1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 11/2003 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2001
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MCalibrationPix //
|
---|
28 | // //
|
---|
29 | // This is the storage container to hold informations about the pedestal //
|
---|
30 | // (offset) value of one Pixel (PMT). //
|
---|
31 | // //
|
---|
32 | /////////////////////////////////////////////////////////////////////////////
|
---|
33 | #include "MCalibrationPix.h"
|
---|
34 | #include "MCalibrationConfig.h"
|
---|
35 |
|
---|
36 | #include "MLog.h"
|
---|
37 | #include "MLogManip.h"
|
---|
38 |
|
---|
39 | ClassImp(MCalibrationPix);
|
---|
40 |
|
---|
41 | using namespace std;
|
---|
42 |
|
---|
43 | // --------------------------------------------------------------------------
|
---|
44 | //
|
---|
45 | // Default Constructor:
|
---|
46 | //
|
---|
47 | // The following values are initialized to meaningful values:
|
---|
48 | //
|
---|
49 | // - The Electronic Rms to 1.5 per FADC slice
|
---|
50 | // - The uncertainty about the Electronic RMS to 0.3 per slice
|
---|
51 | // - The F-Factor is assumed to have been measured in Munich to 1.13 - 1.17.
|
---|
52 | // We use here the Square of the Munich definition, thus:
|
---|
53 | // Mean F-Factor = 1.15*1.15 = 1.32
|
---|
54 | // Error F-Factor = 2.*0.02 = 0.04
|
---|
55 | //
|
---|
56 | MCalibrationPix::MCalibrationPix(const char *name, const char *title)
|
---|
57 | : fPixId(-1),
|
---|
58 | fCharge(-1.),
|
---|
59 | fErrCharge(-1.),
|
---|
60 | fSigmaCharge(-1.),
|
---|
61 | fErrSigmaCharge(-1.),
|
---|
62 | fRSigmaSquare(-1.),
|
---|
63 | fChargeProb(-1.),
|
---|
64 | fPed(-1.),
|
---|
65 | fPedRms(-1.),
|
---|
66 | fErrPedRms(0.),
|
---|
67 | fElectronicPedRms(1.5),
|
---|
68 | fErrElectronicPedRms(0.3),
|
---|
69 | fTime(-1.),
|
---|
70 | fSigmaTime(-1.),
|
---|
71 | fTimeChiSquare(-1.),
|
---|
72 | fFactor(1.32),
|
---|
73 | fFactorError(0.04),
|
---|
74 | fPheFFactorMethod(-1.),
|
---|
75 | fPheFFactorMethodError(-1.),
|
---|
76 | fConversionFFactorMethod(-1.),
|
---|
77 | fConversionBlindPixelMethod(-1.),
|
---|
78 | fConversionPINDiodeMethod(-1.),
|
---|
79 | fConversionErrorFFactorMethod(-1.),
|
---|
80 | fConversionErrorBlindPixelMethod(-1.),
|
---|
81 | fConversionErrorPINDiodeMethod(-1.),
|
---|
82 | fConversionSigmaFFactorMethod(-1.),
|
---|
83 | fConversionSigmaBlindPixelMethod(-1.),
|
---|
84 | fConversionSigmaPINDiodeMethod(-1.),
|
---|
85 | fHiGainSaturation(kFALSE),
|
---|
86 | fFitValid(kFALSE),
|
---|
87 | fFitted(kFALSE),
|
---|
88 | fBlindPixelMethodValid(kFALSE),
|
---|
89 | fFFactorMethodValid(kFALSE),
|
---|
90 | fPINDiodeMethodValid(kFALSE)
|
---|
91 | {
|
---|
92 |
|
---|
93 | fName = name ? name : "MCalibrationPixel";
|
---|
94 | fTitle = title ? title : "Container of the MHCalibrationPixels and the fit results";
|
---|
95 |
|
---|
96 | //
|
---|
97 | // At the moment, we don't have a database, yet,
|
---|
98 | // so we get it from the configuration file
|
---|
99 | //
|
---|
100 | fConversionHiLo = gkConversionHiLo;
|
---|
101 | fConversionHiLoError = gkConversionHiLoError;
|
---|
102 |
|
---|
103 | fHist = new MHCalibrationPixel("MHCalibrationPixel","Calibration Histograms Pixel ");
|
---|
104 |
|
---|
105 | }
|
---|
106 |
|
---|
107 | MCalibrationPix::~MCalibrationPix()
|
---|
108 | {
|
---|
109 | delete fHist;
|
---|
110 | }
|
---|
111 |
|
---|
112 |
|
---|
113 | void MCalibrationPix::DefinePixId(Int_t i)
|
---|
114 | {
|
---|
115 |
|
---|
116 | fPixId = i;
|
---|
117 | fHist->ChangeHistId(i);
|
---|
118 |
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 | // ------------------------------------------------------------------------
|
---|
123 | //
|
---|
124 | // Invalidate values
|
---|
125 | //
|
---|
126 | void MCalibrationPix::Clear(Option_t *o)
|
---|
127 | {
|
---|
128 | fHist->Reset();
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | // --------------------------------------------------------------------------
|
---|
133 | //
|
---|
134 | // 1) Return if the charge distribution is already succesfully fitted
|
---|
135 | // or if the histogram is empty
|
---|
136 | // 2) Set a lower Fit range according to 1.5 Pedestal RMS in order to avoid
|
---|
137 | // possible remaining cosmics to spoil the fit.
