source: trunk/MagicSoft/Mars/mcalib/MHCalibrationBlindPixel.h@ 2932

Last change on this file since 2932 was 2931, checked in by gaug, 21 years ago
*** empty log message ***
File size: 14.7 KB
Line 
1#ifndef MARS_MHCalibrationBlindPixel
2#define MARS_MHCalibrationBlindPixel
3
4#ifndef MARS_MH
5#include "MH.h"
6#endif
7
8class TH1F;
9class TH1I;
10class TF1;
11class TPaveText;
12
13class TMath;
14class MParList;
15class MHCalibrationBlindPixel : public MH
16{
17private:
18
19 const Int_t fBlindPixelChargeNbins;
20 const Int_t fBlindPixelTimeNbins;
21 const Int_t fBlindPixelChargevsNbins;
22 const Axis_t fBlindPixelTimeFirst;
23 const Axis_t fBlindPixelTimeLast;
24
25 TH1F* fHBlindPixelCharge; // Histogram with the single Phe spectrum
26 TH1F* fHBlindPixelTime; // Variance of summed FADC slices
27 TH1I* fHBlindPixelChargevsN; // Summed Charge vs. Event Nr.
28 TH1F* fHBlindPixelPSD; // Power spectrum density of fHBlindPixelChargevsN
29
30 TF1 *fSinglePheFit;
31 TF1 *fTimeGausFit;
32 TF1 *fSinglePhePedFit;
33
34 Axis_t fBlindPixelChargefirst;
35 Axis_t fBlindPixelChargelast;
36
37 void DrawLegend();
38
39 TPaveText *fFitLegend;
40 Bool_t fFitOK;
41
42 Double_t fLambda;
43 Double_t fMu0;
44 Double_t fMu1;
45 Double_t fSigma0;
46 Double_t fSigma1;
47
48 Double_t fLambdaErr;
49 Double_t fMu0Err;
50 Double_t fMu1Err;
51 Double_t fSigma0Err;
52 Double_t fSigma1Err;
53
54 Double_t fChisquare;
55 Double_t fProb;
56 Int_t fNdf;
57
58 Double_t fMeanTime;
59 Double_t fMeanTimeErr;
60 Double_t fSigmaTime;
61 Double_t fSigmaTimeErr;
62
63 Double_t fLambdaCheck;
64 Double_t fLambdaCheckErr;
65
66public:
67
68 MHCalibrationBlindPixel(const char *name=NULL, const char *title=NULL);
69 ~MHCalibrationBlindPixel();
70
71 void Clear(Option_t *o="");
72 void Reset();
73
74 Bool_t FillBlindPixelCharge(Float_t q);
75 Bool_t FillBlindPixelTime(Float_t t);
76 Bool_t FillBlindPixelChargevsN(Stat_t rq, Int_t t);
77
78
79 //Getters
80 const Double_t GetLambda() const { return fLambda; }
81 const Double_t GetLambdaCheck() const { return fLambdaCheck; }
82 const Double_t GetMu0() const { return fMu0; }
83 const Double_t GetMu1() const { return fMu1; }
84 const Double_t GetSigma0() const { return fSigma0; }
85 const Double_t GetSigma1() const { return fSigma1; }
86
87 const Double_t GetLambdaErr() const { return fLambdaErr; }
88 const Double_t GetLambdaCheckErr() const { return fLambdaCheckErr; }
89 const Double_t GetMu0Err() const { return fMu0Err; }
90 const Double_t GetMu1Err() const { return fMu1Err; }
91 const Double_t GetSigma0Err() const { return fSigma0Err; }
92 const Double_t GetSigma1Err() const { return fSigma1Err; }
93
94 const Double_t GetChiSquare() const { return fChisquare; }
95 const Double_t GetProb() const { return fProb; }
96 const Int_t GetNdf() const { return fNdf; }
97
98 const Double_t GetMeanTime() const { return fMeanTime; }
99 const Double_t GetMeanTimeErr() const { return fMeanTimeErr; }
100 const Double_t GetSigmaTime() const { return fSigmaTime; }
101 const Double_t GetSigmaTimeErr() const { return fSigmaTimeErr; }
102
103 const Bool_t IsFitOK() const { return fFitOK; }
104
105 const TH1I *GetHBlindPixelChargevsN() const { return fHBlindPixelChargevsN; }
106 const TH1F *GetHBlindPixelPSD() const { return fHBlindPixelPSD; }
107
108 // Draws
109 TObject *DrawClone(Option_t *option="") const;
110 void Draw(Option_t *option="");
111
112 // Fits
113 enum FitFunc_t { kEPoisson4, kEPoisson5, kEPoisson6, kEPoisson7, kEPolya, kEMichele };
