1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 11/2003 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 | /////////////////////////////////////////////////////////////////////////////
|
---|
25 | //
|
---|
26 | // MCalibrationIntensityChargeCam
|
---|
27 | //
|
---|
28 | // Storage container for intensity charge calibration results.
|
---|
29 | //
|
---|
30 | // Individual MCalibrationChargeCam's can be retrieved with:
|
---|
31 | // - GetCam() yielding the current cam.
|
---|
32 | // - GetCam("name") yielding the current camera with name "name".
|
---|
33 | // - GetCam(i) yielding the i-th camera.
|
---|
34 | //
|
---|
35 | // See also: MCalibrationIntensityCam, MCalibrationChargeCam,
|
---|
36 | // MCalibrationChargePix, MCalibrationChargeCalc, MCalibrationQECam
|
---|
37 | // MCalibrationBlindCam, MCalibrationChargePINDiode
|
---|
38 | // MHCalibrationChargePix, MHCalibrationChargeCam
|
---|
39 | //
|
---|
40 | /////////////////////////////////////////////////////////////////////////////
|
---|
41 | #include "MCalibrationIntensityChargeCam.h"
|
---|
42 | #include "MCalibrationChargeCam.h"
|
---|
43 | #include "MCalibrationChargePix.h"
|
---|
44 |
|
---|
45 | #include "MGeomCam.h"
|
---|
46 | #include "MGeomPix.h"
|
---|
47 |
|
---|
48 | #include "MLog.h"
|
---|
49 |
|
---|
50 | #include <TOrdCollection.h>
|
---|
51 | #include <TGraphErrors.h>
|
---|
52 | #include <TH2F.h>
|
---|
53 | #include <TF1.h>
|
---|
54 |
|
---|
55 | ClassImp(MCalibrationIntensityChargeCam);
|
---|
56 |
|
---|
57 | using namespace std;
|
---|
58 |
|
---|
59 | // --------------------------------------------------------------------------
|
---|
60 | //
|
---|
61 | // Default constructor.
|
---|
62 | //
|
---|
63 | MCalibrationIntensityChargeCam::MCalibrationIntensityChargeCam(const char *name, const char *title)
|
---|
64 | {
|
---|
65 |
|
---|
66 | fName = name ? name : "MCalibrationIntensityChargeCam";
|
---|
67 | fTitle = title ? title : "Results of the Intensity Calibration";
|
---|
68 |
|
---|
69 | InitSize(1);
|
---|
70 | }
|
---|
71 |
|
---|
72 | // -------------------------------------------------------------------
|
---|
73 | //
|
---|
74 | // Add MCalibrationChargeCam's in the ranges from - to.
|
---|
75 | //
|
---|
76 | void MCalibrationIntensityChargeCam::Add(const UInt_t from, const UInt_t to)
|
---|
77 | {
|
---|
78 | for (UInt_t i=from; i<to; i++)
|
---|
79 | fCams->AddAt(new MCalibrationChargeCam,i);
|
---|
80 | }
|
---|
81 |
|
---|
82 | // -------------------------------------------------------------------
|
---|
83 | //
|
---|
84 | // Returns a TGraphErrors with the number of photo-electrons vs.
|
---|
85 | // the extracted signal of pixel "pixid".
|
---|
86 | //
|
---|
87 | TGraphErrors *MCalibrationIntensityChargeCam::GetPheVsCharge( const UInt_t pixid, const MCalibrationCam::PulserColor_t col)
|
---|
88 | {
|
---|
89 |
|
---|
90 | Int_t size = CountNumEntries(col);
|
---|
91 |
|
---|
92 | if (size == 0)
|
---|
93 | return NULL;
|
---|
94 |
|
---|
95 | TArrayF phe(size);
|
---|
96 | TArrayF pheerr(size);
|
---|
97 | TArrayF sig(size);
|
---|
98 | TArrayF sigerr(size);
|
---|
99 |
|
---|
100 | Int_t cnt = 0;
|
---|
101 |
|
---|
102 | for (Int_t i=0;i<GetSize();i++)
|
---|
103 | {
|
---|
104 | //
|
---|
105 | // Get the calibration cam from the intensity cam
|
---|
106 | //
|
---|
107 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
108 |
|
---|
109 | if (col != MCalibrationCam::kNONE)
|
---|
110 | if (cam->GetPulserColor() != col)
|
---|
111 | continue;
|
---|
112 | //
|
---|
113 | // Get the calibration pix from the calibration cam
|
---|
114 | //
|
---|
115 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
116 | //
|
---|
117 | // Don't use bad pixels
|
---|
118 | //
|
---|
119 | if (!pix.IsFFactorMethodValid())
|
---|
120 | continue;
|
---|
121 | //
|
---|
122 | phe[cnt] = pix.GetPheFFactorMethod();
|
---|
123 | pheerr[cnt] = pix.GetPheFFactorMethodErr();
|
---|
124 | //
|
---|
125 | // For the calculation of Q, we have to use the
|
---|
126 | // converted value!
