| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHGausEvents
|
|---|
| 28 | //
|
|---|
| 29 | // A base class for events which are believed follow a Gaussian distribution
|
|---|
| 30 | // with time, (e.g. calibration events, observables containing white noise, etc.)
|
|---|
| 31 | //
|
|---|
| 32 | // MHGausEvents derives from MH, thus all features of MH can be used by a class
|
|---|
| 33 | // deriving from MHGausEvents, especially the filling functions.
|
|---|
| 34 | //
|
|---|
| 35 | // The central objects are:
|
|---|
| 36 | //
|
|---|
| 37 | // 1) The TH1F fHGausHist:
|
|---|
| 38 | // ==============================
|
|---|
| 39 | //
|
|---|
| 40 | // It is created with a default name and title and resides in directory NULL.
|
|---|
| 41 | // - Any class deriving from MHGausEvents needs to apply a binning to fHGausHist
|
|---|
| 42 | // (e.g. with the function TH1F::SetBins(..) )
|
|---|
| 43 | // - The histogram is filled with the functions FillHist or FillHistAndArray.
|
|---|
| 44 | // - The histogram can be fitted with the function FitGaus(). This involves stripping
|
|---|
| 45 | // of all zeros at the lower and upper end of the histogram and re-binning to
|
|---|
| 46 | // a new number of bins, specified in the variable fBinsAfterStripping.
|
|---|
| 47 | // - The fit result's probability is compared to a reference probability fProbLimit
|
|---|
| 48 | // The NDF is compared to fNDFLimit and a check is made whether results are NaNs.
|
|---|
| 49 | // Accordingly the flag GausFitOK is set.
|
|---|
| 50 | //
|
|---|
| 51 | // 2) The TArrayF fEvents:
|
|---|
| 52 | // ==========================
|
|---|
| 53 | //
|
|---|
| 54 | // It is created with 0 entries and not expanded unless FillArray or FillHistAndArray is called.
|
|---|
| 55 | // - A first call to FillArray or FillHistAndArray initializes fEvents by default to 512 entries.
|
|---|
| 56 | // - Any later call to FillArray or FillHistAndArray fills up the array. Reaching the limit,
|
|---|
| 57 | // the array is expanded by a factor 2.
|
|---|
| 58 | // - The array can be fourier-transformed into the array fPowerSpectrum. Note that any FFT accepts
|
|---|
| 59 | // only number of events which are a power of 2. Thus, fEvents is cut to the next power of 2 smaller
|
|---|
| 60 | // than its actual number of entries. You might lose information at the end of your analysis.
|
|---|
| 61 | // - Calling the function CreateFourierTransform creates the array fPowerSpectrum and its projection
|
|---|
| 62 | // fHPowerProbability which in turn is fit to an exponential.
|
|---|
| 63 | // - The fit result's probability is compared to a referenc probability fProbLimit
|
|---|
| 64 | // and accordingly the flag ExpFitOK is set.
|
|---|
| 65 | // - The flag FourierSpectrumOK is set accordingly to ExpFitOK. Later, a closer check will be
|
|---|
| 66 | // installed.
|
|---|
| 67 | // - You can display all arrays by calls to: CreateGraphEvents() and CreateGraphPowerSpectrum() and
|
|---|
| 68 | // successive calls to the corresponding Getters.
|
|---|
| 69 | //
|
|---|
| 70 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 71 | #include "MHGausEvents.h"
|
|---|
| 72 |
|
|---|
| 73 | #include <TH1.h>
|
|---|
| 74 | #include <TF1.h>
|
|---|
| 75 | #include <TGraph.h>
|
|---|
| 76 | #include <TPad.h>
|
|---|
| 77 | #include <TVirtualPad.h>
|
|---|
| 78 | #include <TCanvas.h>
|
|---|
| 79 | #include <TStyle.h>
|
|---|
| 80 |
|
|---|
| 81 | #include "MFFT.h"
|
|---|
| 82 | #include "MArray.h"
|
|---|
| 83 |
|
|---|
| 84 | #include "MH.h"
|
|---|
| 85 |
|
|---|
| 86 | #include "MLog.h"
|
|---|
| 87 | #include "MLogManip.h"
|
|---|
| 88 |
|
|---|
| 89 | ClassImp(MHGausEvents);
|
|---|
| 90 |
|
|---|
| 91 | using namespace std;
|
|---|
| 92 |
|
|---|
| 93 | const Float_t MHGausEvents::fgProbLimit = 0.005;
|
|---|
| 94 | const Int_t MHGausEvents::fgNDFLimit = 2;
|
|---|
| 95 | const Int_t MHGausEvents::fgPowerProbabilityBins = 20;
|
|---|
| 96 | const Int_t MHGausEvents::fgBinsAfterStripping = 40;
|
|---|
| 97 | // --------------------------------------------------------------------------
|
|---|
| 98 | //
|
|---|
| 99 | // Default Constructor.
