalibrationCam::kNONE)
|
---|
103 | if (cam->GetPulserColor() != col)
|
---|
104 | continue;
|
---|
105 | //
|
---|
106 | // Get the calibration pix from the calibration cam
|
---|
107 | //
|
---|
108 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
109 | //
|
---|
110 | // Don't use bad pixels
|
---|
111 | //
|
---|
112 | if (!pix.IsFFactorMethodValid())
|
---|
113 | continue;
|
---|
114 | //
|
---|
115 | phe[i] = pix.GetPheFFactorMethod();
|
---|
116 | pheerr[i] = pix.GetPheFFactorMethodErr();
|
---|
117 | //
|
---|
118 | // For the calculation of Q, we have to use the
|
---|
119 | // converted value!
|
---|
120 | //
|
---|
121 | sig [i] = pix.GetConvertedMean();
|
---|
122 | sigerr[i] = pix.GetConvertedMeanErr();
|
---|
123 | }
|
---|
124 |
|
---|
125 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
126 | sig.GetArray(),phe.GetArray(),
|
---|
127 | sigerr.GetArray(),pheerr.GetArray());
|
---|
128 | gr->SetTitle(Form("%s%3i","Pixel ",pixid));
|
---|
129 | gr->GetXaxis()->SetTitle("Q [FADC counts]");
|
---|
130 | gr->GetYaxis()->SetTitle("photo-electrons [1]");
|
---|
131 | return gr;
|
---|
132 | }
|
---|
133 |
|
---|
134 | // -------------------------------------------------------------------
|
---|
135 | //
|
---|
136 | // Returns a TGraphErrors with the number of photo-electrons vs.
|
---|
137 | // the extracted signal over all pixels with area index "aidx".
|
---|
138 | //
|
---|
139 | // The points represent the means of the pixels values, while the error bars
|
---|
140 | // the sigma of the pixels values.
|
---|
141 | //
|
---|
142 | TGraphErrors *MCalibrationIntensityChargeCam::GetPheVsChargePerArea( const Int_t aidx, const MCalibrationCam::PulserColor_t col)
|
---|
143 | {
|
---|
144 |
|
---|
145 | const Int_t size = GetSize();
|
---|
146 |
|
---|
147 | TArrayF phe(size);
|
---|
148 | TArrayF pheerr(size);
|
---|
149 | TArrayF sig(size);
|
---|
150 | TArrayF sigerr(size);
|
---|
151 |
|
---|
152 | for (Int_t i=0;i<size;i++)
|
---|
153 | {
|
---|
154 | //
|
---|
155 | // Get the calibration cam from the intensity cam
|
---|
156 | //
|
---|
157 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
158 |
|
---|
159 | if (col != MCalibrationCam::kNONE)
|
---|
160 | if (cam->GetPulserColor() != col)
|
---|
161 | continue;
|
---|
162 |
|
---|
163 | //
|
---|
164 | // Get the area calibration pix from the calibration cam
|
---|
165 | //
|
---|
166 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(cam->GetAverageArea(aidx));
|
---|
167 |
|
---|
168 | phe[i] = pix.GetPheFFactorMethod();
|
---|
169 | pheerr[i] = pix.GetPheFFactorMethodErr();
|
---|
170 | //
|
---|
171 | // For the calculation of Q, we have to use the
|
---|
172 | // converted value!
|
---|
173 | //
|
---|
174 | sig [i] = pix.GetConvertedMean();
|
---|
175 | sigerr[i] = pix.GetConvertedMeanErr();
|
---|
176 | }
|
---|
177 |
|
---|
178 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
179 | sig.GetArray(),phe.GetArray(),
|
---|
180 | sigerr.GetArray(),pheerr.GetArray());
|
---|
181 | gr->SetTitle(Form("%s%3i","Area Index ",aidx));
|
---|
182 | gr->GetXaxis()->SetTitle("Q [FADC counts]");
|
---|
183 | gr->GetYaxis()->SetTitle("photo-electrons [1]");
|
---|
184 | return gr;
|
---|
185 | }
|
---|
186 |
|
---|
187 | // -------------------------------------------------------------------
|
---|
188 | //
|
---|
189 | // Returns a TGraphErrors with the 'Razmik plot' of pixel "pixid".