|
---|
127 | //
|
---|
128 | sig [cnt] = pix.GetConvertedMean();
|
---|
129 | sigerr[cnt] = pix.GetConvertedMeanErr();
|
---|
130 | cnt++;
|
---|
131 | }
|
---|
132 |
|
---|
133 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
134 | sig.GetArray(),phe.GetArray(),
|
---|
135 | sigerr.GetArray(),pheerr.GetArray());
|
---|
136 | gr->SetTitle(Form("%s%3i","Pixel ",pixid));
|
---|
137 | gr->GetXaxis()->SetTitle("Q [FADC counts]");
|
---|
138 | gr->GetYaxis()->SetTitle("photo-electrons [1]");
|
---|
139 | return gr;
|
---|
140 | }
|
---|
141 |
|
---|
142 | // -------------------------------------------------------------------
|
---|
143 | //
|
---|
144 | // Returns a TGraphErrors with the mean effective number of photo-electrons divided by
|
---|
145 | // the mean charge of that pixel vs. the mean number of photo-electrons.
|
---|
146 | //
|
---|
147 | TGraphErrors *MCalibrationIntensityChargeCam::GetPhePerCharge( const UInt_t pixid, const MGeomCam &geom, const MCalibrationCam::PulserColor_t col)
|
---|
148 | {
|
---|
149 |
|
---|
150 | Int_t size = CountNumValidEntries(pixid,col);
|
---|
151 |
|
---|
152 | if (size == 0)
|
---|
153 | return NULL;
|
---|
154 |
|
---|
155 | TArrayF phepersig(size);
|
---|
156 | TArrayF phepersigerr(size);
|
---|
157 | TArrayF sig(size);
|
---|
158 | TArrayF sigerr(size);
|
---|
159 |
|
---|
160 | Int_t cnt = 0;
|
---|
161 |
|
---|
162 | for (Int_t i=0;i<GetSize();i++)
|
---|
163 | {
|
---|
164 | //
|
---|
165 | // Get the calibration cam from the intensity cam
|
---|
166 | //
|
---|
167 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
168 |
|
---|
169 | if (col != MCalibrationCam::kNONE)
|
---|
170 | if (cam->GetPulserColor() != col)
|
---|
171 | continue;
|
---|
172 | //
|
---|
173 | // Get the calibration pix from the calibration cam
|
---|
174 | //
|
---|
175 | const MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
176 | //
|
---|
177 | // Don't use bad pixels
|
---|
178 | //
|
---|
179 | if (!pix.IsFFactorMethodValid())
|
---|
180 | continue;
|
---|
181 | //
|
---|
182 | // For the calculation of Q, we have to use the
|
---|
183 | // converted value!
|
---|
184 | //
|
---|
185 | const Int_t aidx = geom[pixid].GetAidx();
|
---|
186 | const MCalibrationChargePix &apix = (MCalibrationChargePix&)cam->GetAverageArea(aidx);
|
---|
187 |
|
---|
188 | const Float_t q = pix.GetConvertedMean();
|
---|
189 | const Float_t qerr = pix.GetConvertedMeanErr();
|
---|
190 | //
|
---|
191 | const Float_t phe = apix.GetPheFFactorMethod();
|
---|
192 | const Float_t pheerr = apix.GetPheFFactorMethodErr();
|
---|
193 |
|
---|
194 | sig[cnt] = phe;
|
---|
195 | sigerr[cnt] = pheerr;
|
---|
196 |
|
---|
197 |
|
---|
198 | phepersig[cnt] = q > 0.00001 ? phe/q : -1.;
|
---|
199 |
|
---|
200 | Float_t var = 0.;
|
---|
201 |
|
---|
202 | if (q > 0.00001 && phe > 0.00001)
|
---|
203 | {
|
---|
204 | var = pheerr * pheerr / phe / phe + qerr*qerr/q/q;
|
---|
205 | if (var > 0.00001)
|
---|
206 | var = TMath::Sqrt(var)*phepersig[cnt];
|
---|
207 | }
|
---|
208 | phepersigerr[cnt] = var;
|
---|
209 | cnt++;
|
---|
210 | }
|
---|
211 |
|
---|
212 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
213 | sig.GetArray(),phepersig.GetArray(),
|
---|
214 | sigerr.GetArray(),phepersigerr.GetArray());
|
---|
215 | gr->SetTitle(Form("%s%3i","Pixel ",pixid));
|
---|
216 | gr->GetXaxis()->SetTitle("<photo-electrons> [1]");
|
---|
217 | gr->GetYaxis()->SetTitle("<phes> / <Q> [FADC cts^{-1}]");
|
---|
218 | return gr;
|
---|
219 | }
|
---|
220 |
|
---|
221 | // -------------------------------------------------------------------
|
---|
222 | //
|
---|
223 | // Returns a TGraphErrors with the mean effective number of photo-electrons divided by
|
---|
224 | // the mean charge of that pixel vs. the mean number of photo-electrons.
