/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug 11/2003 ! ! Copyright: MAGIC Software Development, 2000-2002 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MHCalibrationPixel // // Performs all the necessary fits to extract the mean number of photons // out of the derived light flux // ////////////////////////////////////////////////////////////////////////////// #include "MHCalibrationPixel.h" #include "MHCalibrationConfig.h" #include #include #include #include #include #include #include #include "MLog.h" #include "MLogManip.h" ClassImp(MHCalibrationPixel); using namespace std; const Int_t MHCalibrationPixel::fChargeNbinsHiGain = 2100; const Int_t MHCalibrationPixel::fChargeNbinsLoGain = 1010; const Int_t MHCalibrationPixel::fChargevsNbins = 5000; const Int_t MHCalibrationPixel::fAbsTimeNbins = 32; const Axis_t MHCalibrationPixel::fAbsTimeFirst = - 0.25; const Axis_t MHCalibrationPixel::fAbsTimeLast = 15.75; const Int_t MHCalibrationPixel::fRelTimeNbins = 900; const Axis_t MHCalibrationPixel::fRelTimeFirst = -13.; const Axis_t MHCalibrationPixel::fRelTimeLast = 13.; const Float_t MHCalibrationPixel::fProbLimit = 0.001; const Int_t MHCalibrationPixel::fNDFLimit = 5; // -------------------------------------------------------------------------- // // Default Constructor. // MHCalibrationPixel::MHCalibrationPixel(const char *name, const char *title) : fPixId(-1), fHivsLoGain(NULL), fHPSD(NULL), fChargeGausFit(NULL), fRelTimeGausFit(NULL), fFitLegend(NULL) { fName = name ? name : "MHCalibrationPixel"; fTitle = title ? title : "Fill the accumulated charges and times of all events and perform fits"; fChargeFirstHiGain = -100.5; fChargeLastHiGain = 1999.5; fChargeFirstLoGain = -100.5; fChargeLastLoGain = 9999.5; // Create a large number of bins, later we will rebin fHChargeHiGain = new TH1F("HChargeHiGain","Distribution of Summed FADC Hi Gain Slices Pixel ", fChargeNbinsHiGain,fChargeFirstHiGain,fChargeLastHiGain); fHChargeLoGain = new TH1F("HChargeLoGain","Distribution of Summed FADC Lo Gain Slices Pixel ", fChargeNbinsLoGain,fChargeFirstLoGain,fChargeLastLoGain); fHChargeLoGain->SetXTitle("Sum FADC Slices (Lo Gain)"); fHChargeHiGain->SetXTitle("Sum FADC Slices (Hi Gain)"); fHChargeLoGain->SetYTitle("Nr. of events"); fHChargeHiGain->SetYTitle("Nr. of events"); fHChargeHiGain->Sumw2(); fHChargeLoGain->Sumw2(); // Absolute Times fHAbsTimeHiGain = new TH1F("HAbsTimeHiGain","Distribution of Absolute Arrival Hi Gain Times Pixel ", fAbsTimeNbins,fAbsTimeFirst,fAbsTimeLast); fHAbsTimeLoGain = new TH1F("HAbsTimeLoGain","Distribution of Absolute Arrival Lo Gain Times Pixel ", fAbsTimeNbins,fAbsTimeFirst,fAbsTimeLast); fHAbsTimeHiGain->SetXTitle("Absolute Arrival Time [Hi Gain FADC slice nr]"); fHAbsTimeLoGain->SetXTitle("Absolute Arrival Time [Lo Gain FADC slice nr]"); fHAbsTimeHiGain->SetYTitle("Nr. of events"); fHAbsTimeLoGain->SetYTitle("Nr. of events"); // Relative Times fHRelTimeHiGain = new TH1F("HRelTimeHiGain","Distribution of Relative Arrival Times High Gain Pixel ", fRelTimeNbins,fRelTimeFirst,fRelTimeLast); fHRelTimeLoGain = new TH1F("HRelTimeLoGain","Distribution of Relative Arrival Time Low Gain Pixel ", fRelTimeNbins,fRelTimeFirst,fRelTimeLast); fHRelTimeHiGain->SetXTitle("Relative Arrival Times [Hi Gain FADC slice nr]"); fHRelTimeLoGain->SetXTitle("Relative Arrival Times [Lo Gain FADC slice nr]"); fHRelTimeHiGain->SetYTitle("Nr. of events"); fHRelTimeLoGain->SetYTitle("Nr. of events"); // We define a reasonable number and later enlarge it if necessary fHChargevsNHiGain = new TH1I("HChargevsNHiGain","Sum of Hi Gain Charges vs. Event Number Pixel ", fChargevsNbins,-0.5,(Axis_t)fChargevsNbins - 0.5); fHChargevsNLoGain = new TH1I("HChargevsNLoGain","Sum of Lo Gain Charges vs. Event Number Pixel ", fChargevsNbins,-0.5,(Axis_t)fChargevsNbins - 0.5); fHChargevsNHiGain->SetXTitle("Event Nr."); fHChargevsNLoGain->SetXTitle("Event Nr."); fHChargevsNHiGain->SetYTitle("Sum of Hi Gain FADC slices"); fHChargevsNLoGain->SetYTitle("Sum of Lo Gain FADC slices"); fHChargeHiGain->SetDirectory(NULL); fHChargeLoGain->SetDirectory(NULL); fHAbsTimeHiGain->SetDirectory(NULL); fHAbsTimeLoGain->SetDirectory(NULL); fHRelTimeHiGain->SetDirectory(NULL); fHRelTimeLoGain->SetDirectory(NULL); fHChargevsNHiGain->SetDirectory(NULL); fHChargevsNLoGain->SetDirectory(NULL); fHiGains = new TArrayF(); fLoGains = new TArrayF(); Clear(); } MHCalibrationPixel::~MHCalibrationPixel() { delete fHChargeHiGain; delete fHAbsTimeHiGain; delete fHRelTimeHiGain; delete fHChargevsNHiGain; delete fHChargeLoGain; delete fHAbsTimeLoGain; delete fHRelTimeLoGain; delete fHChargevsNLoGain; delete fHiGains; delete fLoGains; if (fChargeGausFit) delete fChargeGausFit; if (fRelTimeGausFit) delete fRelTimeGausFit; if (fFitLegend) delete fFitLegend; if (fHivsLoGain) delete fHivsLoGain; } void MHCalibrationPixel::Clear(Option_t *o) { fTotalEntries = 0; fChargeFirstHiGain = -100.5; fChargeLastHiGain = 1999.5; fChargeFirstLoGain = -100.5; fChargeLastLoGain = 9999.5; fChargeChisquare = -1.; fChargeProb = -1.; fChargeNdf = -1; fRelTimeChisquare = -1.; fRelTimeProb = -1.; fRelTimeNdf = -1; fRelTimeMean = -1.; fRelTimeSigma = -1.; fRelTimeLowerFitRangeHiGain = -99.; fRelTimeUpperFitRangeHiGain = -99.; fRelTimeLowerFitRangeLoGain = -99.; fRelTimeUpperFitRangeLoGain = -99.; fAbsTimeFirstHiGain = -1.; fAbsTimeFirstLoGain = -1.; fAbsTimeLastHiGain = -1.; fAbsTimeLastLoGain = -1.; fAbsTimeMean = -1.; fAbsTimeMeanErr = -1.; fAbsTimeRms = -1.; fOffset = 0.; fSlope = 0.; if (fChargeGausFit) delete fChargeGausFit; if (fRelTimeGausFit) delete fRelTimeGausFit; if (fFitLegend) delete fFitLegend; if (fHivsLoGain) delete fHivsLoGain; if (fHPSD) delete fHPSD; CLRBIT(fFlags,kUseLoGain); CLRBIT(fFlags,kChargeFitOK); CLRBIT(fFlags,kTimeFitOK); return; } void MHCalibrationPixel::Reset() { Clear(); fHChargeHiGain->Reset(); fHChargeLoGain->Reset(); fHAbsTimeHiGain->Reset(); fHAbsTimeLoGain->Reset(); fHRelTimeHiGain->Reset(); fHRelTimeLoGain->Reset(); fHChargevsNHiGain->Reset(); fHChargevsNLoGain->Reset(); fHiGains->Reset(); fLoGains->Reset(); } void MHCalibrationPixel::SetUseLoGain(Bool_t b) { if (b) SETBIT(fFlags, kUseLoGain) ; else CLRBIT(fFlags, kUseLoGain); } Bool_t MHCalibrationPixel::IsEmpty() const { return !