|
---|
138 | // 3) Decide if the LoGain Histogram is fitted or the HiGain Histogram
|
---|
139 | // 4) Fit the histograms with a Gaussian
|
---|
140 | // 5) In case of failure print out the fit results
|
---|
141 | // 6) Retrieve the results and store them in this class
|
---|
142 | // 7) Calculate the number of photo-electrons after the F-Factor method
|
---|
143 | // 8) Calculate the errors of the F-Factor method
|
---|
144 | //
|
---|
145 | // The fits are declared valid (fFitValid = kTRUE), if:
|
---|
146 | //
|
---|
147 | // 1) Pixel has a fitted charge greater than 5*PedRMS
|
---|
148 | // 2) Pixel has a fit error greater than 0.
|
---|
149 | // 3) Pixel has a fit Probability greater than 0.0001
|
---|
150 | // 4) Pixel has a charge sigma bigger than its Pedestal RMS
|
---|
151 | // 5) If FitTimes is used,
|
---|
152 | // the mean arrival time is at least 1.0 slices from the used edge slices
|
---|
153 | // (this stage is only performed in the times fit)
|
---|
154 | //
|
---|
155 | // If the histogram is empty, all values are set to -1.
|
---|
156 | //
|
---|
157 | // The conversion factor after the F-Factor method is declared valid, if:
|
---|
158 | //
|
---|
159 | // 1) fFitValid is kTRUE
|
---|
160 | // 2) Conversion Factor is bigger than 0.
|
---|
161 | // 3) The error of the conversion factor is smaller than 10%
|
---|
162 | //
|
---|
163 | Bool_t MCalibrationPix::FitCharge()
|
---|
164 | {
|
---|
165 |
|
---|
166 | //
|
---|
167 | // 1) Return if the charge distribution is already succesfully fitted
|
---|
168 | // or if the histogram is empty
|
---|
169 | //
|
---|
170 | if (fHist->IsFitOK() || fHist->IsEmpty())
|
---|
171 | return kTRUE;
|
---|
172 |
|
---|
173 | //
|
---|
174 | // 2) Set a lower Fit range according to 1.5 Pedestal RMS in order to avoid
|
---|
175 | // possible remaining cosmics to spoil the fit.