|
---|
225 | //
|
---|
226 | TGraphErrors *MCalibrationIntensityChargeCam::GetPhePerChargePerArea( const Int_t aidx, const MGeomCam &geom, const MCalibrationCam::PulserColor_t col)
|
---|
227 | {
|
---|
228 |
|
---|
229 | Int_t size = CountNumEntries(col);
|
---|
230 |
|
---|
231 | if (size == 0)
|
---|
232 | return NULL;
|
---|
233 |
|
---|
234 | TArrayF phepersig(size);
|
---|
235 | TArrayF phepersigerr(size);
|
---|
236 | TArrayF sig(size);
|
---|
237 | TArrayF sigerr(size);
|
---|
238 |
|
---|
239 | Int_t cnt = 0;
|
---|
240 |
|
---|
241 | for (Int_t i=0;i<GetSize();i++)
|
---|
242 | {
|
---|
243 | //
|
---|
244 | // Get the calibration cam from the intensity cam
|
---|
245 | //
|
---|
246 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
247 |
|
---|
248 | if (col != MCalibrationCam::kNONE)
|
---|
249 | if (cam->GetPulserColor() != col)
|
---|
250 | continue;
|
---|
251 | //
|
---|
252 | // Get the calibration pix from the calibration cam
|
---|
253 | //
|
---|
254 | const MCalibrationChargePix &apix = (MCalibrationChargePix&)cam->GetAverageArea(aidx);
|
---|
255 | const Float_t phe = apix.GetPheFFactorMethod();
|
---|
256 | const Float_t pherelvar = apix.GetPheFFactorMethodRelVar();
|
---|
257 | const Float_t pheerr = apix.GetPheFFactorMethodErr();
|
---|
258 |
|
---|
259 | sig[cnt] = phe;
|
---|
260 | sigerr[cnt] = pheerr;
|
---|
261 |
|
---|
262 | Double_t sig = 0.;
|
---|
263 | Double_t sig2 = 0.;
|
---|
264 | Int_t num = 0;
|
---|
265 |
|
---|
266 | for (Int_t i=0; i<cam->GetSize(); i++)
|
---|
267 | {
|
---|
268 | const MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[i];
|
---|
269 | //
|
---|
270 | // Don't use bad pixels
|
---|
271 | //
|
---|
272 | if (!pix.IsFFactorMethodValid())
|
---|
273 | continue;
|
---|
274 | //
|
---|
275 | //
|
---|
276 | if (aidx != geom[i].GetAidx())
|
---|
277 | continue;
|
---|
278 |
|
---|
279 | sig += pix.GetConvertedMean();
|
---|
280 | sig2 += pix.GetConvertedMean() * pix.GetConvertedMean();
|
---|
281 | num++;
|
---|
282 | }
|
---|
283 |
|
---|
284 | if (num > 1)
|
---|
285 | {
|
---|
286 | sig /= num;
|
---|
287 |
|
---|
288 | Double_t var = (sig2 - sig*sig*num) / (num-1);
|
---|
289 | var /= sig*sig;
|
---|
290 | var += pherelvar;
|
---|
291 |
|
---|
292 | phepersig[cnt] = phe/sig;
|
---|
293 | if (var > 0.)