114
115private:
116 FitFunc_t fFitFunc;
117
118public:
119 Bool_t FitSinglePhe(Axis_t rmin=0, Axis_t rmax=0, Option_t *opt="RL0+Q");
120 Bool_t FitTime(Axis_t rmin=0., Axis_t rmax=0.,Option_t *opt="R0+Q");
121 void ChangeFitFunc(FitFunc_t func) { fFitFunc = func; }
122
123 // Simulation
124 Bool_t SimulateSinglePhe(Double_t lambda,
125 Double_t mu0,Double_t mu1,
126 Double_t sigma0,Double_t sigma1);
127
128 // Others
129 void CutAllEdges();
130
131private:
132
133 const static Double_t fNoWay = 10000000000.0;
134
135 Bool_t InitFit(Axis_t min, Axis_t max);
136 void ExitFit(TF1 *f);
137
138 inline static Double_t fFitFuncMichele(Double_t *x, Double_t *par)
139 {
140
141 Double_t lambda1cat = par[0];
142 Double_t lambda1dyn = par[1];
143 Double_t mu0 = par[2];
144 Double_t mu1cat = par[3];
145 Double_t mu1dyn = par[4];
146 Double_t sigma0 = par[5];
147 Double_t sigma1cat = par[6];
148 Double_t sigma1dyn = par[7];
149
150 Double_t sumcat = 0.;
151 Double_t sumdyn = 0.;
152 Double_t arg = 0.;
153
154 if (mu1cat < mu0)
155 return fNoWay;
156
157 if (sigma1cat < sigma0)
158 return fNoWay;
159
160 // if (sigma1cat < sigma1dyn)
161 // return NoWay;
162
163 //if (mu1cat < mu1dyn)
164 // return NoWay;
165
166 // if (lambda1cat < lambda1dyn)
167 // return NoWay;
168
169 Double_t mu2cat = (2.*mu1cat)-mu0;
170 Double_t mu2dyn = (2.*mu1dyn)-mu0;
171 Double_t mu3cat = (3.*mu1cat)-(2.*mu0);
172 Double_t mu3dyn = (3.*mu1dyn)-(2.*mu0);
173
174 Double_t sigma2cat = TMath::Sqrt((2.*sigma1cat*sigma1cat) - (sigma0*sigma0));
175 Double_t sigma2dyn = TMath::Sqrt((2.*sigma1dyn*sigma1dyn) - (sigma0*sigma0));
176 Double_t sigma3cat = TMath::Sqrt((3.*sigma1cat*sigma1cat) - (2.*sigma0*sigma0));
177 Double_t sigma3dyn = TMath::Sqrt((3.*sigma1dyn*sigma1dyn) - (2.*sigma0*sigma0));
178
179 Double_t lambda2cat = lambda1cat*lambda1cat;
180 Double_t lambda2dyn = lambda1dyn*lambda1dyn;
181 Double_t lambda3cat = lambda2cat*lambda1cat;
182 Double_t lambda3dyn = lambda2dyn*lambda1dyn;
183
184 // k=0:
185 arg = (x[0] - mu0)/sigma0;
186 sumcat = TMath::Exp(-0.5*arg*arg)/sigma0;
187 sumdyn =sumcat;
188
189 // k=1cat:
190 arg = (x[0] - mu1cat)/sigma1cat;
191 sumcat += lambda1cat*TMath::Exp(-0.5*arg*arg)/sigma1cat;
192 // k=1dyn:
193 arg = (x[0] - mu1dyn)/sigma1dyn;
194 sumdyn += lambda1dyn*TMath::Exp(-0.5*arg*arg)/sigma1dyn;
195
196 // k=2cat:
197 arg = (x[0] - mu2cat)/sigma2cat;
198 sumcat += 0.5*lambda2cat*TMath::Exp(-0.5*arg*arg)/sigma2cat;
199 // k=2dyn:
200 arg = (x[0] - mu2dyn)/sigma2dyn;
201 sumdyn += 0.5*lambda2dyn*TMath::Exp(-0.5*arg*arg)/sigma2dyn;
202
203
204 // k=3cat:
205 arg = (x[0] - mu3cat)/sigma3cat;
206 sumcat += 0.1666666667*lambda3cat*TMath::Exp(-0.5*arg*arg)/sigma3cat;
207 // k=3dyn:
208 arg = (x[0] - mu3dyn)/sigma3dyn;
209 sumdyn += 0.1666666667*lambda3dyn*TMath::Exp(-0.5*arg*arg)/sigma3dyn;
210
211 sumcat = TMath::Exp(-1.*lambda1cat)*sumcat;
212 sumdyn = TMath::Exp(-1.*lambda1dyn)*sumdyn;
213
214 return par[8]*(sumcat+sumdyn)/2.;
215
216 }
217
218 inline static Double_t fPoissonKto4(Double_t *x, Double_t *par)
219 {
220
221 Double_t lambda = par[0];
222
223 Double_t sum = 0.;
224 Double_t arg = 0.;
225
226 // Double_t mu0 = 0.;
227 Double_t mu0 = par[1];
228 Double_t mu1 = par[2];
229
230 if (mu1 < mu0)
231 return fNoWay;
232
233 Double_t sigma0 = par[3];
234 Double_t sigma1 = par[4];
235
236 if (sigma1 < sigma0)
237 return fNoWay;
238
239 Double_t mu2 = (2.*mu1)-mu0;
