| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHGausEvents
|
|---|
| 28 | //
|
|---|
| 29 | // A base class for events which are believed to follow a Gaussian distribution
|
|---|
| 30 | // with time, e.g. calibration events, observables containing white noise, ...
|
|---|
| 31 | //
|
|---|
| 32 | // MHGausEvents derives from MH, thus all features of MH can be used by a class
|
|---|
| 33 | // deriving from MHGausEvents, especially the filling functions.
|
|---|
| 34 | //
|
|---|
| 35 | // The central objects are:
|
|---|
| 36 | //
|
|---|
| 37 | // 1) The TH1F fHGausHist:
|
|---|
| 38 | // ====================
|
|---|
| 39 | //
|
|---|
| 40 | // It is created with a default name and title and resides in directory NULL.
|
|---|
| 41 | // - Any class deriving from MHGausEvents needs to apply a binning to fHGausHist
|
|---|
| 42 | // (e.g. by setting the variables fNbins, fFirst, fLast and calling the function
|
|---|
| 43 | // InitBins() or by directly calling fHGausHist.SetBins(..) )
|
|---|
| 44 | // - The histogram is filled with the functions FillHist() or FillHistAndArray().
|
|---|
| 45 | // - The histogram can be fitted with the function FitGaus(). This involves stripping
|
|---|
| 46 | // of all zeros at the lower and upper end of the histogram and re-binning to
|
|---|
| 47 | // a new number of bins, specified in the variable fBinsAfterStripping.
|
|---|
| 48 | // - The fit result's probability is compared to a reference probability fProbLimit
|
|---|
| 49 | // The NDF is compared to fNDFLimit and a check is made whether results are NaNs.
|
|---|
| 50 | // Accordingly, a flag IsGausFitOK() is set.
|
|---|
| 51 | // - One can repeat the fit within a given amount of sigmas from the previous mean
|
|---|
| 52 | // (specified by the variables fPickupLimit and fBlackoutLimit) with the function RepeatFit()
|
|---|
| 53 | // - One can completely skip the fitting to set mean, sigma and its errors directly
|
|---|
| 54 | // from the histograms with the function BypassFit()
|
|---|
| 55 | //
|
|---|
| 56 | // 2) The TArrayF fEvents:
|
|---|
| 57 | // ==========================
|
|---|
| 58 | //
|
|---|
| 59 | // It is created with 0 entries and not expanded unless FillArray() or FillHistAndArray()
|
|---|
| 60 | // are called.
|
|---|
| 61 | // - A first call to FillArray() or FillHistAndArray() initializes fEvents by default
|
|---|
| 62 | // to 512 entries.
|
|---|
| 63 | // - Any later call to FillArray() or FillHistAndArray() fills up the array.
|
|---|
| 64 | // Reaching the limit, the array is expanded by a factor 2.
|
|---|
| 65 | // - The array can be fourier-transformed into the array fPowerSpectrum.
|
|---|
| 66 | // Note that any FFT accepts only number of events which are a power of 2.
|
|---|
| 67 | // Thus, fEvents is cut to the next power of 2 smaller than its actual number of entries.
|
|---|
| 68 | // Be aware that you might lose information at the end of your analysis.
|
|---|
| 69 | // - Calling the function CreateFourierSpectrum() creates the array fPowerSpectrum
|
|---|
| 70 | // and its projection fHPowerProbability which in turn is fit to an exponential.
|
|---|
| 71 | // - The fit result's probability is compared to a referenc probability fProbLimit
|
|---|
| 72 | // and accordingly the flag IsExpFitOK() is set.
|
|---|
| 73 | // - The flag IsFourierSpectrumOK() is set accordingly to IsExpFitOK().
|
|---|
| 74 | // Later, a closer check will be installed.
|
|---|
| 75 | // - You can display all arrays by calls to: CreateGraphEvents() and
|
|---|
| 76 | // CreateGraphPowerSpectrum() and successive calls to the corresponding Getters.