|
---|
294 | phepersigerr[cnt] = TMath::Sqrt(var) * phepersig[cnt];
|
---|
295 | else
|
---|
296 | phepersigerr[cnt] = 0.;
|
---|
297 | }
|
---|
298 | else
|
---|
299 | {
|
---|
300 | phepersig[cnt] = -1.;
|
---|
301 | phepersigerr[cnt] = 0.;
|
---|
302 | }
|
---|
303 | cnt++;
|
---|
304 | }
|
---|
305 |
|
---|
306 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
307 | sig.GetArray(),phepersig.GetArray(),
|
---|
308 | sigerr.GetArray(),phepersigerr.GetArray());
|
---|
309 | gr->SetTitle(Form("%s%3i","Conv. Factors Area %d Average",aidx));
|
---|
310 | gr->GetXaxis()->SetTitle("<photo-electrons> [1]");
|
---|
311 | gr->GetYaxis()->SetTitle("<phes> / <Q> [FADC cts^{-1}]");
|
---|
312 | return gr;
|
---|
313 | }
|
---|
314 |
|
---|
315 | // -------------------------------------------------------------------
|
---|
316 | //
|
---|
317 | // Returns a TGraphErrors with the number of photo-electrons vs.
|
---|
318 | // the extracted signal over all pixels with area index "aidx".
|
---|
319 | //
|
---|
320 | // The points represent the means of the pixels values, while the error bars
|
---|
321 | // the sigma of the pixels values.
|
---|
322 | //
|
---|
323 | TGraphErrors *MCalibrationIntensityChargeCam::GetPheVsChargePerArea( const Int_t aidx, const MCalibrationCam::PulserColor_t col)
|
---|
324 | {
|
---|
325 |
|
---|
326 | Int_t size = CountNumEntries(col);
|
---|
327 |
|
---|
328 | TArrayF phe(size);
|
---|
329 | TArrayF pheerr(size);
|
---|
330 | TArrayF sig(size);
|
---|
331 | TArrayF sigerr(size);
|
---|
332 |
|
---|
333 | Int_t cnt = 0;
|
---|
334 |
|
---|
335 | for (Int_t i=0;i<GetSize();i++)
|
---|
336 | {
|
---|
337 | //
|
---|
338 | // Get the calibration cam from the intensity cam
|
---|
339 | //
|
---|
340 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
341 |
|
---|
342 | if (col != MCalibrationCam::kNONE)
|
---|
343 | if (cam->GetPulserColor() != col)
|
---|
344 | continue;
|
---|
345 |
|
---|
346 | //
|
---|
347 | // Get the area calibration pix from the calibration cam
|
---|
348 | //
|
---|
349 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(cam->GetAverageArea(aidx));
|
---|
350 |
|
---|
351 | phe[cnt] = pix.GetPheFFactorMethod();
|
---|
352 | pheerr[cnt] = pix.GetPheFFactorMethodErr();
|
---|
353 | //
|
---|
354 | // For the calculation of Q, we have to use the
|
---|
355 | // converted value!
|
---|
356 | //
|
---|
357 | sig [cnt] = pix.GetConvertedMean();
|
---|
358 | sigerr[cnt] = pix.GetConvertedMeanErr();
|
---|
359 |
|
---|
360 | cnt++;
|
---|
361 | }
|
---|
362 |
|
---|
363 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
364 | sig.GetArray(),phe.GetArray(),
|
---|
365 | sigerr.GetArray(),pheerr.GetArray());
|
---|
366 | gr->SetTitle(Form("%s%3i","Area Index ",aidx));
|
---|
367 | gr->GetXaxis()->SetTitle("Q [FADC counts]");
|
---|
368 | gr->GetYaxis()->SetTitle("photo-electrons [1]");
|
---|
369 | return gr;
|
---|
370 | }
|
---|
371 |
|
---|
372 | // -------------------------------------------------------------------
|
---|
373 | //
|
---|
374 | // Returns a TGraphErrors with the 'Razmik plot' of pixel "pixid".
