| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 11/2003 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2002
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHGausEvent
|
|---|
| 28 | //
|
|---|
| 29 | // A base class for all kind of event which follow a Gaussian distribution
|
|---|
| 30 | // with time, i.e. observables containing white noise.
|
|---|
| 31 | //
|
|---|
| 32 | // The class provides the basic tools for fitting,
|
|---|
| 33 | // spectrum analysis, etc.
|
|---|
| 34 | //
|
|---|
| 35 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 36 | #include "MHGausEvent.h"
|
|---|
| 37 |
|
|---|
| 38 | #include <TH1.h>
|
|---|
| 39 | #include <TF1.h>
|
|---|
| 40 |
|
|---|
| 41 | #include "MFFT.h"
|
|---|
| 42 | #include "MArray.h"
|
|---|
| 43 |
|
|---|
| 44 | #include "MLog.h"
|
|---|
| 45 | #include "MLogManip.h"
|
|---|
| 46 |
|
|---|
| 47 | ClassImp(MHGausEvent);
|
|---|
| 48 |
|
|---|
| 49 | using namespace std;
|
|---|
| 50 |
|
|---|
| 51 | // --------------------------------------------------------------------------
|
|---|
| 52 | //
|
|---|
| 53 | // Default Constructor.
|
|---|
| 54 | //
|
|---|
| 55 | MHGausEvent::MHGausEvent(const char *name, const char *title)
|
|---|
| 56 | : fHGausHist(NULL), fHPowerProbability(NULL),
|
|---|
| 57 | fFGausFit(NULL), fFExpFit(NULL),
|
|---|
| 58 | fEvents(NULL), fPowerSpectrum(NULL)
|
|---|
| 59 | {
|
|---|
| 60 |
|
|---|
| 61 | fName = name ? name : "MHGausEvent";
|
|---|
| 62 | fTitle = title ? title : "Events which follow a Gaussian distribution";
|
|---|
| 63 |
|
|---|
| 64 | Clear();
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 |
|
|---|
| 68 | MHGausEvent::~MHGausEvent()
|
|---|
| 69 | {
|
|---|
| 70 | Clear();
|
|---|
| 71 |
|
|---|
| 72 | if (fHGausHist)
|
|---|
| 73 | delete fHGausHist;
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | void MHGausEvent::Clear(Option_t *o)
|
|---|
| 79 | {
|
|---|
| 80 |
|
|---|
| 81 | fGausHistBins = 50;
|
|---|
| 82 | fGausHistAxisFirst = 0.;
|
|---|
| 83 | fGausHistAxisLast = 100.;
|
|---|
| 84 |
|
|---|
| 85 | fPowerProbabilityBins = 30;
|
|---|
| 86 |
|
|---|
| 87 | fProbLimit = 0.01;
|
|---|
| 88 | fGausFitOK = kFALSE;
|
|---|
| 89 | fExpFitOK = kFALSE;
|
|---|
| 90 | fOscillating = kFALSE;
|
|---|
| 91 |
|
|---|
| 92 | fMean = 0.;
|
|---|
| 93 | fSigma = 0.;
|
|---|
| 94 | fMeanErr = 0.;
|
|---|
| 95 | fSigmaErr = 0.;
|
|---|
| 96 |
|
|---|
| 97 | fProb = 0.;
|
|---|
| 98 |
|
|---|
| 99 | if (fHPowerProbability)
|
|---|
| 100 | delete fHPowerProbability;
|
|---|
| 101 | if (fFGausFit)
|
|---|
| 102 | delete fFGausFit;
|
|---|
| 103 | if (fEvents)
|
|---|
| 104 | delete fEvents;
|
|---|
| 105 | if (fPowerSpectrum)
|
|---|
| 106 | delete fPowerSpectrum;
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 | void MHGausEvent::Reset()
|
|---|
| 111 | {
|
|---|
| 112 |
|
|---|
| 113 | Clear();
|
|---|
| 114 | fHGausHist->Reset();
|
|---|
| 115 |
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | const Double_t MHGausEvent::GetChiSquare() const
|
|---|
| 119 | {
|
|---|
| 120 | return ( fFGausFit ? fFGausFit->GetChisquare() : 0.);
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | const Int_t MHGausEvent::GetNdf() const
|
|---|
| 124 | {
|
|---|
| 125 | return ( fFGausFit ? fFGausFit->GetNDF() : 0);
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 |
|
|---|
| 129 | const Double_t MHGausEvent::GetExpChiSquare() const
|
|---|
| 130 | {
|
|---|
| 131 | return ( fFExpFit ? fFExpFit->GetChisquare() : 0.);
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 |
|
|---|
| 135 | const Int_t MHGausEvent::GetExpNdf() const
|
|---|
| 136 | {
|
|---|
| 137 | return ( fFExpFit ? fFExpFit->GetNDF() : 0);
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | const Double_t MHGausEvent::GetExpProb() const
|
|---|
| 141 | {
|
|---|
| 142 | return ( fFExpFit ? fFExpFit->GetProb() : 0.);
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | const Double_t MHGausEvent::GetOffset() const
|
|---|
| 146 | {
|
|---|
| 147 | return ( fFExpFit ? fFExpFit->GetParameter(0) : 0.);
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | const Double_t MHGausEvent::GetSlope() const
|
|---|
| 151 | {
|
|---|
| 152 | return ( fFExpFit ? fFExpFit->GetParameter(1) : 0.);
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 |
|
|---|
| 156 |
|
|---|
| 157 | Bool_t MHGausEvent::CheckOscillations()
|
|---|
| 158 | {
|
|---|
| 159 |
|
|---|
| 160 | if (fFExpFit)
|
|---|
| 161 | return IsOscillating();
|
|---|
| 162 |
|
|---|
| 163 | if (!fEvents)
|
|---|
| 164 | return kFALSE;
|
|---|
| 165 |
|
|---|
| 166 | //
|
|---|
| 167 | // The number of entries HAS to be a potence of 2,
|
|---|
| 168 | // so we can only cut out from the last potence of 2 to the rest.