|
|---|
| 77 | //
|
|---|
| 78 | // To see an example, have a look at: Draw()
|
|---|
| 79 | //
|
|---|
| 80 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 81 | #include "MHGausEvents.h"
|
|---|
| 82 |
|
|---|
| 83 | #include <TH1.h>
|
|---|
| 84 | #include <TF1.h>
|
|---|
| 85 | #include <TGraph.h>
|
|---|
| 86 | #include <TPad.h>
|
|---|
| 87 | #include <TVirtualPad.h>
|
|---|
| 88 | #include <TCanvas.h>
|
|---|
| 89 | #include <TStyle.h>
|
|---|
| 90 |
|
|---|
| 91 | #include "MFFT.h"
|
|---|
| 92 | #include "MArray.h"
|
|---|
| 93 |
|
|---|
| 94 | #include "MH.h"
|
|---|
| 95 |
|
|---|
| 96 | #include "MLog.h"
|
|---|
| 97 | #include "MLogManip.h"
|
|---|
| 98 |
|
|---|
| 99 | ClassImp(MHGausEvents);
|
|---|
| 100 |
|
|---|
| 101 | using namespace std;
|
|---|
| 102 |
|
|---|
| 103 | const Int_t MHGausEvents::fgBinsAfterStripping = 40;
|
|---|
| 104 | const Float_t MHGausEvents::fgBlackoutLimit = 5.;
|
|---|
| 105 | const Int_t MHGausEvents::fgNDFLimit = 2;
|
|---|
| 106 | const Float_t MHGausEvents::fgPickupLimit = 5.;
|
|---|
| 107 | const Float_t MHGausEvents::fgProbLimit = 0.001;
|
|---|
| 108 | const Int_t MHGausEvents::fgPowerProbabilityBins = 20;
|
|---|
| 109 | // --------------------------------------------------------------------------
|
|---|
| 110 | //
|
|---|
| 111 | // Default Constructor.
|
|---|
| 112 | // Sets:
|
|---|
| 113 | // - the default Probability Bins for fPowerProbabilityBins (fgPowerProbabilityBins)
|
|---|
| 114 | // - the default Probability Limit for fProbLimit (fgProbLimit)
|
|---|
| 115 | // - the default NDF Limit for fNDFLimit (fgNDFLimit)
|
|---|
| 116 | // - the default number for fPickupLimit (fgPickupLimit)
|
|---|
| 117 | // - the default number for fBlackoutLimit (fgBlackoutLimit)
|
|---|
| 118 | // - the default number of bins after stripping for fBinsAfterStipping (fgBinsAfterStipping)
|
|---|
| 119 | // - the default name of the fHGausHist ("HGausHist")
|
|---|
| 120 | // - the default title of the fHGausHist ("Histogram of Events with Gaussian Distribution")
|
|---|
| 121 | // - the default directory of the fHGausHist (NULL)
|
|---|
| 122 | // - the default for fNbins (100)
|
|---|
| 123 | // - the default for fFirst (0.)
|
|---|
| 124 | // - the default for fLast (100.)
|
|---|
| 125 | //
|
|---|
| 126 | // Initializes:
|
|---|
| 127 | // - fEvents to 0 entries
|
|---|
| 128 | // - fHGausHist()
|
|---|
| 129 | // - all other pointers to NULL
|
|---|
| 130 | // - all variables to 0.
|
|---|
| 131 | // - all flags to kFALSE
|
|---|
| 132 | //
|
|---|
| 133 | MHGausEvents::MHGausEvents(const char *name, const char *title)
|
|---|
| 134 | : fEventFrequency(0), fHPowerProbability(NULL),
|
|---|
| 135 | fPowerSpectrum(NULL),
|
|---|
| 136 | fGraphEvents(NULL), fGraphPowerSpectrum(NULL),
|
|---|
| 137 | fEvents(0), fFGausFit(NULL), fFExpFit(NULL),
|
|---|
| 138 | fFirst(0.), fHGausHist(), fLast(100.),
|
|---|
| 139 | fNbins(100), fPixId(-1)
|
|---|
| 140 | {
|
|---|
| 141 |
|
|---|
| 142 | fName = name ? name : "MHGausEvents";
|
|---|
| 143 | fTitle = title ? title : "Events with expected Gaussian distributions";
|
|---|
| 144 |
|
|---|
| 145 | Clear();
|
|---|
| 146 |
|
|---|
| 147 | SetBinsAfterStripping();
|
|---|
| 148 | SetBlackoutLimit();
|
|---|
| 149 | SetNDFLimit();
|
|---|
| 150 | SetPickupLimit();
|
|---|
| 151 | SetPowerProbabilityBins();
|
|---|
| 152 | SetProbLimit();
|
|---|
| 153 |
|
|---|
| 154 | fHGausHist.SetName("HGausHist");
|
|---|
| 155 | fHGausHist.SetTitle("Histogram of Events with Gaussian Distribution");
|
|---|
| 156 | // important, other ROOT will not draw the axes:
|
|---|
| 157 | fHGausHist.UseCurrentStyle();
|
|---|
| 158 | fHGausHist.SetDirectory(NULL);
|
|---|
| 159 | }
|
|---|
| 160 |
|
|---|
| 161 |
|
|---|
| 162 |
|
|---|
| 163 | // --------------------------------------------------------------------------
|
|---|
| 164 | //
|
|---|
| 165 | // Default Destructor.