|
---|
190 | // The Razmik plot shows the value of 'R' vs. 1/Q where:
|
---|
191 | //
|
---|
192 | // sigma^2 F^2
|
---|
193 | // R = ------- = ------
|
---|
194 | // <Q>^2 <m_pe>
|
---|
195 | //
|
---|
196 | // and 1/Q is the inverse (mean) extracted signal
|
---|
197 | //
|
---|
198 | TGraphErrors *MCalibrationIntensityChargeCam::GetRazmikPlot( const UInt_t pixid )
|
---|
199 | {
|
---|
200 |
|
---|
201 | const Int_t size = GetSize();
|
---|
202 |
|
---|
203 | TArrayF r(size);
|
---|
204 | TArrayF rerr(size);
|
---|
205 | TArrayF oneoverq(size);
|
---|
206 | TArrayF oneoverqerr(size);
|
---|
207 |
|
---|
208 | for (Int_t i=0;i<size;i++)
|
---|
209 | {
|
---|
210 | //
|
---|
211 | // Get the calibration cam from the intensity cam
|
---|
212 | //
|
---|
213 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
214 | //
|
---|
215 | // Get the calibration pix from the calibration cam
|
---|
216 | //
|
---|
217 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
218 | //
|
---|
219 | // Don't use bad pixels
|
---|
220 | //
|
---|
221 | if (!pix.IsFFactorMethodValid())
|
---|
222 | continue;
|
---|
223 | //
|
---|
224 | // For the calculation of R, use the un-converted values, like
|
---|
225 | // in the calibration, since:
|
---|
226 | // C^2*sigma^2 sigma^2
|
---|
227 | // R(lowgain) = ----------- = ------ = R
|
---|
228 | // C^2*<Q>^2 <Q>^2
|
---|
229 | //
|
---|
230 | const Float_t mean = pix.GetMean();
|
---|
231 | const Float_t meanerr = pix.GetMeanErr();
|
---|
232 | const Float_t rsigma = pix.GetRSigma();
|
---|
233 | const Float_t rsigmaerr = pix.GetRSigmaErr();
|
---|
234 | r[i] = rsigma*rsigma/mean/mean;
|
---|
235 | const Float_t rrelvar = 4.*rsigmaerr*rsigmaerr/rsigma/rsigma + 4.*meanerr*meanerr/mean/mean;
|
---|
236 | rerr[i] = rrelvar * r[i] * r[i];
|
---|
237 | rerr[i] = rerr[i] <= 0 ? 0. : TMath::Sqrt(rerr[i]);
|
---|
238 | //
|
---|
239 | // For the calculation of 1/Q, we have to use the
|
---|
240 | // converted value!
|
---|
241 | //
|
---|
242 | const Float_t q = pix.GetConvertedMean();
|
---|
243 | const Float_t qe = pix.GetConvertedMeanErr();
|
---|
244 | oneoverq [i] = 1./q;
|
---|
245 | oneoverqerr[i] = qe / q / q;
|
---|
246 | }
|
---|
247 |
|
---|
248 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
249 | oneoverq.GetArray(),r.GetArray(),
|
---|
250 | oneoverqerr.GetArray(),rerr.GetArray());
|
---|
251 | gr->SetTitle(Form("%s%3i","Pixel ",pixid));
|
---|
252 | gr->GetXaxis()->SetTitle("1/Q [FADC counts^{-1}]");
|
---|
253 | gr->GetYaxis()->SetTitle("\sigma_{red}^{2}/Q^{2}");
|
---|
254 | return gr;
|
---|
255 | }
|
---|
256 |
|
---|
257 | // -------------------------------------------------------------------
|
---|
258 | //
|
---|
259 | // Returns a 2-dimensional histogram with the fit results of the
|
---|
260 | // 'Razmik plot' for each pixel of area index "aidx" (see GetRazmikPlot())
|
---|
261 | //
|
---|
262 | // The results of the polynomial fit of grade 1 are:
|
---|
263 | //
|
---|
264 | // x-axis: Offset (Parameter 0 of the polynomial)
|
---|
265 | // y-axis: Slope (Parameter 1 of the polynomial)
|
---|
266 | //
|
---|
267 | // The offset is a measure of how well-known the supposed additional contributions
|
---|
268 | // to the value "reduced sigma" are. Because a photo-multiplier is a linear instrument,
|
---|
269 | // the excess fluctuations are linear w.r.t. the signal amplitude and can be expressed by
|
---|
270 | // the proportionality constant F (the "F-Factor").