(fHChargeHiGain->GetEntries() || fHChargeLoGain->GetEntries()); } Bool_t MHCalibrationPixel::IsUseLoGain() const { return TESTBIT(fFlags,kUseLoGain); } Bool_t MHCalibrationPixel::IsChargeFitOK() const { return TESTBIT(fFlags,kChargeFitOK); } Bool_t MHCalibrationPixel::IsTimeFitOK() const { return TESTBIT(fFlags,kTimeFitOK); } Bool_t MHCalibrationPixel::FillChargeLoGain(Float_t q) { return (fHChargeLoGain->Fill(q) > -1); } Bool_t MHCalibrationPixel::FillAbsTimeLoGain(Float_t t) { return (fHAbsTimeLoGain->Fill(t)> -1); } Bool_t MHCalibrationPixel::FillRelTimeLoGain(Float_t t) { return (fHRelTimeLoGain->Fill(t) > -1); } Bool_t MHCalibrationPixel::FillChargevsNLoGain(Float_t q, Int_t n) { return (fHChargevsNLoGain->Fill(n,q) > -1); } Bool_t MHCalibrationPixel::FillChargeHiGain(Float_t q) { return (fHChargeHiGain->Fill(q) > -1); } Bool_t MHCalibrationPixel::FillAbsTimeHiGain(Float_t t) { return (fHAbsTimeHiGain->Fill(t) > -1); } Bool_t MHCalibrationPixel::FillRelTimeHiGain(Float_t t) { return (fHRelTimeHiGain->Fill(t) > -1); } Bool_t MHCalibrationPixel::FillChargevsNHiGain(Float_t q, Int_t n) { return (fHChargevsNHiGain->Fill(n,q) > -1); } void MHCalibrationPixel::ChangeHistId(Int_t id) { // Change only if the names have not yet been changed if (fPixId == -1) { // // Names Hi gain Histograms // fHChargeHiGain->SetName( Form("%s%d",fHChargeHiGain->GetName(), id)); fHAbsTimeHiGain->SetName( Form("%s%d",fHAbsTimeHiGain->GetName(), id)); fHRelTimeHiGain->SetName( Form("%s%d",fHRelTimeHiGain->GetName(), id)); fHChargevsNHiGain->SetName(Form("%s%d",fHChargevsNHiGain->GetName(),id)); // // Title Hi gain Histograms // fHChargeHiGain->SetTitle( Form("%s%d",fHChargeHiGain->GetTitle(), id)); fHAbsTimeHiGain->SetTitle( Form("%s%d",fHAbsTimeHiGain->GetTitle(), id)); fHRelTimeHiGain->SetTitle( Form("%s%d",fHRelTimeHiGain->GetTitle(), id)); fHChargevsNHiGain->SetTitle( Form("%s%d",fHChargevsNHiGain->GetTitle(),id)); // // Names Low Gain Histograms // fHChargeLoGain->SetName( Form("%s%d",fHChargeLoGain->GetName(),id)); fHAbsTimeLoGain->SetName( Form("%s%d",fHAbsTimeLoGain->GetName(),id)); fHRelTimeLoGain->SetName( Form("%s%d",fHRelTimeLoGain->GetName(),id)); fHChargevsNLoGain->SetName( Form("%s%d",fHChargevsNLoGain->GetName(),id)); // // Titles Low Gain Histograms // fHChargeLoGain->SetTitle( Form("%s%d",fHChargeLoGain->GetTitle(),id)); fHAbsTimeLoGain->SetTitle( Form("%s%d",fHAbsTimeLoGain->GetTitle(),id)); fHRelTimeLoGain->SetTitle( Form("%s%d",fHRelTimeLoGain->GetTitle(),id)); fHChargevsNLoGain->SetTitle( Form("%s%d",fHChargevsNLoGain->GetTitle(),id)); fPixId = id; } } Bool_t MHCalibrationPixel::SetupFill(const MParList *plist) { Reset(); return kTRUE; } Bool_t MHCalibrationPixel::UseLoGain() { if (fHChargeHiGain->Integral() > fHChargeLoGain->Integral()) { CLRBIT(fFlags,kUseLoGain); return kFALSE; } else { SETBIT(fFlags,kUseLoGain); return kTRUE; } } Bool_t MHCalibrationPixel::FillPointInGraph(Float_t qhi,Float_t