|
|---|
| 169 | // Another possibility would be to fill everything with
|
|---|
| 170 | // zeros, but that gives a low frequency peak, which we would
|
|---|
| 171 | // have to cut out later again.
|
|---|
| 172 | //
|
|---|
| 173 | // So, we have to live with the possibility that at the end
|
|---|
| 174 | // of the calibration run, something has happened without noticing
|
|---|
| 175 | // it...
|
|---|
| 176 | //
|
|---|
| 177 |
|
|---|
| 178 | // This cuts only the non-used zero's, but MFFT will later cut the rest
|
|---|
| 179 | MArray::StripZeros(*fEvents);
|
|---|
| 180 |
|
|---|
| 181 | MFFT fourier;
|
|---|
| 182 |
|
|---|
| 183 | fPowerSpectrum = fourier.PowerSpectrumDensity(fEvents);
|
|---|
| 184 | fHPowerProbability = ProjectArray(*fPowerSpectrum, fPowerProbabilityBins,
|
|---|
| 185 | "PowerProbability",
|
|---|
| 186 | "Probability of Power occurrance");
|
|---|
| 187 | //
|
|---|
| 188 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 189 | //
|
|---|
| 190 | const Double_t xmax = fHPowerProbability->GetXaxis()->GetXmax();
|
|---|
| 191 |
|
|---|
| 192 | fFExpFit = new TF1("FExpFit","exp([0]-[1]*x)",0.,xmax);
|
|---|
| 193 |
|
|---|
| 194 | const Double_t slope_guess = (TMath::Log(fHPowerProbability->GetEntries())+1.)/xmax;
|
|---|
| 195 | const Double_t offset_guess = slope_guess*xmax;
|
|---|
| 196 |
|
|---|
| 197 | fFExpFit->SetParameters(offset_guess, slope_guess);
|
|---|
| 198 | fFExpFit->SetParNames("Offset","Slope");
|
|---|
| 199 | fFExpFit->SetParLimits(0,offset_guess/2.,2.*offset_guess);
|
|---|
| 200 | fFExpFit->SetParLimits(1,slope_guess/1.5,1.5*slope_guess);
|
|---|
| 201 | fFExpFit->SetRange(0.,xmax);
|
|---|
| 202 |
|
|---|
| 203 | fHPowerProbability->Fit(fFExpFit,"RQL0");
|
|---|
| 204 |
|
|---|
| 205 | if (GetExpProb() < fProbLimit)
|
|---|
| 206 | fExpFitOK = kFALSE;
|
|---|
| 207 |
|
|---|
| 208 | // For the moment, this is the only check, later we can add more...
|
|---|
| 209 | fOscillating = fExpFitOK;
|
|---|
| 210 |
|
|---|
| 211 | return fOscillating;
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 |
|
|---|
| 215 | Bool_t MHGausEvent::IsEmpty() const
|
|---|
| 216 | {
|
|---|
| 217 | return !(fHGausHist->GetEntries());
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | Bool_t MHGausEvent::IsOscillating()
|
|---|
| 221 | {
|
|---|
| 222 |
|
|---|
| 223 | if (fFExpFit)
|
|---|
| 224 | return fOscillating;
|
|---|
| 225 |
|
|---|
| 226 | return CheckOscillations();
|
|---|
| 227 |
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 |
|
|---|
| 231 | Bool_t MHGausEvent::FitGaus(Option_t *option)
|
|---|
| 232 | {
|
|---|
| 233 |
|
|---|
| 234 | if (IsGausFitOK())
|
|---|
| 235 | return kTRUE;
|
|---|
| 236 |
|
|---|
| 237 | //
|
|---|
| 238 | // First, cut the edges which contain only zeros and rebin
|
|---|
| 239 | // to about 20 bins.
