1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MCalibrationQEPix //
|
---|
28 | // //
|
---|
29 | // Storage container of the calibrated Quantrum Efficiency of one pixel
|
---|
30 | // For the moment, only a fixed average QE is stored:
|
---|
31 | //
|
---|
32 | // - Average QE: (email David Paneque, 14.2.04):
|
---|
33 | //
|
---|
34 | // The conversion factor that comes purely from QE folded to a Cherenkov
|
---|
35 | // spectrum has to be multiplied by:
|
---|
36 | // * Plexiglass window -->> 0.96 X 0.96
|
---|
37 | // * PMT photoelectron collection efficiency -->> 0.9
|
---|
38 | // * Light guides efficiency -->> 0.94
|
---|
39 | //
|
---|
40 | // Concerning the light guides effiency estimation... Daniel Ferenc
|
---|
41 | // is preparing some work (simulations) to estimate it. Yet so far, he has
|
---|
42 | // been busy with other stuff, and this work is still UNfinished.
|
---|
43 | //
|
---|
44 | // The estimation I did comes from:
|
---|
45 | // 1) Reflectivity of light guide walls is 85 % (aluminum)
|
---|
46 | // 2) At ZERO degree light incidence, 37% of the light hits such walls
|
---|
47 | // (0.15X37%= 5.6% of light lost)
|
---|
48 | // 3) When increasing the light incidence angle, more and more light hits
|
---|
49 | // the walls.
|
---|
50 | //
|
---|
51 | // However, the loses due to larger amount of photons hitting the walls is more
|
---|
52 | // or less counteracted by the fact that more and more photon trajectories cross
|
---|
53 | // the PMT photocathode twice, increasing the effective sensitivity of the PMT.
|
---|
54 | //
|
---|
55 | // Jurgen Gebauer did some quick measurements about this issue. I attach a
|
---|
56 | // plot. You can see that the angular dependence is (more or less) in agreement
|
---|
57 | // with a CosTheta function (below 20-25 degrees),
|
---|
58 | // which is the variation of teh entrance window cross section. So, in
|
---|
59 | // first approximation, no loses when increasing light incidence angle;
|
---|
60 | // and therefore, the factor 0.94.
|
---|
61 | //
|
---|
62 | // So, summarizing... I would propose the following conversion factors
|
---|
63 | // (while working with CT1 cal box) in order to get the final number of photons
|
---|
64 | // from the detected measured size in ADC counts.
|
---|
65 | //
|
---|
66 | // Nph = ADC * FmethodConversionFactor / ConvPhe-PhFactor
|
---|
67 | //
|
---|
68 | // FmethodConversionFactor ; measured for individual pmts
|
---|
69 | //
|
---|
70 | // ConvPhe-PhFactor = 0.98 * 0.23 * 0.90 * 0.94 * 0.96 * 0.96 = 0.18
|
---|
71 | //
|
---|
72 | // I would not apply any smearing of this factor (which we have in nature),
|
---|
73 | // since we might be applying it to PMTs in the totally wrong direction.