|
|---|
| 166 | //
|
|---|
| 167 | // Deletes (if Pointer is not NULL):
|
|---|
| 168 | //
|
|---|
| 169 | // - fHPowerProbability
|
|---|
| 170 | // - fFGausFit
|
|---|
| 171 | // - fFExpFit
|
|---|
| 172 | // - fPowerSpectrum
|
|---|
| 173 | // - fGraphEvents
|
|---|
| 174 | // - fGraphPowerSpectrum
|
|---|
| 175 | //
|
|---|
| 176 | MHGausEvents::~MHGausEvents()
|
|---|
| 177 | {
|
|---|
| 178 |
|
|---|
| 179 | // delete histograms
|
|---|
| 180 | if (fHPowerProbability)
|
|---|
| 181 | delete fHPowerProbability;
|
|---|
| 182 |
|
|---|
| 183 | // delete fits
|
|---|
| 184 | if (fFGausFit)
|
|---|
| 185 | delete fFGausFit;
|
|---|
| 186 | if (fFExpFit)
|
|---|
| 187 | delete fFExpFit;
|
|---|
| 188 |
|
|---|
| 189 | // delete arrays
|
|---|
| 190 | if (fPowerSpectrum)
|
|---|
| 191 | delete fPowerSpectrum;
|
|---|
| 192 |
|
|---|
| 193 | // delete graphs
|
|---|
| 194 | if (fGraphEvents)
|
|---|
| 195 | delete fGraphEvents;
|
|---|
| 196 | if (fGraphPowerSpectrum)
|
|---|
| 197 | delete fGraphPowerSpectrum;
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 | // --------------------------------------------------------------------------
|
|---|
| 201 | //
|
|---|
| 202 | // Default Clear(), can be overloaded.
|
|---|
| 203 | //
|
|---|
| 204 | // Sets:
|
|---|
| 205 | // - all other pointers to NULL
|
|---|
| 206 | // - all variables to 0., except fPixId to -1 and keep fEventFrequency
|
|---|
| 207 | // - all flags to kFALSE
|
|---|
| 208 | //
|
|---|
| 209 | // Deletes (if not NULL):
|
|---|
| 210 | // - all pointers
|
|---|
| 211 | //
|
|---|
| 212 | void MHGausEvents::Clear(Option_t *o)
|
|---|
| 213 | {
|
|---|
| 214 |
|
|---|
| 215 | SetGausFitOK ( kFALSE );
|
|---|
| 216 | SetExpFitOK ( kFALSE );
|
|---|
| 217 | SetFourierSpectrumOK( kFALSE );
|
|---|
| 218 | SetExcluded ( kFALSE );
|
|---|
| 219 |
|
|---|
| 220 | fMean = 0.;
|
|---|
| 221 | fSigma = 0.;
|
|---|
| 222 | fMeanErr = 0.;
|
|---|
| 223 | fSigmaErr = 0.;
|
|---|
| 224 | fProb = 0.;
|
|---|
| 225 |
|
|---|
| 226 | fCurrentSize = 0;
|
|---|
| 227 | fPixId = -1;
|
|---|
| 228 |
|
|---|
| 229 | if (fHPowerProbability)
|
|---|
| 230 | {
|
|---|
| 231 | delete fHPowerProbability;
|
|---|
| 232 | fHPowerProbability = NULL;
|
|---|
| 233 | }
|
|---|
| 234 |
|
|---|
| 235 | // delete fits
|
|---|
| 236 | if (fFGausFit)
|
|---|
| 237 | {
|
|---|
| 238 | delete fFGausFit;
|
|---|
| 239 | fFGausFit = NULL;
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | if (fFExpFit)
|
|---|
| 243 | {
|
|---|
| 244 | delete fFExpFit;
|
|---|
| 245 | fFExpFit = NULL;
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | // delete arrays
|
|---|
| 249 | if (fPowerSpectrum)
|
|---|
| 250 | {
|
|---|
| 251 | delete fPowerSpectrum;
|
|---|
| 252 | fPowerSpectrum = NULL;
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | // delete graphs
|
|---|
| 256 | if (fGraphEvents)
|
|---|
| 257 | {
|
|---|
| 258 | delete fGraphEvents;
|
|---|
| 259 | fGraphEvents = NULL;
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | if (fGraphPowerSpectrum)
|
|---|
| 263 | {
|
|---|
| 264 | delete fGraphPowerSpectrum;
|
|---|
| 265 | fGraphPowerSpectrum = NULL;
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 |
|
|---|
| 270 | // -----------------------------------------------------------------------------
|
|---|
| 271 | //
|
|---|
| 272 | // Bypasses the Gauss fit by taking mean and RMS from the histogram
|
|---|
| 273 | //
|
|---|
| 274 | // Errors are determined in the following way:
|
|---|
| 275 | // MeanErr = RMS / Sqrt(entries)
|
|---|
| 276 | // SigmaErr = RMS / (2.*Sqrt(entries) )
|
|---|
| 277 | //
|
|---|
| 278 | void MHGausEvents::BypassFit()
|
|---|
| 279 | {
|
|---|
| 280 |
|
|---|
| 281 | const Stat_t entries = fHGausHist.GetEntries();
|
|---|
| 282 |
|
|---|
| 283 | if (entries <= 0.)