|
|---|
| 240 | //
|
|---|
| 241 | // (ATTENTION: The Chisquare method is more sensitive,
|
|---|
| 242 | // the _less_ bins, you have!)
|
|---|
| 243 | //
|
|---|
| 244 | Int_t newbins = 20;
|
|---|
| 245 | MH::CutEdges(fHGausHist,newbins);
|
|---|
| 246 |
|
|---|
| 247 | //
|
|---|
| 248 | // Get the fitting ranges
|
|---|
| 249 | //
|
|---|
| 250 | Axis_t rmin = fHGausHist->GetXaxis()->GetFirst();
|
|---|
| 251 | Axis_t rmax = fHGausHist->GetXaxis()->GetLast();
|
|---|
| 252 |
|
|---|
| 253 | //
|
|---|
| 254 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 255 | //
|
|---|
| 256 | const Stat_t entries = fHGausHist->Integral("width");
|
|---|
| 257 | const Double_t mu_guess = fHGausHist->GetBinCenter(fHGausHist->GetMaximumBin());
|
|---|
| 258 | const Double_t sigma_guess = (rmax-rmin)/2.;
|
|---|
| 259 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
|---|
| 260 |
|
|---|
| 261 | fFGausFit = new TF1("GausFit","gaus",rmin,rmax);
|
|---|
| 262 |
|
|---|
| 263 | if (!fFGausFit)
|
|---|
| 264 | {
|
|---|
| 265 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit" << endl;
|
|---|
| 266 | return kFALSE;
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | fFGausFit->SetParameters(area_guess,mu_guess,sigma_guess);
|
|---|
| 270 | fFGausFit->SetParNames("Area","#mu","#sigma");
|
|---|
| 271 | fFGausFit->SetParLimits(0,0.,entries);
|
|---|
| 272 | fFGausFit->SetParLimits(1,rmin,rmax);
|
|---|
| 273 | fFGausFit->SetParLimits(2,0.,rmax-rmin);
|
|---|
| 274 | fFGausFit->SetRange(rmin,rmax);
|
|---|
| 275 |
|
|---|
| 276 | fHGausHist->Fit(fFGausFit,option);
|
|---|
| 277 |
|
|---|
| 278 | fMean = fFGausFit->GetParameter(1);
|
|---|
| 279 | fSigma = fFGausFit->GetParameter(2);
|
|---|
| 280 | fMeanErr = fFGausFit->GetParError(1);
|
|---|
| 281 | fSigmaErr = fFGausFit->GetParError(2);
|
|---|
| 282 |
|
|---|
| 283 | fProb = fFGausFit->GetProb();
|
|---|
| 284 | //
|
|---|
| 285 | // The fit result is accepted under condition:
|
|---|
| 286 | // 1) The results are not nan's
|
|---|
| 287 | // 2) The NDF is not smaller than fNDFLimit (5)
|
|---|
| 288 | // 3) The Probability is greater than fProbLimit (default 0.001 == 99.9%)
|
|---|
| 289 | //
|
|---|
| 290 | if ( TMath::IsNaN(fMean)
|
|---|
| 291 | || TMath::IsNaN(fMeanErr)
|
|---|
| 292 | || TMath::IsNaN(fProb)
|
|---|
| 293 | || TMath::IsNaN(fSigma)
|
|---|
| 294 | || TMath::IsNaN(fSigmaErr) )
|
|---|
| 295 | {
|
|---|
| 296 | fGausFitOK = kFALSE;
|
|---|
| 297 | return kFALSE;
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | fGausFitOK = kTRUE;
|
|---|
| 301 | return kTRUE;
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 | void MHGausEvent::Print(const Option_t *o) const
|
|---|
| 305 | {
|
|---|
| 306 |
|
|---|
| 307 | *fLog << all << endl;
|
|---|
| 308 | *fLog << all << "Results of the Gauss Fit: " << endl;
|
|---|
| 309 | *fLog << all << "Mean: " << GetMean() << endl;
|
|---|
| 310 | *fLog << all << "Sigma: " << GetSigma() << endl;
|
|---|
| 311 | *fLog << all << "Chisquare: " << GetChiSquare() << endl;
|
|---|
| 312 | *fLog << all << "DoF: " << GetNdf() << endl;
|
|---|
| 313 | *fLog << all << "Probability: " << GetProb() << endl;
|
|---|
| 314 | *fLog << all << endl;
|
|---|
| 315 |
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|