|
---|
74 | //
|
---|
75 | //
|
---|
76 | /////////////////////////////////////////////////////////////////////////////
|
---|
77 | #include "MCalibrationQEPix.h"
|
---|
78 |
|
---|
79 | #include "MLog.h"
|
---|
80 | #include "MLogManip.h"
|
---|
81 |
|
---|
82 | ClassImp(MCalibrationQEPix);
|
---|
83 |
|
---|
84 | using namespace std;
|
---|
85 |
|
---|
86 | // --------------------------------------------------------------------------
|
---|
87 | //
|
---|
88 | // Default Constructor:
|
---|
89 | //
|
---|
90 | MCalibrationQEPix::MCalibrationQEPix(const char *name, const char *title)
|
---|
91 | {
|
---|
92 |
|
---|
93 | fName = name ? name : "MCalibrationQEPix";
|
---|
94 | fTitle = title ? title : "Container of the calibrated quantum efficiency ";
|
---|
95 |
|
---|
96 | Clear();
|
---|
97 |
|
---|
98 | }
|
---|
99 |
|
---|
100 | // ------------------------------------------------------------------------
|
---|
101 | //
|
---|
102 | // Invalidate values
|
---|
103 | //
|
---|
104 | void MCalibrationQEPix::Clear(Option_t *o)
|
---|
105 | {
|
---|
106 |
|
---|
107 | fQEGreen = -1.;
|
---|
108 | fQEBlue = -1.;
|
---|
109 | fQEUV = -1.;
|
---|
110 | fQECT1 = -1.;
|
---|
111 |
|
---|
112 | fQEGreenErr = -1.;
|
---|
113 | fQEBlueErr = -1.;
|
---|
114 | fQEUVErr = -1.;
|
---|
115 | fQECT1Err = -1.;
|
---|
116 |
|
---|
117 | MCalibrationPix::Clear();
|
---|
118 |
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 | void MCalibrationQEPix::SetQE( const Float_t qe, const PulserColor_t col )
|
---|
123 | {
|
---|
124 |
|
---|
125 | switch (col)
|
---|
126 | {
|
---|
127 | case kGREEN:
|
---|
128 | fQEGreen = qe;
|
---|
129 | break;
|
---|
130 | case kBLUE:
|
---|
131 | fQEBlue = qe;
|
---|
132 | break;
|
---|
133 | case kUV:
|
---|
134 | fQEUV = qe;
|
---|
135 | break;
|
---|
136 | case kCT1:
|
---|
137 | fQECT1 = qe;
|
---|
138 | break;
|
---|
139 | default:
|
---|
140 | fQECT1 = qe;
|
---|
141 | break;
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | void MCalibrationQEPix::SetQEErr( const Float_t qeerr, const PulserColor_t col )
|
---|
146 | {
|
---|
147 |
|
---|
148 | switch (col)
|
---|
149 | {
|
---|
150 | case kGREEN:
|
---|
151 | fQEGreenErr = qeerr;
|
---|
152 | break;
|
---|
153 | case kBLUE:
|
---|
154 | fQEBlueErr = qeerr;
|
---|
155 | break;
|
---|
156 | case kUV:
|
---|
157 | fQEUVErr = qeerr;
|
---|
158 | break;
|
---|
159 | case kCT1:
|
---|
160 | fQECT1Err = qeerr;
|
---|
161 | break;
|
---|
162 | default:
|
---|
163 | fQECT1Err = qeerr;
|
---|
164 | break;
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | Float_t MCalibrationQEPix::GetQE(const PulserColor_t col ) const
|
---|
170 | {
|
---|
171 |
|
---|
172 | switch (col)
|
---|
173 | {
|
---|
174 | case kGREEN:
|
---|
175 | return fQEGreen;
|
---|
176 | break;
|
---|
177 | case kBLUE:
|
---|
178 | return fQEBlue;
|
---|
179 | break;
|
---|
180 | case kUV:
|
---|
181 | return fQEUV;
|
---|
182 | break;
|
---|
183 | case kCT1:
|
---|
184 | return fQECT1;
|
---|
185 | break;
|
---|
186 | default:
|
---|
187 | return fQECT1;
|
---|
188 | break;
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | Float_t MCalibrationQEPix::GetQEErr(const PulserColor_t col ) const
|
---|
193 | {
|
---|
194 |
|
---|
195 | switch (col)
|
---|
196 | {
|
---|
197 | case kGREEN:
|
---|
198 | return fQEGreenErr;
|
---|
199 | break;
|
---|
200 | case kBLUE:
|
---|
201 | return fQEBlueErr;
|
---|
202 | break;
|
---|
203 | case kUV:
|
---|
204 | return fQEUVErr;
|
---|
205 | break;
|
---|
206 | case kCT1:
|
---|
207 | return fQECT1Err;
|
---|
208 | break;
|
---|
209 | default:
|
---|
210 | return fQECT1Err;
|
---|
211 | break;
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 | // --------------------------------------------------------------
|
---|
216 | //
|
---|
217 | // The check return kTRUE if:
|
---|
218 | //
|
---|
219 | // Not yet implemented!
|
---|
220 | //
|
---|
221 | Bool_t MCalibrationQEPix::CheckQEValidity()
|
---|
222 | {
|
---|
223 |
|
---|
224 | SetValid();
|
---|
225 | return kTRUE;
|
---|
226 | }
|
---|