|
---|
271 | // Adding noise from outside (e.g. night sky background) modifies the recorded noise, but
|
---|
272 | // not the mean extracted signal, due to the AC-coupling. Thus, noise contributions from outside
|
---|
273 | // (e.g. calculating the pedestal RMS)have to be subtracted from the recorded signal fluctuations
|
---|
274 | // in order to retrieve the linearity relation:
|
---|
275 | //
|
---|
276 | // sigma(signal)^2 / mean(signal)^2 = sigma^2 / <Q>^2 = F^2 / <n_phe> (1)
|
---|
277 | //
|
---|
278 | // Any systematic offset in the sigma(signal) will produce an offset in the "Razmik plot"),
|
---|
279 | // characterized by the Offset of the polynomial fit. Thus, in an ideal case, all pixels have their
|
---|
280 | // "offset" centered very closely around zero.
|
---|
281 | //
|
---|
282 | // The "slope" is the proportionality constant F^2, multiplied with the conversion factor
|
---|
283 | // phe's to mean signal (because the "Razmik plot" plots the left side of eq. (1) w.r.t.
|
---|
284 | // 1/<Q> instead of 1/<n_phe>. However, the mean number of photo-electrons <n_phe> can be
|
---|
285 | // expressed by <Q> with the relation:
|
---|
286 | //
|
---|
287 | // <n_phe> = c_phe * <Q> (2)
|
---|
288 | //
|
---|
289 | // Thus:
|
---|
290 | //
|
---|
291 | // 1/<n_phe> = 1/c_phe * 1/<Q> (3)
|
---|
292 | //
|
---|
293 | // and:
|
---|
294 | //
|
---|
295 | // Slope = F^2 / c_phe
|
---|
296 | //
|
---|
297 | // In the ideal case of having equal photo-multipliers and a perfectly flat-fielded camera,
|
---|
298 | // the "slope" -values should thus all be closely centered around F^2/c_phe.
|
---|
299 | //
|
---|
300 | TH2F *MCalibrationIntensityChargeCam::GetRazmikPlotResults( const Int_t aidx, const MGeomCam &geom)
|
---|
301 | {
|
---|
302 |
|
---|
303 | TH2F *hist = new TH2F("hist","R vs. Inverse Charges - Fit results",45,-0.02,0.02,45,0.,30.);
|
---|
304 | hist->SetXTitle("Offset [FADC counts^{-1}]");
|
---|
305 | hist->SetYTitle("F^{2} / <n_phe>/<Q> [FADC count / phe]");
|
---|
306 | hist->SetFillColor(kRed+aidx);
|
---|
307 |
|
---|
308 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam();
|
---|
309 |
|
---|
310 | for (Int_t npix=0;npix<cam->GetSize();npix++)
|
---|
311 | {
|
---|
312 |
|
---|
313 | if (geom[npix].GetAidx() == aidx)
|
---|
314 | {
|
---|
315 | TGraph *gr = GetRazmikPlot(npix);
|
---|
316 | gr->Fit("pol1","Q");
|
---|
317 | hist->Fill(gr->GetFunction("pol1")->GetParameter(0),gr->GetFunction("pol1")->GetParameter(1));
|
---|
318 | }
|
---|
319 | }
|
---|
320 | return hist;
|
---|
321 | }
|
---|
322 |
|
---|
323 |
|
---|