|
---|
176 | //
|
---|
177 | if (fPed && fPedRms)
|
---|
178 | fHist->SetLowerFitRange(1.5*fPedRms);
|
---|
179 | else
|
---|
180 | *fLog << warn << "Cannot set lower fit range: Pedestals not available" << endl;
|
---|
181 |
|
---|
182 | //
|
---|
183 | // 3) Decide if the LoGain Histogram is fitted or the HiGain Histogram
|
---|
184 | //
|
---|
185 | if (fHist->UseLoGain())
|
---|
186 | {
|
---|
187 |
|
---|
188 | SetHiGainSaturation();
|
---|
189 |
|
---|
190 | //
|
---|
191 | // 4) Fit the Lo Gain histograms with a Gaussian
|
---|
192 | //
|
---|
193 | if(!fHist->FitChargeLoGain())
|
---|
194 | {
|
---|
195 | *fLog << warn << "Could not fit Lo Gain charges of pixel " << fPixId << endl;
|
---|
196 | //
|
---|
197 | // 5) In case of failure print out the fit results
|
---|
198 | //
|
---|
199 | fHist->PrintChargeFitResult();
|
---|
200 | }
|
---|
201 | }
|
---|
202 | else
|
---|
203 | {
|
---|
204 | //
|
---|
205 | // 4) Fit the Hi Gain histograms with a Gaussian
|
---|
206 | //
|
---|
207 | if(!fHist->FitChargeHiGain())
|
---|
208 | {
|
---|
209 | *fLog << warn << "Could not fit Hi Gain charges of pixel " << fPixId << endl;
|
---|
210 | //
|
---|
211 | // 5) In case of failure print out the fit results
|
---|
212 | //
|
---|
213 | fHist->PrintChargeFitResult();
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | //
|
---|
219 | // 6) Retrieve the results and store them in this class
|
---|
220 | //
|
---|
221 | fCharge = fHist->GetChargeMean();
|
---|
222 | fErrCharge = fHist->GetChargeMeanErr();
|
---|
223 | fSigmaCharge = fHist->GetChargeSigma();
|
---|
224 | fErrSigmaCharge = fHist->GetChargeSigmaErr();
|
---|
225 | fChargeProb = fHist->GetChargeProb();
|
---|
226 |
|
---|
227 | if (fCharge <= 0.)
|
---|
228 | {
|
---|
229 | *fLog << warn << "Cannot apply calibration: Mean Fitted Charges are smaller than 0 in pixel "
|
---|
230 | << fPixId << endl;
|
---|
231 | return kFALSE;
|
---|
232 | }
|
---|
233 |
|
---|
234 | if (fErrCharge > 0.)
|
---|
235 | fFitted = kTRUE;
|
---|
236 |
|
---|
237 | if (CheckChargeFitValidity())
|
---|
238 | fFitValid = kTRUE;
|
---|
239 |
|
---|
240 |
|
---|
241 | //
|
---|
242 | // 7) Calculate the number of photo-electrons after the F-Factor method
|
---|
243 | // 8) Calculate the errors of the F-Factor method
|
---|
244 | //
|
---|
245 | if ((fPed > 0.) && (fPedRms > 0.))
|
---|
246 | {
|
---|
247 |
|
---|
248 | //
|
---|
249 | // Square all variables in order to avoid applications of square root
|
---|
250 | //
|
---|
251 | // First the relative error squares
|
---|
252 | //
|
---|
253 | const Float_t chargeSquare = fCharge* fCharge;
|
---|
254 | const Float_t chargeSquareRelErrSquare = 4.*fErrCharge*fErrCharge / chargeSquare;
|
---|
255 |
|
---|
256 | const Float_t fFactorRelErrSquare = fFactorError * fFactorError / (fFactor * fFactor);
|
---|
257 | //
|
---|
258 | // Now the absolute error squares
|
---|
259 | //
|
---|
260 | const Float_t sigmaSquare = fSigmaCharge* fSigmaCharge;
|
---|
261 | const Float_t sigmaSquareErrSquare = 4.*fErrSigmaCharge*fErrSigmaCharge * sigmaSquare;
|
---|
262 |
|
---|
263 | const Float_t elecRmsSquare = fElectronicPedRms* fElectronicPedRms;
|
---|
264 | const Float_t elecRmsSquareErrSquare = 4.*fErrElectronicPedRms*fErrElectronicPedRms * elecRmsSquare;
|
---|
265 |
|
---|
266 | Float_t pedRmsSquare = fPedRms* fPedRms;
|
---|
267 | Float_t pedRmsSquareErrSquare = 4.*fErrPedRms*fErrPedRms * pedRmsSquare;
|
---|
268 |
|
---|
269 | if (fHiGainSaturation)
|
---|
270 | {
|
---|
271 |
|
---|
272 | //
|
---|
273 | // We do not know the Lo Gain Pedestal RMS, so we have to retrieve it
|
---|
274 | // from the Hi Gain:
|
---|
275 | //
|
---|
276 | // We extract the pure NSB contribution:
|
---|
277 | //
|
---|
278 | Float_t nsbSquare = pedRmsSquare - elecRmsSquare;
|
---|
279 | Float_t nsbSquareRelErrSquare = (pedRmsSquareErrSquare + elecRmsSquareErrSquare)
|
---|
280 | / (nsbSquare * nsbSquare) ;
|
---|
281 |
|
---|
282 | if (nsbSquare < 0.)