|
|---|
| 100 | //
|
|---|
| 101 | MHGausEvents::MHGausEvents(const char *name, const char *title)
|
|---|
| 102 | : fHPowerProbability(NULL),
|
|---|
| 103 | fPowerSpectrum(NULL),
|
|---|
| 104 | fGraphEvents(NULL), fGraphPowerSpectrum(NULL),
|
|---|
| 105 | fHGausHist(), fEvents(0),
|
|---|
| 106 | fFGausFit(NULL), fFExpFit(NULL)
|
|---|
| 107 | {
|
|---|
| 108 |
|
|---|
| 109 | fName = name ? name : "MHGausEvents";
|
|---|
| 110 | fTitle = title ? title : "Events with expected Gaussian distributions";
|
|---|
| 111 |
|
|---|
| 112 | Clear();
|
|---|
| 113 |
|
|---|
| 114 | SetPowerProbabilityBins();
|
|---|
| 115 | SetEventFrequency();
|
|---|
| 116 | SetProbLimit();
|
|---|
| 117 | SetNDFLimit();
|
|---|
| 118 | SetBinsAfterStripping();
|
|---|
| 119 |
|
|---|
| 120 | fHGausHist.SetName("HGausHist");
|
|---|
| 121 | fHGausHist.SetTitle("Histogram of Events with Gaussian Distribution");
|
|---|
| 122 | // important, other ROOT will not draw the axes:
|
|---|
| 123 | fHGausHist.UseCurrentStyle();
|
|---|
| 124 | fHGausHist.SetDirectory(NULL);
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 |
|
|---|
| 128 |
|
|---|
| 129 |
|
|---|
| 130 | MHGausEvents::~MHGausEvents()
|
|---|
| 131 | {
|
|---|
| 132 |
|
|---|
| 133 | // delete histograms
|
|---|
| 134 | if (fHPowerProbability)
|
|---|
| 135 | delete fHPowerProbability;
|
|---|
| 136 |
|
|---|
| 137 | // delete fits
|
|---|
| 138 | if (fFGausFit)
|
|---|
| 139 | delete fFGausFit;
|
|---|
| 140 | if (fFExpFit)
|
|---|
| 141 | delete fFExpFit;
|
|---|
| 142 |
|
|---|
| 143 | // delete arrays
|
|---|
| 144 | if (fPowerSpectrum)
|
|---|
| 145 | delete fPowerSpectrum;
|
|---|
| 146 |
|
|---|
| 147 | // delete graphs
|
|---|
| 148 | if (fGraphEvents)
|
|---|
| 149 | delete fGraphEvents;
|
|---|
| 150 | if (fGraphPowerSpectrum)
|
|---|
| 151 | delete fGraphPowerSpectrum;
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 |
|
|---|
| 155 | void MHGausEvents::Clear(Option_t *o)
|
|---|
| 156 | {
|
|---|
| 157 |
|
|---|
| 158 | SetGausFitOK ( kFALSE );
|
|---|
| 159 | SetExpFitOK ( kFALSE );
|
|---|
| 160 | SetFourierSpectrumOK( kFALSE );
|
|---|
| 161 |
|
|---|
| 162 | fMean = 0.;
|
|---|
| 163 | fSigma = 0.;
|
|---|
| 164 | fMeanErr = 0.;
|
|---|
| 165 | fSigmaErr = 0.;
|
|---|
| 166 | fProb = 0.;
|
|---|
| 167 |
|
|---|
| 168 | fCurrentSize = 0;
|
|---|
| 169 |
|
|---|
| 170 | if (fHPowerProbability)
|
|---|
| 171 | delete fHPowerProbability;
|
|---|
| 172 |
|
|---|
| 173 | // delete fits
|
|---|
| 174 | if (fFGausFit)
|
|---|
| 175 | delete fFGausFit;
|
|---|
| 176 | if (fFExpFit)
|
|---|
| 177 | delete fFExpFit;
|
|---|
| 178 |
|
|---|
| 179 | // delete arrays
|
|---|
| 180 | if (fPowerSpectrum)
|
|---|
| 181 | delete fPowerSpectrum;
|
|---|
| 182 |
|
|---|
| 183 | // delete graphs
|
|---|