240 Double_t mu3 = (3.*mu1)-(2.*mu0);
241 Double_t mu4 = (4.*mu1)-(3.*mu0);
242
243 Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
244 Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
245 Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
246
247 Double_t lambda2 = lambda*lambda;
248 Double_t lambda3 = lambda2*lambda;
249 Double_t lambda4 = lambda3*lambda;
250
251 // k=0:
252 arg = (x[0] - mu0)/sigma0;
253 sum = TMath::Exp(-0.5*arg*arg)/sigma0;
254
255 // k=1:
256 arg = (x[0] - mu1)/sigma1;
257 sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
258
259 // k=2:
260 arg = (x[0] - mu2)/sigma2;
261 sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
262
263 // k=3:
264 arg = (x[0] - mu3)/sigma3;
265 sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
266
267 // k=4:
268 arg = (x[0] - mu4)/sigma4;
269 sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
270
271 return TMath::Exp(-1.*lambda)*par[5]*sum;
272
273 }
274
275
276 inline static Double_t fPoissonKto5(Double_t *x, Double_t *par)
277 {
278
279 Double_t lambda = par[0];
280
281 Double_t sum = 0.;
282 Double_t arg = 0.;
283
284 Double_t mu0 = par[1];
285 Double_t mu1 = par[2];
286
287 if (mu1 < mu0)
288 return fNoWay;
289
290 Double_t sigma0 = par[3];
291 Double_t sigma1 = par[4];
292
293 if (sigma1 < sigma0)
294 return fNoWay;
295
296
297 Double_t mu2 = (2.*mu1)-mu0;
298 Double_t mu3 = (3.*mu1)-(2.*mu0);
299 Double_t mu4 = (4.*mu1)-(3.*mu0);
300 Double_t mu5 = (5.*mu1)-(4.*mu0);
301
302 Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
303 Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
304 Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
305 Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
306
307 Double_t lambda2 = lambda*lambda;
308 Double_t lambda3 = lambda2*lambda;
309 Double_t lambda4 = lambda3*lambda;
310 Double_t lambda5 = lambda4*lambda;
311
312 // k=0:
313 arg = (x[0] - mu0)/sigma0;
314 sum = TMath::Exp(-0.5*arg*arg)/sigma0;
315
316 // k=1:
317 arg = (x[0] - mu1)/sigma1;
318 sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
319
320 // k=2:
321 arg = (x[0] - mu2)/sigma2;
322 sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
323
324 // k=3:
325 arg = (x[0] - mu3)/sigma3;
326 sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
327
328 // k=4:
329 arg = (x[0] - mu4)/sigma4;
330 sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
331
332 // k=5:
333 arg = (x[0] - mu5)/sigma5;
334 sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
335
336 return TMath::Exp(-1.*lambda)*par[5]*sum;
337
338 }
339
340
341 inline static Double_t fPoissonKto6(Double_t *x, Double_t *par)
342 {
343
344 Double_t lambda = par[0];
345
346 Double_t sum = 0.;
347 Double_t arg = 0.;
348
349 Double_t mu0 = par[1];
350 Double_t mu1 = par[2];
351
352 if (mu1 < mu0)
353 return fNoWay;
354
355 Double_t sigma0 = par[3];
356 Double_t sigma1 = par[4];
357
358 if (sigma1 < sigma0)
359 return fNoWay;
360
361
362 Double_t mu2 = (2.*mu1)-mu0;
363 Double_t mu3 = (3.*mu1)-(2.*mu0);
364 Double_t mu4 = (4.*mu1)-(3.*mu0);
365 Double_t mu5 = (5.*mu1)-(4.*mu0);
366 Double_t mu6 = (6.*mu1)-(5.*mu0);
367
368 Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
369 Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
370 Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
371 Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
372 Double_t sigma6 = TMath::Sqrt((6.*sigma1*sigma1) - (5.*sigma0*sigma0));
373
374 Double_t lambda2 = lambda*lambda;