|
---|
283 | nsbSquare = 0.;
|
---|
284 |
|
---|
285 | //
|
---|
286 | // Now, we divide the NSB by the conversion factor and
|
---|
287 | // add it quadratically to the electronic noise
|
---|
288 | //
|
---|
289 | const Float_t conversionSquare = fConversionHiLo *fConversionHiLo;
|
---|
290 | const Float_t conversionSquareRelErrSquare = 4.*fConversionHiLoError*fConversionHiLoError/conversionSquare;
|
---|
291 |
|
---|
292 | //
|
---|
293 | // Calculate the new "Pedestal RMS"
|
---|
294 | //
|
---|
295 | const Float_t convertedNsbSquare = nsbSquare / conversionSquare;
|
---|
296 | const Float_t convertedNsbSquareErrSquare = (nsbSquareRelErrSquare + conversionSquareRelErrSquare)
|
---|
297 | * convertedNsbSquare * convertedNsbSquare;
|
---|
298 |
|
---|
299 | pedRmsSquare = convertedNsbSquare + elecRmsSquare;
|
---|
300 | pedRmsSquareErrSquare = convertedNsbSquareErrSquare + elecRmsSquareErrSquare;
|
---|
301 |
|
---|
302 | } /* if (fHiGainSaturation) */
|
---|
303 |
|
---|
304 | //
|
---|
305 | // Calculate the reduced sigmas
|
---|
306 | //
|
---|
307 | fRSigmaSquare = sigmaSquare - pedRmsSquare;
|
---|
308 | if (fRSigmaSquare <= 0.)
|
---|
309 | {
|
---|
310 | *fLog << warn << "Cannot apply F-Factor calibration: Reduced Sigma smaller than 0 in pixel "
|
---|
311 | << fPixId << endl;
|
---|
312 | if (fHiGainSaturation)
|
---|
313 | ApplyLoGainConversion();
|
---|
314 | return kFALSE;
|
---|
315 | }
|
---|
316 |
|
---|
317 | const Float_t rSigmaSquareRelErrSquare = (sigmaSquareErrSquare + pedRmsSquareErrSquare)
|
---|
318 | / (fRSigmaSquare * fRSigmaSquare) ;
|
---|
319 |
|
---|
320 | //
|
---|
321 | // Calculate the number of phe's from the F-Factor method
|
---|
322 | // (independent on Hi Gain or Lo Gain)
|
---|
323 | //
|
---|
324 | fPheFFactorMethod = fFactor * chargeSquare / fRSigmaSquare;
|
---|
325 |
|
---|
326 | const Float_t pheFFactorRelErrSquare = fFactorRelErrSquare
|
---|
327 | + chargeSquareRelErrSquare
|
---|
328 | + rSigmaSquareRelErrSquare ;
|
---|
329 |
|
---|
330 | fPheFFactorMethodError = TMath::Sqrt(pheFFactorRelErrSquare) * fPheFFactorMethod;
|
---|
331 |
|
---|
332 | //
|
---|
333 | // Calculate the conversion factors
|
---|
334 | //
|
---|
335 | if (fHiGainSaturation)
|
---|
336 | ApplyLoGainConversion();
|
---|
337 |
|
---|
338 | const Float_t chargeRelErrSquare = fErrCharge*fErrCharge / (fCharge * fCharge);
|
---|
339 |
|
---|
340 | fConversionFFactorMethod = fPheFFactorMethod / fCharge ;
|
---|
341 | fConversionErrorFFactorMethod = ( pheFFactorRelErrSquare + chargeRelErrSquare )
|
---|
342 | * fConversionFFactorMethod * fConversionFFactorMethod;
|
---|
343 |
|
---|
344 | if ( IsFitValid() &&
|
---|
345 | (fConversionFFactorMethod > 0.) &&
|
---|
346 | (fConversionErrorFFactorMethod/fConversionFFactorMethod < 0.1) )
|
---|
347 | fFFactorMethodValid = kTRUE;
|
---|
348 |
|
---|
349 |
|
---|
350 | } /* if ((fPed > 0.) && (fPedRms > 0.)) */
|
---|
351 |
|
---|
352 | return kTRUE;
|
---|
353 |
|
---|
354 | }
|
---|
355 |
|
---|
356 | //
|
---|
357 | // The check return kTRUE if:
|
---|
358 | //
|
---|
359 | // 1) Pixel has a fitted charge greater than 5*PedRMS
|
---|
360 | // 2) Pixel has a fit error greater than 0.