| 184 | if (fGraphEvents)
|
|---|
| 185 | delete fGraphEvents;
|
|---|
| 186 | if (fGraphPowerSpectrum)
|
|---|
| 187 | delete fGraphPowerSpectrum;
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 |
|
|---|
| 191 | void MHGausEvents::Reset()
|
|---|
| 192 | {
|
|---|
| 193 |
|
|---|
| 194 | Clear();
|
|---|
| 195 | fHGausHist.Reset();
|
|---|
| 196 | fEvents.Set(0);
|
|---|
| 197 |
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 | Bool_t MHGausEvents::FillHistAndArray(const Float_t f)
|
|---|
| 202 | {
|
|---|
| 203 |
|
|---|
| 204 | FillArray(f);
|
|---|
| 205 | return FillHist(f);
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | Bool_t MHGausEvents::FillHist(const Float_t f)
|
|---|
| 209 | {
|
|---|
| 210 |
|
|---|
| 211 | if (fHGausHist.Fill(f) == -1)
|
|---|
| 212 | return kFALSE;
|
|---|
| 213 |
|
|---|
| 214 | return kTRUE;
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | void MHGausEvents::FillArray(const Float_t f)
|
|---|
| 218 | {
|
|---|
| 219 | if (fEvents.GetSize() == 0)
|
|---|
| 220 | fEvents.Set(512);
|
|---|
| 221 |
|
|---|
| 222 | if (fCurrentSize >= fEvents.GetSize())
|
|---|
| 223 | fEvents.Set(fEvents.GetSize()*2);
|
|---|
| 224 |
|
|---|
| 225 | fEvents.AddAt(f,fCurrentSize++);
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | const Double_t MHGausEvents::GetChiSquare() const
|
|---|
| 230 | {
|
|---|
| 231 | return ( fFGausFit ? fFGausFit->GetChisquare() : 0.);
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | const Int_t MHGausEvents::GetNdf() const
|
|---|
| 235 | {
|
|---|
| 236 | return ( fFGausFit ? fFGausFit->GetNDF() : 0);
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 |
|
|---|
| 240 | const Double_t MHGausEvents::GetExpChiSquare() const
|
|---|
| 241 | {
|
|---|
| 242 | return ( fFExpFit ? fFExpFit->GetChisquare() : 0.);
|
|---|
| 243 | }
|
|---|
| 244 |
|
|---|
| 245 |
|
|---|
| 246 | const Int_t MHGausEvents::GetExpNdf() const
|
|---|
| 247 | {
|
|---|
| 248 | return ( fFExpFit ? fFExpFit->GetNDF() : 0);
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 |
|
|---|
| 252 | const Double_t MHGausEvents::GetExpProb() const
|
|---|
| 253 | {
|
|---|
| 254 | return ( fFExpFit ? fFExpFit->GetProb() : 0.);
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 | const Double_t MHGausEvents::GetOffset() const
|
|---|
| 259 | {
|
|---|
| 260 | return ( fFExpFit ? fFExpFit->GetParameter(0) : 0.);
|
|---|
| 261 | }
|
|---|
| 262 |
|
|---|
| 263 |
|
|---|
| 264 | const Double_t MHGausEvents::GetSlope() const
|
|---|
| 265 | {
|
|---|
| 266 | return ( fFExpFit ? fFExpFit->GetParameter(1) : 0.);
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 |
|
|---|
| 270 | const Bool_t MHGausEvents::IsEmpty() const
|
|---|
| 271 | {
|
|---|
| 272 | return !(fHGausHist.GetEntries());
|
|---|
| 273 | }
|
|---|