qlo) { fHiGains->Set(++fTotalEntries); fLoGains->Set(fTotalEntries); fHiGains->AddAt(qhi,fTotalEntries-1); fLoGains->AddAt(qlo,fTotalEntries-1); return kTRUE; } // ------------------------------------------------------------------------- // // Draw a legend with the fit results // void MHCalibrationPixel::DrawLegend() { fFitLegend = new TPaveText(0.05,0.05,0.95,0.95); if (IsChargeFitOK()) fFitLegend->SetFillColor(80); else fFitLegend->SetFillColor(2); fFitLegend->SetLabel("Results of the Gauss Fit:"); fFitLegend->SetTextSize(0.05); const TString line1 = Form("Mean: Q_{#mu} = %2.2f #pm %2.2f",fChargeMean,fChargeMeanErr); TText *t1 = fFitLegend->AddText(line1); t1->SetBit(kCanDelete); const TString line4 = Form("Sigma: #sigma_{Q} = %2.2f #pm %2.2f",fChargeSigma,fChargeSigmaErr); TText *t2 = fFitLegend->AddText(line4); t2->SetBit(kCanDelete); const TString line7 = Form("#chi^{2} / N_{dof}: %4.2f / %3i",fChargeChisquare,fChargeNdf); TText *t3 = fFitLegend->AddText(line7); t3->SetBit(kCanDelete); const TString line8 = Form("Probability: %4.3f ",fChargeProb); TText *t4 = fFitLegend->AddText(line8); t4->SetBit(kCanDelete); if (IsChargeFitOK()) { TText *t5 = fFitLegend->AddText("Result of the Fit: OK"); t5->SetBit(kCanDelete); } else { TText *t6 = fFitLegend->AddText("Result of the Fit: NOT OK"); t6->SetBit(kCanDelete); } fFitLegend->SetBit(kCanDelete); fFitLegend->Draw(); } TObject *MHCalibrationPixel::DrawClone(Option_t *option) const { gROOT->SetSelectedPad(NULL); MHCalibrationPixel *newobj = (MHCalibrationPixel*)Clone(); if (!newobj) return 0; newobj->SetBit(kCanDelete); if (strlen(option)) newobj->Draw(option); else newobj->Draw(GetDrawOption()); return newobj; } // ------------------------------------------------------------------------- // // Draw the histogram // void MHCalibrationPixel::Draw(Option_t *opt) { if (!fHivsLoGain) FitHiGainvsLoGain(); gStyle->SetOptFit(0); gStyle->SetOptStat(111111); gROOT->SetSelectedPad(NULL); TCanvas *c = MH::MakeDefCanvas(this,600,900); c->Divide(2,5); c->cd(1); gPad->SetBorderMode(0); gPad->SetTicks(); if (fHChargeHiGain->Integral() > 0) gPad->SetLogy(); fHChargeHiGain->Draw(opt); c->Modified(); c->Update(); if (IsUseLoGain()) { c->cd(2); gPad->SetTicks(); if (fHChargeLoGain->Integral() > 0) gPad->SetLogy(); fHChargeLoGain->Draw(opt); if (fChargeGausFit) { fChargeGausFit->SetLineColor(IsChargeFitOK() ? kGreen : kRed); fChargeGausFit->Draw("same"); } c->Modified(); c->Update(); c->cd(3); gROOT->SetSelectedPad(NULL); gStyle->SetOptFit(); if (fHivsLoGain) fHivsLoGain->Draw("prof"); gPad->Modified(); gPad->Update(); c->cd(4); DrawLegend(); } else { if (fChargeGausFit) { fChargeGausFit->SetLineColor(IsChargeFitOK() ? kGreen : kRed); fChargeGausFit->Draw("same"); } c->cd(2); gPad->SetTicks(); if (fHChargeLoGain->Integral() > 0) gPad->SetLogy(1); fHChargeLoGain->Draw(opt); c->Modified(); c->Update(); c->cd(3); DrawLegend(); c->cd(4); gROOT->SetSelectedPad(NULL); gStyle->SetOptFit(); if (fHivsLoGain) fHivsLoGain->Draw("prof"); gPad->Modified(); gPad->Update(); } c->Modified(); c->Update(); c->cd(5); gStyle->SetOptStat(1111111); gPad->SetTicks(); gPad->SetLogy(0); fHRelTimeHiGain->Draw(opt); c->Modified(); c->Update(); if (IsUseLoGain()) { c->cd(6); gPad->SetTicks(); gPad->SetLogy(0); fHRelTimeLoGain->Draw(opt); c->Modified(); c->Update(); if (fRelTimeGausFit) { fRelTimeGausFit->SetLineColor(IsTimeFitOK() ? kGreen : kRed); fRelTimeGausFit->Draw("same"); } c->Modified(); c->Update(); } else { if (fRelTimeGausFit) { fRelTimeGausFit->SetLineColor(IsTimeFitOK() ? kGreen : kRed); fRelTimeGausFit->Draw("same"); } c->Modified(); c->Update(); c->cd(6); gPad->SetTicks(); gPad->SetLogy(0); fHRelTimeLoGain->Draw(opt); c->Modified(); c->Update(); } c->Modified(); c->Update(); c->cd(7); gPad->SetTicks(); fHAbsTimeHiGain->Draw(opt); c->Modified(); c->Update(); c->cd(8); gPad->SetTicks(); fHAbsTimeLoGain->Draw(opt); c->Modified(); c->Update(); c->cd(9); gPad->SetTicks(); fHChargevsNHiGain->Draw(opt); c->Modified(); c->Update(); c->cd(10); gPad->SetTicks(); fHChargevsNLoGain->Draw(opt); c->Modified(); c->Update(); return; } void MHCalibrationPixel::FitHiGainvsLoGain() { *fLog << inf << "Fit Hi Gain vs Lo Gain " << endl; if (fHivsLoGain) return; if ((!fHiGains) || (!fLoGains) || (fHiGains->GetSize() == 0) || (fLoGains->GetSize() == 0)) return; gStyle->SetOptFit(); fHivsLoGain = new TProfile("HiGainvsLoGain","Plot the High Gain vs. Low Gain",100,0.,1000.,0.,1000.); fHivsLoGain->GetXaxis()->SetTitle("Sum of Charges High Gain"); fHivsLoGain->GetYaxis()->SetTitle("Sum of Charges Low Gain"); TString titleHiLoGain = TString(fHivsLoGain->GetName()); titleHiLoGain += fPixId; fHivsLoGain->SetName(titleHiLoGain.Data()); for (Int_t i=0;iFill(fHiGains->At(i),fLoGains->At(i),1); fHivsLoGain->Fit("pol1","rq","",fHivsLoGain->GetMean()-2.5*fHivsLoGain->GetRMS(), fHivsLoGain->GetMean()+2.5*fHivsLoGain->GetRMS()); fOffset = fHivsLoGain->GetFunction("pol1")->GetParameter(0); fSlope = fHivsLoGain->GetFunction("pol1")->GetParameter(1); } Bool_t MHCalibrationPixel::FitTime(Option_t *option) { if (fRelTimeGausFit) return kFALSE; // // From the absolute time, we only take the mean and RMS // fAbsTimeMean = (Float_t)fHAbsTimeHiGain->GetMean(); fAbsTimeRms = (Float_t)fHAbsTimeHiGain->GetRMS(); fAbsTimeMeanErr = (Float_t)fAbsTimeRms / TMath::Sqrt(fHAbsTimeHiGain->GetEntries()); if (TESTBIT(fFlags,kUseLoGain)) { fAbsTimeMean = fHAbsTimeLoGain->GetMean(); fAbsTimeRms = fHAbsTimeLoGain->GetRMS(); fAbsTimeMeanErr = fAbsTimeRms / TMath::Sqrt(fHAbsTimeLoGain->GetEntries()); } // // Get the fitting ranges // Axis_t rmin = fRelTimeLowerFitRangeHiGain; Axis_t rmax = fRelTimeUpperFitRangeHiGain; TH1F *hist = fHRelTimeHiGain; if (TESTBIT(fFlags,kUseLoGain)) { rmin = fRelTimeLowerFitRangeLoGain; rmax = fRelTimeUpperFitRangeLoGain; hist = fHRelTimeLoGain; } const Stat_t entries = hist->Integral("width"); const Double_t mu_guess = hist->GetBinCenter(hist->GetMaximumBin()); const Double_t sigma_guess = (rmax - rmin)/2.; const Double_t area_guess = 2.