375 Double_t lambda3 = lambda2*lambda;
376 Double_t lambda4 = lambda3*lambda;
377 Double_t lambda5 = lambda4*lambda;
378 Double_t lambda6 = lambda5*lambda;
379
380 // k=0:
381 arg = (x[0] - mu0)/sigma0;
382 sum = TMath::Exp(-0.5*arg*arg)/sigma0;
383
384 // k=1:
385 arg = (x[0] - mu1)/sigma1;
386 sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
387
388 // k=2:
389 arg = (x[0] - mu2)/sigma2;
390 sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
391
392 // k=3:
393 arg = (x[0] - mu3)/sigma3;
394 sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
395
396 // k=4:
397 arg = (x[0] - mu4)/sigma4;
398 sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
399
400 // k=5:
401 arg = (x[0] - mu5)/sigma5;
402 sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
403
404 // k=6:
405 arg = (x[0] - mu6)/sigma6;
406 sum += 0.001388888888889*lambda6*TMath::Exp(-0.5*arg*arg)/sigma6;
407
408 return TMath::Exp(-1.*lambda)*par[5]*sum;
409
410 }
411
412 inline static Double_t fPolya(Double_t *x, Double_t *par)
413 {
414
415 const Double_t QEcat = 0.247; // mean quantum efficiency
416 const Double_t sqrt2 = 1.4142135623731;
417 const Double_t sqrt3 = 1.7320508075689;
418 const Double_t sqrt4 = 2.;
419
420 const Double_t lambda = par[0]; // mean number of photons
421
422 const Double_t excessPoisson = par[1]; // non-Poissonic noise contribution
423 const Double_t delta1 = par[2]; // amplification first dynode
424 const Double_t delta2 = par[3]; // amplification subsequent dynodes
425
426 const Double_t electronicAmpl = par[4]; // electronic amplification and conversion to FADC charges
427
428 const Double_t pmtAmpl = delta1*delta2*delta2*delta2*delta2*delta2; // total PMT gain
429 const Double_t A = 1. + excessPoisson - QEcat
430 + 1./delta1
431 + 1./delta1/delta2
432 + 1./delta1/delta2/delta2; // variance contributions from PMT and QE
433
434 const Double_t totAmpl = QEcat*pmtAmpl*electronicAmpl; // Total gain and conversion
435
436 const Double_t mu0 = par[7]; // pedestal
437 const Double_t mu1 = totAmpl; // single phe position
438 const Double_t mu2 = 2*totAmpl; // double phe position
439 const Double_t mu3 = 3*totAmpl; // triple phe position
440 const Double_t mu4 = 4*totAmpl; // quadruple phe position
441
442 const Double_t sigma0 = par[5];
443 const Double_t sigma1 = electronicAmpl*pmtAmpl*TMath::Sqrt(QEcat*A);
444 const Double_t sigma2 = sqrt2*sigma1;
445 const Double_t sigma3 = sqrt3*sigma1;
446 const Double_t sigma4 = sqrt4*sigma1;
447
448 const Double_t lambda2 = lambda*lambda;
449 const Double_t lambda3 = lambda2*lambda;
450 const Double_t lambda4 = lambda3*lambda;
451
452 //-- calculate the area----
453 Double_t arg = (x[0] - mu0)/sigma0;
454 Double_t sum = TMath::Exp(-0.5*arg*arg)/sigma0;
455
456 // k=1:
457 arg = (x[0] - mu1)/sigma1;
458 sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
459
460 // k=2:
461 arg = (x[0] - mu2)/sigma2;
462 sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
463
464 // k=3:
465 arg = (x[0] - mu3)/sigma3;
466 sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
467
468 // k=4:
469 arg = (x[0] - mu4)/sigma4;
470 sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
471
472 return TMath::Exp(-1.*lambda)*par[6]*sum;
473 }
474
475
476
477 ClassDef(MHCalibrationBlindPixel, 1) // Histograms from the Calibration Blind Pixel
478};
479
480#endif /* MARS_MHCalibrationBlindPixel */
Note: See TracBrowser for help on using the repository browser.