| 274 |
|
|---|
| 275 |
|
|---|
| 276 | const Bool_t MHGausEvents::IsFourierSpectrumOK() const
|
|---|
| 277 | {
|
|---|
| 278 | return TESTBIT(fFlags,kFourierSpectrumOK);
|
|---|
| 279 | }
|
|---|
| 280 |
|
|---|
| 281 |
|
|---|
| 282 | const Bool_t MHGausEvents::IsGausFitOK() const
|
|---|
| 283 | {
|
|---|
| 284 | return TESTBIT(fFlags,kGausFitOK);
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 |
|
|---|
| 288 | const Bool_t MHGausEvents::IsExpFitOK() const
|
|---|
| 289 | {
|
|---|
| 290 | return TESTBIT(fFlags,kExpFitOK);
|
|---|
| 291 | }
|
|---|
| 292 |
|
|---|
| 293 |
|
|---|
| 294 | // -------------------------------------------------------------------
|
|---|
| 295 | //
|
|---|
| 296 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 297 | //
|
|---|
| 298 | void MHGausEvents::SetGausFitOK(const Bool_t b)
|
|---|
| 299 | {
|
|---|
| 300 | b ? SETBIT(fFlags,kGausFitOK) : CLRBIT(fFlags,kGausFitOK);
|
|---|
| 301 |
|
|---|
| 302 | }
|
|---|
| 303 | // -------------------------------------------------------------------
|
|---|
| 304 | //
|
|---|
| 305 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 306 | //
|
|---|
| 307 | void MHGausEvents::SetExpFitOK(const Bool_t b)
|
|---|
| 308 | {
|
|---|
| 309 |
|
|---|
| 310 | b ? SETBIT(fFlags,kExpFitOK) : CLRBIT(fFlags,kExpFitOK);
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 | // -------------------------------------------------------------------
|
|---|
| 314 | //
|
|---|
| 315 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 316 | //
|
|---|
| 317 | void MHGausEvents::SetFourierSpectrumOK(const Bool_t b)
|
|---|
| 318 | {
|
|---|
| 319 |
|
|---|
| 320 | b ? SETBIT(fFlags,kFourierSpectrumOK) : CLRBIT(fFlags,kFourierSpectrumOK);
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 |
|
|---|
| 324 | // -------------------------------------------------------------------
|
|---|
| 325 | //
|
|---|
| 326 | // Create the fourier spectrum using the class MFFT.
|
|---|
| 327 | // The result is projected into a histogram and fitted by an exponential
|
|---|
| 328 | //
|
|---|
| 329 | void MHGausEvents::CreateFourierSpectrum()
|
|---|
| 330 | {
|
|---|
| 331 |
|
|---|
| 332 | if (fFExpFit)
|
|---|
| 333 | return;
|
|---|
| 334 |
|
|---|
| 335 | //
|
|---|
| 336 | // The number of entries HAS to be a potence of 2,
|
|---|
| 337 | // so we can only cut out from the last potence of 2 to the rest.
|
|---|
| 338 | // Another possibility would be to fill everything with
|
|---|
| 339 | // zeros, but that gives a low frequency peak, which we would
|
|---|
| 340 | // have to cut out later again.
|
|---|
| 341 | //
|
|---|
| 342 | // So, we have to live with the possibility that at the end
|
|---|
| 343 | // of the calibration run, something has happened without noticing
|
|---|
| 344 | // it...