*entries/gkSq2Pi/sigma_guess; TString name = TString("GausRelTime"); name += fPixId; fRelTimeGausFit = new TF1(name.Data(),"gaus",rmin,rmax); if (!fRelTimeGausFit) { *fLog << warn << dbginf << "WARNING: Could not create fit function for RelTime fit" << endl; return kFALSE; } fRelTimeGausFit->SetParameters(area_guess,mu_guess,sigma_guess); fRelTimeGausFit->SetParNames("Area","#mu","#sigma"); fRelTimeGausFit->SetParLimits(0,0.,5.*area_guess); fRelTimeGausFit->SetParLimits(1,rmin,rmax); fRelTimeGausFit->SetParLimits(2,0.,(rmax-rmin)); fRelTimeGausFit->SetRange(rmin,rmax); hist->Fit(fRelTimeGausFit,option); // // If the fit does not converge, try another one with smaller bounderies // if (fRelTimeGausFit->GetProb() < 0.001) { rmin = fRelTimeGausFit->GetParameter(1) - 1.5*fRelTimeGausFit->GetParameter(2); rmax = fRelTimeGausFit->GetParameter(1) + 1.5*fRelTimeGausFit->GetParameter(2); fRelTimeGausFit->SetRange(rmin,rmax); hist->Fit(fRelTimeGausFit,option); } fRelTimeChisquare = fRelTimeGausFit->GetChisquare(); fRelTimeNdf = fRelTimeGausFit->GetNDF(); fRelTimeProb = fRelTimeGausFit->GetProb(); fRelTimeMean = fRelTimeGausFit->GetParameter(1); fRelTimeSigma = fRelTimeGausFit->GetParameter(2); fRelTimeMeanErr = fRelTimeGausFit->GetParError(1); if (TMath::IsNaN(fRelTimeMean) || TMath::IsNaN(fRelTimeSigma)) { CLRBIT(fFlags,kTimeFitOK); return kFALSE; } if (TMath::IsNaN(fRelTimeChisquare) || (fRelTimeProb < fProbLimit)) { CLRBIT(fFlags,kTimeFitOK); return kFALSE; } SETBIT(fFlags,kTimeFitOK); return kTRUE; } Bool_t MHCalibrationPixel::FitCharge(Option_t *option) { if (fChargeGausFit) return kFALSE; // // Get the fitting ranges // Axis_t rmin = fChargeFirstHiGain; Axis_t rmax = fChargeLastHiGain; TH1F *hist = fHChargeHiGain; if (TESTBIT(fFlags,kUseLoGain)) { rmin = fChargeFirstLoGain; rmax = fChargeLastLoGain; hist = fHChargeLoGain; } // // First guesses for the fit (should be as close to reality as possible, // const Stat_t entries = hist->Integral("width"); const Double_t mu_guess = hist->GetBinCenter(hist->GetMaximumBin()); const Double_t sigma_guess = (rmax-rmin)/2.; const Double_t area_guess = entries/gkSq2Pi/sigma_guess; fChargeGausFit = new TF1(Form("%s%d","ChargeGausFit",fPixId),"gaus",rmin,rmax); if (!fChargeGausFit) { *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit" << endl; return kFALSE; } fChargeGausFit->SetParameters(area_guess,mu_guess,sigma_guess); fChargeGausFit->SetParNames("Area","#mu","#sigma"); fChargeGausFit->SetParLimits(0,0.,entries); fChargeGausFit->SetParLimits(1,rmin,rmax); fChargeGausFit->SetParLimits(2,0.,rmax-rmin); fChargeGausFit->SetRange(rmin,rmax); hist->Fit(fChargeGausFit,option); // // If we are not able to fit, try once again // if (fChargeGausFit->GetProb() < fProbLimit) { Axis_t rtry = fChargeGausFit->GetParameter(1) - 2.5*fChargeGausFit->GetParameter(2); rmin = (rtry < rmin ? rmin : rtry); rmax = fChargeGausFit->GetParameter(1) + 2.5*fChargeGausFit->GetParameter(2); fChargeGausFit->SetRange(rmin,rmax); hist->Fit(fChargeGausFit,option); } fChargeChisquare = fChargeGausFit->GetChisquare(); fChargeNdf = fChargeGausFit->GetNDF(); fChargeProb = fChargeGausFit->GetProb(); fChargeMean = fChargeGausFit->GetParameter(1); fChargeMeanErr = fChargeGausFit->GetParError(1); fChargeSigma = fChargeGausFit->GetParameter(2); fChargeSigmaErr = fChargeGausFit->GetParError(2); // // The fit result is accepted under condition: // 1) The results are not nan's // 2) The NDF is not smaller than fNDFLimit (5) // 3) The Probability is greater than fProbLimit (default 0.001 == 99.9%) // // Otherwise take means and RMS of the histograms // if ( TMath::IsNaN(fChargeMean) || TMath::IsNaN(fChargeMeanErr) || TMath::IsNaN(fChargeProb) || TMath::IsNaN(fChargeSigma) || TMath::IsNaN(fChargeSigmaErr) || (fChargeNdf < fNDFLimit) || (fChargeProb < fProbLimit) ) { fChargeMean = hist->GetMean(); fChargeMeanErr = hist->GetRMS()/hist->GetEntries(); fChargeSigma = hist->GetRMS(); fChargeSigmaErr = fChargeMeanErr/2.; CLRBIT(fFlags,kChargeFitOK); return kFALSE; } SETBIT(fFlags,kChargeFitOK); return kTRUE; } void MHCalibrationPixel::CutAllEdges() { Int_t nbins = 50; CutEdges(fHChargeHiGain,nbins); fChargeFirstHiGain = fHChargeHiGain->GetBinLowEdge(fHChargeHiGain->GetXaxis()->GetFirst()); fChargeLastHiGain = fHChargeHiGain->GetBinLowEdge(fHChargeHiGain->GetXaxis()->GetLast()) +fHChargeHiGain->GetBinWidth(0); CutEdges(fHChargeLoGain,nbins); fChargeFirstLoGain = fHChargeLoGain->GetBinLowEdge(fHChargeLoGain->GetXaxis()->GetFirst()); fChargeLastLoGain = fHChargeLoGain->GetBinLowEdge(fHChargeLoGain->GetXaxis()->GetLast()) +fHChargeLoGain->GetBinWidth(0); CutEdges(fHRelTimeHiGain,0); fRelTimeLowerFitRangeHiGain = fHRelTimeHiGain->GetBinLowEdge(fHRelTimeHiGain->GetXaxis()->GetFirst()); fRelTimeUpperFitRangeHiGain = fHRelTimeHiGain->GetBinLowEdge(fHRelTimeHiGain->GetXaxis()->GetLast()) +fHRelTimeHiGain->GetBinWidth(0); CutEdges(fHRelTimeLoGain,0); fRelTimeLowerFitRangeLoGain = fHRelTimeLoGain->GetBinLowEdge(fHRelTimeLoGain->GetXaxis()->GetFirst()); fRelTimeUpperFitRangeLoGain = fHRelTimeLoGain->GetBinLowEdge(fHRelTimeLoGain->GetXaxis()->GetLast()) +fHRelTimeLoGain->GetBinWidth(0); CutEdges(fHAbsTimeHiGain,0); fAbsTimeFirstHiGain = fHAbsTimeHiGain->GetBinLowEdge(fHAbsTimeHiGain->GetXaxis()->GetFirst()); fAbsTimeLastHiGain = fHAbsTimeHiGain->GetBinLowEdge(fHAbsTimeHiGain->GetXaxis()->GetLast()) +fHAbsTimeHiGain->GetBinWidth(0); CutEdges(fHAbsTimeLoGain,0); fAbsTimeFirstLoGain = fHAbsTimeLoGain->GetBinLowEdge(fHAbsTimeLoGain->GetXaxis()->GetFirst()); fAbsTimeLastLoGain = fHAbsTimeLoGain->GetBinLowEdge(fHAbsTimeLoGain->GetXaxis()->GetLast()) +fHAbsTimeLoGain->GetBinWidth(0); CutEdges(fHChargevsNHiGain,0); CutEdges(fHChargevsNLoGain,0); } void MHCalibrationPixel::PrintChargeFitResult() { *fLog << all << "Results of the Summed Charges Fit: " << endl; *fLog << all << "Chisquare: " << fChargeChisquare << endl; *fLog << all << "DoF: " << fChargeNdf << endl; *fLog << all << "Probability: " << fChargeProb << endl; *fLog << all << endl; } void MHCalibrationPixel::PrintTimeFitResult() { *fLog << all << "Results of the Time Slices Fit: " << endl; *fLog << all << "Chisquare: " << fRelTimeChisquare << endl; *fLog << all << "Ndf: " << fRelTimeNdf << endl; *fLog << all << "Probability: " << fRelTimeProb << endl; *fLog << all << endl; }