|
---|
361 | // 3) Pixel has a fit Probability greater than 0.0001
|
---|
362 | // 4) Pixel has a charge sigma bigger than its Pedestal RMS
|
---|
363 | //
|
---|
364 | Bool_t MCalibrationPix::CheckChargeFitValidity()
|
---|
365 | {
|
---|
366 |
|
---|
367 | Float_t equivpedestal = GetPedRms();
|
---|
368 |
|
---|
369 | if (fHiGainSaturation)
|
---|
370 | equivpedestal /= fConversionHiLo;
|
---|
371 |
|
---|
372 | if (fCharge < 5.*equivpedestal)
|
---|
373 | {
|
---|
374 | *fLog << warn << "WARNING: Fitted Charge is smaller than 5 Pedestal RMS in Pixel " << fPixId << endl;
|
---|
375 | return kFALSE;
|
---|
376 | }
|
---|
377 |
|
---|
378 | if (fErrCharge < 0.)
|
---|
379 | {
|
---|
380 | *fLog << warn << "WARNING: Error of Fitted Charge is smaller than 0 in Pixel " << fPixId << endl;
|
---|
381 | return kFALSE;
|
---|
382 | }
|
---|
383 |
|
---|
384 | if (!fHist->IsFitOK())
|
---|
385 | {
|
---|
386 | *fLog << warn << "WARNING: Probability of Fitted Charge too low in Pixel " << fPixId << endl;
|
---|
387 | return kFALSE;
|
---|
388 | }
|
---|
389 |
|
---|
390 | if (fSigmaCharge < equivpedestal)
|
---|
391 | {
|
---|
392 | *fLog << warn << "WARNING: Sigma of Fitted Charge smaller than Pedestal RMS in Pixel " << fPixId << endl;
|
---|
393 | return kFALSE;
|
---|
394 | }
|
---|
395 | return kTRUE;
|
---|
396 | }
|
---|
397 |
|
---|
398 | //
|
---|
399 | // The check returns kTRUE if:
|
---|
400 | //
|
---|
401 | // The mean arrival time is at least 1.0 slices from the used edge slices
|
---|
402 | //
|
---|
403 | Bool_t MCalibrationPix::CheckTimeFitValidity()
|
---|
404 | {
|
---|
405 |
|
---|
406 | Float_t lowerrange;
|
---|
407 | Float_t upperrange;
|
---|
408 |
|
---|
409 | if (fHiGainSaturation)
|
---|
410 | {
|
---|
411 | lowerrange = (Float_t)fHist->GetTimeLowerFitRangeLoGain()+1.;
|
---|
412 | upperrange = (Float_t)fHist->GetTimeUpperFitRangeLoGain()+1.;
|
---|
413 | }
|
---|
414 | else
|
---|
415 | {
|
---|
416 | lowerrange = (Float_t)fHist->GetTimeLowerFitRangeHiGain()+1.;
|
---|
417 | upperrange = (Float_t)fHist->GetTimeUpperFitRangeHiGain()+1.;
|
---|
418 | }
|
---|
419 |
|
---|
420 |
|
---|
421 | if (fTime < lowerrange)
|
---|
422 | {
|
---|
423 | *fLog << warn
|
---|
424 | << "WARNING: Mean Fitted Time inside or smaller than first used FADC slice in Pixel "
|
---|
425 | << fPixId << " time: " << fTime << " Range: " << lowerrange << endl;
|
---|
426 | return kFALSE;
|
---|
427 | }
|
---|
428 |
|
---|
429 | if (fTime > upperrange)
|
---|
430 | {
|
---|
431 | *fLog << warn
|
---|
432 | << "WARNING: Mean Fitted Time inside or greater than last used FADC slice in Pixel "
|
---|
433 | << fPixId << " time: " << fTime << " Range: " << upperrange << endl;
|
---|
434 | return kFALSE;
|
---|
435 | }
|
---|
436 |
|
---|
437 | return kTRUE;
|
---|
438 | }
|
---|
439 |
|
---|
440 |
|
---|
441 |
|
---|
442 | void MCalibrationPix::ApplyLoGainConversion()