|
|---|
| 345 | //
|
|---|
| 346 |
|
|---|
| 347 | // This cuts only the non-used zero's, but MFFT will later cut the rest
|
|---|
| 348 | MArray::StripZeros(fEvents);
|
|---|
| 349 |
|
|---|
| 350 | MFFT fourier;
|
|---|
| 351 |
|
|---|
| 352 | fPowerSpectrum = fourier.PowerSpectrumDensity(&fEvents);
|
|---|
| 353 | fHPowerProbability = ProjectArray(*fPowerSpectrum, fPowerProbabilityBins,
|
|---|
| 354 | "PowerProbability",
|
|---|
| 355 | "Probability of Power occurrance");
|
|---|
| 356 | fHPowerProbability->SetXTitle("P(f)");
|
|---|
| 357 | fHPowerProbability->SetDirectory(NULL);
|
|---|
| 358 | //
|
|---|
| 359 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 360 | //
|
|---|
| 361 | const Double_t xmax = fHPowerProbability->GetXaxis()->GetXmax();
|
|---|
| 362 |
|
|---|
| 363 | fFExpFit = new TF1("FExpFit","exp([0]-[1]*x)",0.,xmax);
|
|---|
| 364 |
|
|---|
| 365 | const Double_t slope_guess = (TMath::Log(fHPowerProbability->GetEntries())+1.)/xmax;
|
|---|
| 366 | const Double_t offset_guess = slope_guess*xmax;
|
|---|
| 367 |
|
|---|
| 368 | fFExpFit->SetParameters(offset_guess, slope_guess);
|
|---|
| 369 | fFExpFit->SetParNames("Offset","Slope");
|
|---|
| 370 | fFExpFit->SetParLimits(0,offset_guess/2.,2.*offset_guess);
|
|---|
| 371 | fFExpFit->SetParLimits(1,slope_guess/1.5,1.5*slope_guess);
|
|---|
| 372 | fFExpFit->SetRange(0.,xmax);
|
|---|
| 373 |
|
|---|
| 374 | fHPowerProbability->Fit(fFExpFit,"RQL0");
|
|---|
| 375 |
|
|---|
| 376 | if (GetExpProb() > fProbLimit)
|
|---|
| 377 | SetExpFitOK(kTRUE);
|
|---|
| 378 |
|
|---|
| 379 | //
|
|---|
| 380 | // For the moment, this is the only check, later we can add more...
|
|---|
| 381 | //
|
|---|
| 382 | SetFourierSpectrumOK(IsExpFitOK());
|
|---|
| 383 |
|
|---|
| 384 | return;
|
|---|
| 385 | }
|
|---|
| 386 |
|
|---|
| 387 | // -------------------------------------------------------------------
|
|---|
| 388 | //
|
|---|
| 389 | // Fit fGausHist with a Gaussian after stripping zeros from both ends
|
|---|
| 390 | // and rebinned to the number of bins specified in fBinsAfterStripping
|
|---|
| 391 | //
|
|---|
| 392 | // The fit results are retrieved and stored in class-own variables.
|
|---|
| 393 | //
|
|---|
| 394 | // A flag IsGausFitOK() is set according to whether the fit probability
|
|---|
| 395 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than
|
|---|
| 396 | // fNDFLimit and whether results are NaNs.
|
|---|
| 397 | //
|
|---|
| 398 | Bool_t MHGausEvents::FitGaus(Option_t *option, const Double_t xmin, const Double_t xmax)
|
|---|
| 399 | {
|
|---|
| 400 |
|
|---|
| 401 | if (IsGausFitOK())
|
|---|
| 402 | return kTRUE;
|
|---|
| 403 |
|
|---|
| 404 | //
|
|---|
| 405 | // First, strip the zeros from the edges which contain only zeros and rebin
|
|---|
| 406 | // to about fBinsAfterStripping bins.
|
|---|
| 407 | //
|
|---|
| 408 | // (ATTENTION: The Chisquare method is more sensitive,
|
|---|
| 409 | // the _less_ bins, you have!)