|
---|
375 | // The Razmik plot shows the value of 'R' vs. 1/Q where:
|
---|
376 | //
|
---|
377 | // sigma^2 F^2
|
---|
378 | // R = ------- = ------
|
---|
379 | // <Q>^2 <m_pe>
|
---|
380 | //
|
---|
381 | // and 1/Q is the inverse (mean) extracted signal
|
---|
382 | //
|
---|
383 | TGraphErrors *MCalibrationIntensityChargeCam::GetRazmikPlot( const UInt_t pixid )
|
---|
384 | {
|
---|
385 |
|
---|
386 | const Int_t size = GetSize();
|
---|
387 |
|
---|
388 | TArrayF r(size);
|
---|
389 | TArrayF rerr(size);
|
---|
390 | TArrayF oneoverq(size);
|
---|
391 | TArrayF oneoverqerr(size);
|
---|
392 |
|
---|
393 | for (Int_t i=0;i<size;i++)
|
---|
394 | {
|
---|
395 | //
|
---|
396 | // Get the calibration cam from the intensity cam
|
---|
397 | //
|
---|
398 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
399 | //
|
---|
400 | // Get the calibration pix from the calibration cam
|
---|
401 | //
|
---|
402 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
403 | //
|
---|
404 | // Don't use bad pixels
|
---|
405 | //
|
---|
406 | if (!pix.IsFFactorMethodValid())
|
---|
407 | continue;
|
---|
408 | //
|
---|
409 | // For the calculation of R, use the un-converted values, like
|
---|
410 | // in the calibration, since:
|
---|
411 | // C^2*sigma^2 sigma^2
|
---|
412 | // R(lowgain) = ----------- = ------ = R
|
---|
413 | // C^2*<Q>^2 <Q>^2
|
---|
414 | //
|
---|
415 | const Float_t mean = pix.GetMean();
|
---|
416 | const Float_t meanerr = pix.GetMeanErr();
|
---|
417 | const Float_t rsigma = pix.GetRSigma();
|
---|
418 | const Float_t rsigmaerr = pix.GetRSigmaErr();
|
---|
419 | r[i] = rsigma*rsigma/mean/mean;
|
---|
420 | const Float_t rrelvar = 4.*rsigmaerr*rsigmaerr/rsigma/rsigma + 4.*meanerr*meanerr/mean/mean;
|
---|
421 | rerr[i] = rrelvar * r[i] * r[i];
|
---|
422 | rerr[i] = rerr[i] <= 0 ? 0. : TMath::Sqrt(rerr[i]);
|
---|
423 | //
|
---|
424 | // For the calculation of 1/Q, we have to use the
|
---|
425 | // converted value!
|
---|
426 | //
|
---|
427 | const Float_t q = pix.GetConvertedMean();
|
---|
428 | const Float_t qe = pix.GetConvertedMeanErr();
|
---|
429 | oneoverq [i] = 1./q;
|
---|
430 | oneoverqerr[i] = qe / q / q;
|
---|
431 | }
|
---|
432 |
|
---|
433 | TGraphErrors *gr = new TGraphErrors(size,
|
---|
434 | oneoverq.GetArray(),r.GetArray(),
|
---|
435 | oneoverqerr.GetArray(),rerr.GetArray());
|
---|
436 | gr->SetTitle(Form("%s%3i","Pixel ",pixid));
|
---|
437 | gr->GetXaxis()->SetTitle("1/Q [FADC counts^{-1}]");
|
---|
438 | gr->GetYaxis()->SetTitle("\sigma_{red}^{2}/Q^{2} [1]");
|
---|
439 | return gr;
|
---|
440 | }
|
---|
441 |
|
---|
442 | // -------------------------------------------------------------------
|
---|
443 | //
|
---|
444 | // Returns a 2-dimensional histogram with the fit results of the
|
---|
445 | // 'Razmik plot' for each pixel of area index "aidx" (see GetRazmikPlot())
|
---|
446 | //
|
---|
447 | // The results of the polynomial fit of grade 1 are:
|
---|
448 | //
|
---|
449 | // x-axis: Offset (Parameter 0 of the polynomial)
|
---|
450 | // y-axis: Slope (Parameter 1 of the polynomial)
|
---|
451 | //
|
---|
452 | // The offset is a measure of how well-known the supposed additional contributions
|
---|
453 | // to the value "reduced sigma" are. Because a photo-multiplier is a linear instrument,
|
---|
454 | // the excess fluctuations are linear w.r.t. the signal amplitude and can be expressed by
|
---|
455 | // the proportionality constant F (the "F-Factor").