|
---|
443 | {
|
---|
444 |
|
---|
445 | const Float_t chargeRelErrSquare = fErrCharge*fErrCharge
|
---|
446 | /( fCharge * fCharge);
|
---|
447 | const Float_t sigmaRelErrSquare = fErrSigmaCharge*fErrSigmaCharge
|
---|
448 | /( fSigmaCharge * fSigmaCharge);
|
---|
449 | const Float_t conversionRelErrSquare = fConversionHiLoError*fConversionHiLoError
|
---|
450 | /(fConversionHiLo * fConversionHiLo);
|
---|
451 |
|
---|
452 | fCharge *= fConversionHiLo;
|
---|
453 | fErrCharge = TMath::Sqrt(chargeRelErrSquare + conversionRelErrSquare) * fCharge;
|
---|
454 |
|
---|
455 | fSigmaCharge *= fConversionHiLo;
|
---|
456 | fErrSigmaCharge = TMath::Sqrt(sigmaRelErrSquare + conversionRelErrSquare) * fSigmaCharge;
|
---|
457 |
|
---|
458 | }
|
---|
459 |
|
---|
460 |
|
---|
461 | // --------------------------------------------------------------------------
|
---|
462 | //
|
---|
463 | // Set the pedestals from outside
|
---|
464 | //
|
---|
465 | void MCalibrationPix::SetPedestal(Float_t ped, Float_t pedrms)
|
---|
466 | {
|
---|
467 |
|
---|
468 | fPed = ped;
|
---|
469 | fPedRms = pedrms;
|
---|
470 |
|
---|
471 | }
|
---|
472 |
|
---|
473 | // --------------------------------------------------------------------------
|
---|
474 | //
|
---|
475 | // 1) Fit the arrival times
|
---|
476 | // 2) Retrieve the results
|
---|
477 | // 3) Note that because of the low number of bins, the NDf is sometimes 0, so
|
---|
478 | // Root does not give a reasonable Probability, the Chisquare is more significant
|
---|
479 | //
|
---|
480 | // This fit has to be done AFTER the Charges fit,
|
---|
481 | // otherwise only the Hi Gain will be fitted, even if there are no entries
|
---|
482 | //
|
---|
483 | //
|
---|
484 | Bool_t MCalibrationPix::FitTime()
|
---|
485 | {
|
---|
486 |
|
---|
487 | //
|
---|
488 | // Fit the Low Gain
|
---|
489 | //
|
---|
490 | if (fHiGainSaturation)
|
---|
491 | {
|
---|
492 | if(!fHist->FitTimeLoGain())
|
---|
493 | {
|
---|
494 | *fLog << warn << "Could not fit Lo Gain times of pixel " << fPixId << endl;
|
---|
495 | fHist->PrintTimeFitResult();
|
---|
496 | return kFALSE;
|
---|
497 | }
|
---|
498 | }
|
---|
499 |
|
---|
500 | //
|
---|
501 | // Fit the High Gain
|
---|
502 | //
|
---|
503 | else
|
---|
504 | {
|
---|
505 | if(!fHist->FitTimeHiGain())
|
---|
506 | {
|
---|
507 | *fLog << warn << "Could not fit Hi Gain times of pixel " << fPixId << endl;
|
---|
508 | fHist->PrintTimeFitResult();
|
---|
509 | return kFALSE;
|
---|
510 | }
|
---|
511 | }
|
---|
512 |
|
---|
513 | fTime = fHist->GetTimeMean();
|
---|
514 | fSigmaTime = fHist->GetTimeSigma();
|
---|
515 | fTimeChiSquare = fHist->GetTimeChiSquare();
|
---|
516 | fTimeProb = fHist->GetTimeProb();
|
---|
517 |
|
---|
518 | if (!CheckTimeFitValidity())
|
---|
519 | fFitValid = kFALSE;
|
---|
520 |
|
---|
521 | return kTRUE;
|
---|
522 | }
|
---|
523 |
|
---|