|
|---|
| 410 | //
|
|---|
| 411 | StripZeros(&fHGausHist,fBinsAfterStripping);
|
|---|
| 412 |
|
|---|
| 413 | //
|
|---|
| 414 | // Get the fitting ranges
|
|---|
| 415 | //
|
|---|
| 416 | Axis_t rmin = (xmin==0.) && (xmax==0.) ? fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst()) : xmin;
|
|---|
| 417 | Axis_t rmax = (xmin==0.) && (xmax==0.) ? fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) : xmax;
|
|---|
| 418 |
|
|---|
| 419 | //
|
|---|
| 420 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 421 | //
|
|---|
| 422 | const Stat_t entries = fHGausHist.Integral("width");
|
|---|
| 423 | const Double_t mu_guess = fHGausHist.GetBinCenter(fHGausHist.GetMaximumBin());
|
|---|
| 424 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
|---|
| 425 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
|---|
| 426 |
|
|---|
| 427 | fFGausFit = new TF1("GausFit","gaus",rmin,rmax);
|
|---|
| 428 |
|
|---|
| 429 | if (!fFGausFit)
|
|---|
| 430 | {
|
|---|
| 431 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit" << endl;
|
|---|
| 432 | return kFALSE;
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | fFGausFit->SetParameters(area_guess,mu_guess,sigma_guess);
|
|---|
| 436 | fFGausFit->SetParNames("Area","#mu","#sigma");
|
|---|
| 437 | fFGausFit->SetParLimits(0,0.,area_guess*1.5);
|
|---|
| 438 | fFGausFit->SetParLimits(1,rmin,rmax);
|
|---|
| 439 | fFGausFit->SetParLimits(2,0.,rmax-rmin);
|
|---|
| 440 | fFGausFit->SetRange(rmin,rmax);
|
|---|
| 441 |
|
|---|
| 442 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 443 |
|
|---|
| 444 |
|
|---|
| 445 | fMean = fFGausFit->GetParameter(1);
|
|---|
| 446 | fSigma = fFGausFit->GetParameter(2);
|
|---|
| 447 | fMeanErr = fFGausFit->GetParError(1);
|
|---|
| 448 | fSigmaErr = fFGausFit->GetParError(2);
|
|---|
| 449 | fProb = fFGausFit->GetProb();
|
|---|
| 450 | //
|
|---|
| 451 | // The fit result is accepted under condition:
|
|---|
| 452 | // 1) The results are not nan's
|
|---|
| 453 | // 2) The NDF is not smaller than fNDFLimit (5)
|
|---|
| 454 | // 3) The Probability is greater than fProbLimit (default 0.001 == 99.9%)
|
|---|
| 455 | //
|
|---|
| 456 | if ( TMath::IsNaN(fMean)
|
|---|
| 457 | || TMath::IsNaN(fMeanErr)
|
|---|
| 458 | || TMath::IsNaN(fProb)
|
|---|
| 459 | || TMath::IsNaN(fSigma)
|
|---|
| 460 | || TMath::IsNaN(fSigmaErr)
|
|---|
| 461 | || fFGausFit->GetNDF() < fNDFLimit
|
|---|
| 462 | || fProb < fProbLimit )
|
|---|
| 463 | return kFALSE;
|
|---|
| 464 |
|
|---|
| 465 | SetGausFitOK(kTRUE);
|
|---|
| 466 | return kTRUE;
|
|---|
| 467 | }
|
|---|
| 468 |
|
|---|
| 469 | // -----------------------------------------------------------------------------------
|
|---|
| 470 | //
|
|---|
| 471 | // A default print
|
|---|
| 472 | //
|
|---|
| 473 | void MHGausEvents::Print(const Option_t *o) const
|
|---|
| 474 | {
|
|---|
| 475 |
|
|---|
| 476 | *fLog << all << endl;
|
|---|
| 477 | *fLog << all << "Results of the Gauss Fit: " << endl;
|
|---|
| 478 | *fLog << all << "Mean: " << GetMean() << endl;
|
|---|
| 479 | *fLog << all << "Sigma: " << GetSigma() << endl;
|
|---|
| 480 | *fLog << all << "Chisquare: " << GetChiSquare() << endl;
|
|---|
| 481 | *fLog << all << "DoF: " << GetNdf() << endl;
|
|---|
| 482 | *fLog << all << "Probability: " << GetProb() << endl;
|
|---|
| 483 | *fLog << all << endl;
|
|---|
| 484 |
|
|---|
| 485 | }
|
|---|
| 486 |
|
|---|
| 487 | // ----------------------------------------------------------------------------------
|
|---|
| 488 | //
|
|---|
| 489 | // Create a graph to display the array fEvents
|
|---|
| 490 | // If the variable fEventFrequency is set, the x-axis is transformed into real time.