|
---|
456 | // Adding noise from outside (e.g. night sky background) modifies the recorded noise, but
|
---|
457 | // not the mean extracted signal, due to the AC-coupling. Thus, noise contributions from outside
|
---|
458 | // (e.g. calculating the pedestal RMS)have to be subtracted from the recorded signal fluctuations
|
---|
459 | // in order to retrieve the linearity relation:
|
---|
460 | //
|
---|
461 | // sigma(signal)^2 / mean(signal)^2 = sigma^2 / <Q>^2 = F^2 / <n_phe> (1)
|
---|
462 | //
|
---|
463 | // Any systematic offset in the sigma(signal) will produce an offset in the "Razmik plot"),
|
---|
464 | // characterized by the Offset of the polynomial fit. Thus, in an ideal case, all pixels have their
|
---|
465 | // "offset" centered very closely around zero.
|
---|
466 | //
|
---|
467 | // The "slope" is the proportionality constant F^2, multiplied with the conversion factor
|
---|
468 | // phe's to mean signal (because the "Razmik plot" plots the left side of eq. (1) w.r.t.
|
---|
469 | // 1/<Q> instead of 1/<n_phe>. However, the mean number of photo-electrons <n_phe> can be
|
---|
470 | // expressed by <Q> with the relation:
|
---|
471 | //
|
---|
472 | // <n_phe> = c_phe * <Q> (2)
|
---|
473 | //
|
---|
474 | // Thus:
|
---|
475 | //
|
---|
476 | // 1/<n_phe> = 1/c_phe * 1/<Q> (3)
|
---|
477 | //
|
---|
478 | // and:
|
---|
479 | //
|
---|
480 | // Slope = F^2 / c_phe
|
---|
481 | //
|
---|
482 | // In the ideal case of having equal photo-multipliers and a perfectly flat-fielded camera,
|
---|
483 | // the "slope" -values should thus all be closely centered around F^2/c_phe.
|
---|
484 | //
|
---|
485 | TH2F *MCalibrationIntensityChargeCam::GetRazmikPlotResults( const Int_t aidx, const MGeomCam &geom)
|
---|
486 | {
|
---|
487 |
|
---|
488 | TH2F *hist = new TH2F("hist","R vs. Inverse Charges - Fit results",45,-0.02,0.02,45,0.,30.);
|
---|
489 | hist->SetXTitle("Offset [FADC counts^{-1}]");
|
---|
490 | hist->SetYTitle("F^{2} / <n_phe>/<Q> [FADC count / phe]");
|
---|
491 | hist->SetFillColor(kRed+aidx);
|
---|
492 |
|
---|
493 | MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam();
|
---|
494 |
|
---|
495 | for (Int_t npix=0;npix<cam->GetSize();npix++)
|
---|
496 | {
|
---|
497 |
|
---|
498 | if (geom[npix].GetAidx() == aidx)
|
---|
499 | {
|
---|
500 | TGraph *gr = GetRazmikPlot(npix);
|
---|
501 | gr->Fit("pol1","Q");
|
---|
502 | hist->Fill(gr->GetFunction("pol1")->GetParameter(0),gr->GetFunction("pol1")->GetParameter(1));
|
---|
503 | }
|
---|
504 | }
|
---|
505 | return hist;
|
---|
506 | }
|
---|
507 |
|
---|
508 |
|
---|
509 | // --------------------------------------------------------------------
|
---|
510 | //
|
---|
511 | // Returns the number of camera entries matching the required colour
|
---|
512 | // and the requirement that pixel "pixid" has been correctly calibrated
|
---|
513 | //
|
---|
514 | Int_t MCalibrationIntensityChargeCam::CountNumValidEntries(const UInt_t pixid, const MCalibrationCam::PulserColor_t col) const
|
---|
515 | {
|
---|
516 |
|
---|
517 | Int_t nvalid = 0;
|
---|
518 |
|
---|
519 | for (Int_t i=0;i<GetSize();i++)
|
---|
520 | {
|
---|
521 | const MCalibrationChargeCam *cam = (MCalibrationChargeCam*)GetCam(i);
|
---|
522 | const MCalibrationChargePix &pix = (MCalibrationChargePix&)(*cam)[pixid];
|
---|
523 |
|
---|
524 | if (col == MCalibrationCam::kNONE)
|
---|
525 | {
|
---|
526 | if (pix.IsFFactorMethodValid())
|
---|
527 | nvalid++;
|
---|
528 | }
|
---|
529 | else
|
---|
530 | {
|
---|
531 | if (cam->GetPulserColor() == col)
|
---|
532 | {
|
---|
533 | if (pix.IsFFactorMethodValid())
|
---|
534 | nvalid++;
|
---|
535 | }
|
---|
536 | }
|
---|
537 | }
|
---|
538 |
|
---|
539 | return nvalid;
|
---|
540 | }
|
---|