|
|---|
| 491 | //
|
|---|
| 492 | void MHGausEvents::CreateGraphEvents()
|
|---|
| 493 | {
|
|---|
| 494 |
|
|---|
| 495 | MArray::StripZeros(fEvents);
|
|---|
| 496 |
|
|---|
| 497 | const Int_t n = fEvents.GetSize();
|
|---|
| 498 |
|
|---|
| 499 | fGraphEvents = new TGraph(n,CreateXaxis(n),fEvents.GetArray());
|
|---|
| 500 | fGraphEvents->SetTitle("Evolution of Events with time");
|
|---|
| 501 | fGraphEvents->GetXaxis()->SetTitle((fEventFrequency) ? "Time [s]" : "Event Nr.");
|
|---|
| 502 | }
|
|---|
| 503 |
|
|---|
| 504 | // ----------------------------------------------------------------------------------
|
|---|
| 505 | //
|
|---|
| 506 | // Create a graph to display the array fPowerSpectrum
|
|---|
| 507 | // If the variable fEventFrequency is set, the x-axis is transformed into real frequency.
|
|---|
| 508 | //
|
|---|
| 509 | void MHGausEvents::CreateGraphPowerSpectrum()
|
|---|
| 510 | {
|
|---|
| 511 |
|
|---|
| 512 | MArray::StripZeros(*fPowerSpectrum);
|
|---|
| 513 |
|
|---|
| 514 | const Int_t n = fPowerSpectrum->GetSize();
|
|---|
| 515 |
|
|---|
| 516 | fGraphPowerSpectrum = new TGraph(n,CreateXaxis(n),fPowerSpectrum->GetArray());
|
|---|
| 517 | fGraphPowerSpectrum->SetTitle("Power Spectrum Density");
|
|---|
| 518 | fGraphPowerSpectrum->GetXaxis()->SetTitle((fEventFrequency) ? "Frequency [Hz]" : "Frequency");
|
|---|
| 519 | fGraphPowerSpectrum->GetYaxis()->SetTitle("P(f)");
|
|---|
| 520 | }
|
|---|
| 521 |
|
|---|
| 522 | // -----------------------------------------------------------------------------
|
|---|
| 523 | //
|
|---|
| 524 | // Create the x-axis for the graph
|
|---|
| 525 | //
|
|---|
| 526 | Float_t *MHGausEvents::CreateXaxis(Int_t n)
|
|---|
| 527 | {
|
|---|
| 528 |
|
|---|
| 529 | Float_t *xaxis = new Float_t[n];
|
|---|
| 530 |
|
|---|
| 531 | if (fEventFrequency)
|
|---|
| 532 | for (Int_t i=0;i<n;i++)
|
|---|
| 533 | xaxis[i] = (Float_t)i/fEventFrequency;
|
|---|
| 534 | else
|
|---|
| 535 | for (Int_t i=0;i<n;i++)
|
|---|
| 536 | xaxis[i] = (Float_t)i;
|
|---|
| 537 |
|
|---|
| 538 | return xaxis;
|
|---|
| 539 |
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 | // -----------------------------------------------------------------------------
|
|---|
| 543 | //
|
|---|
| 544 | // Default draw:
|
|---|
| 545 | //
|
|---|
| 546 | // The following options can be chosen:
|
|---|
| 547 | //
|
|---|
| 548 | // "EVENTS": displays a TGraph of the array fEvents
|
|---|
| 549 | // "FOURIER": display a TGraph of the fourier transform of fEvents
|
|---|
| 550 | // displays the projection of the fourier transform with the fit
|
|---|
| 551 | //
|
|---|
| 552 | void MHGausEvents::Draw(const Option_t *opt)
|
|---|
| 553 | {
|
|---|
| 554 |
|
|---|
| 555 | TVirtualPad *pad = gPad ? gPad : MH::MakeDefCanvas(this,600, 900);
|
|---|
| 556 |
|
|---|
| 557 | TString option(opt);
|
|---|
| 558 | option.ToLower();
|
|---|
| 559 |
|
|---|
| 560 | Int_t win = 1;
|
|---|
| 561 |
|
|---|
| 562 | if (option.Contains("events"))
|
|---|
| 563 | {
|
|---|
| 564 | option.ReplaceAll("events","");
|
|---|
| 565 | win += 1;
|
|---|
| 566 | }
|
|---|
| 567 | if (option.Contains("fourier"))
|
|---|
| 568 | {
|
|---|
| 569 | option.ReplaceAll("fourier","");
|
|---|
| 570 | win += 2;
|
|---|
| 571 | }
|
|---|
| 572 |
|
|---|
| 573 | pad->SetTicks();
|
|---|
| 574 | pad->SetBorderMode(0);
|
|---|
| 575 | pad->Divide(1,win);
|
|---|
| 576 | pad->cd(1);
|
|---|
| 577 |
|
|---|
| 578 | if (!IsEmpty())
|
|---|
| 579 | gPad->SetLogy();
|
|---|
| 580 |
|
|---|
| 581 | fHGausHist.Draw(opt);
|
|---|
| 582 |
|
|---|
| 583 | if (fFGausFit)
|
|---|
| 584 | {
|
|---|
| 585 | fFGausFit->SetLineColor(IsGausFitOK() ? kGreen : kRed);
|
|---|
| 586 | fFGausFit->Draw("same");
|
|---|
| 587 | }
|
|---|
| 588 | switch (win)
|
|---|
| 589 | {
|
|---|
| 590 | case 2:
|
|---|
| 591 | pad->cd(2);
|
|---|
| 592 | DrawEvents();
|
|---|
| 593 | break;
|
|---|
| 594 | case 3:
|
|---|
| 595 | pad->cd(2);
|
|---|
| 596 | DrawPowerSpectrum(*pad,3);
|
|---|
| 597 | break;
|
|---|
| 598 | case 4:
|
|---|
| 599 | pad->cd(2);
|
|---|
| 600 | DrawEvents();
|
|---|
| 601 | pad->cd(3);
|
|---|
| 602 | DrawPowerSpectrum(*pad,4);
|
|---|
| 603 | break;
|
|---|
| 604 | }
|
|---|
| 605 | }
|
|---|
| 606 |
|
|---|
| 607 | void MHGausEvents::DrawEvents()
|
|---|
| 608 | {
|
|---|
| 609 |
|
|---|
| 610 | if (!fGraphEvents)
|
|---|
| 611 | CreateGraphEvents();
|
|---|
| 612 |
|
|---|
| 613 | fGraphEvents->SetBit(kCanDelete);
|
|---|
| 614 | fGraphEvents->SetTitle("Events with time");
|
|---|
| 615 | fGraphEvents->Draw("AL");
|
|---|
| 616 |
|
|---|
| 617 | }
|
|---|
| 618 |
|
|---|
| 619 |
|
|---|
| 620 | void MHGausEvents::DrawPowerSpectrum(TVirtualPad &pad, Int_t i)
|
|---|
| 621 | {
|
|---|
| 622 |
|
|---|
| 623 | if (fPowerSpectrum)
|
|---|
| 624 | {
|
|---|
| 625 | if (!fGraphPowerSpectrum)
|
|---|
| 626 | CreateGraphPowerSpectrum();
|
|---|
| 627 |
|
|---|
| 628 | fGraphPowerSpectrum->Draw("AL");
|
|---|
| 629 | fGraphPowerSpectrum->SetBit(kCanDelete);
|
|---|
| 630 | }
|
|---|
| 631 |
|
|---|
| 632 | pad.cd(i);
|
|---|
| 633 |
|
|---|
| 634 | if (fHPowerProbability && fHPowerProbability->GetEntries() > 0)
|
|---|
| 635 | {
|
|---|
| 636 | gPad->SetLogy();
|
|---|
| 637 | fHPowerProbability->Draw();
|
|---|
| 638 | if (fFExpFit)
|
|---|
| 639 | {
|
|---|
| 640 | fFExpFit->SetLineColor(IsExpFitOK() ? kGreen : kRed);
|
|---|
| 641 | fFExpFit->Draw("same");
|
|---|
| 642 | }
|
|---|
| 643 | }
|
|---|
| 644 | }
|
|---|
| 645 |
|
|---|
| 646 |
|
|---|