|
|---|
| 284 | {
|
|---|
| 285 | *fLog << warn << GetDescriptor()
|
|---|
| 286 | << ": Cannot bypass fit. Number of entries smaller or equal 0 in pixel: " << fPixId << endl;
|
|---|
| 287 | return;
|
|---|
| 288 | }
|
|---|
| 289 |
|
|---|
| 290 | fMean = fHGausHist.GetMean();
|
|---|
| 291 | fMeanErr = fHGausHist.GetRMS() / TMath::Sqrt(entries);
|
|---|
| 292 | fSigma = fHGausHist.GetRMS() ;
|
|---|
| 293 | fSigmaErr = fHGausHist.GetRMS() / TMath::Sqrt(entries) / 2.;
|
|---|
| 294 | }
|
|---|
| 295 |
|
|---|
| 296 |
|
|---|
| 297 |
|
|---|
| 298 | // --------------------------------------------------------------------------
|
|---|
| 299 | //
|
|---|
| 300 | // - Set fPixId to id
|
|---|
| 301 | //
|
|---|
| 302 | // Add id to names and titles of:
|
|---|
| 303 | // - fHGausHist
|
|---|
| 304 | //
|
|---|
| 305 | void MHGausEvents::ChangeHistId(const Int_t id)
|
|---|
| 306 | {
|
|---|
| 307 |
|
|---|
| 308 | fPixId = id;
|
|---|
| 309 |
|
|---|
| 310 | fHGausHist.SetName( Form("%s%d", fHGausHist.GetName(), id));
|
|---|
| 311 | fHGausHist.SetTitle( Form("%s%d", fHGausHist.GetTitle(), id));
|
|---|
| 312 |
|
|---|
| 313 | fName = Form("%s%d", fName.Data(), id);
|
|---|
| 314 | fTitle = Form("%s%d", fTitle.Data(), id);
|
|---|
| 315 |
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | // -----------------------------------------------------------------------------
|
|---|
| 319 | //
|
|---|
| 320 | // Create the x-axis for the event graph
|
|---|
| 321 | //
|
|---|
| 322 | Float_t *MHGausEvents::CreateEventXaxis(Int_t n)
|
|---|
| 323 | {
|
|---|
| 324 |
|
|---|
| 325 | Float_t *xaxis = new Float_t[n];
|
|---|
| 326 |
|
|---|
| 327 | if (fEventFrequency)
|
|---|
| 328 | for (Int_t i=0;i<n;i++)
|
|---|
| 329 | xaxis[i] = (Float_t)i/fEventFrequency;
|
|---|
| 330 | else
|
|---|
| 331 | for (Int_t i=0;i<n;i++)
|
|---|
| 332 | xaxis[i] = (Float_t)i;
|
|---|
| 333 |
|
|---|
| 334 | return xaxis;
|
|---|
| 335 |
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 |
|
|---|
| 339 | // -------------------------------------------------------------------
|
|---|
| 340 | //
|
|---|
| 341 | // Create the fourier spectrum using the class MFFT.
|
|---|
| 342 | // The result is projected into a histogram and fitted by an exponential
|
|---|
| 343 | //
|
|---|
| 344 | void MHGausEvents::CreateFourierSpectrum()
|
|---|
| 345 | {
|
|---|
| 346 |
|
|---|
| 347 | if (fFExpFit)
|
|---|
| 348 | return;
|
|---|
| 349 |
|
|---|
| 350 | if (fEvents.GetSize() < 8)
|
|---|
| 351 | {
|
|---|
| 352 | *fLog << warn << "Cannot create Fourier spectrum in pixel: " << fPixId
|
|---|
| 353 | << ". Number of events smaller than 8 " << endl;
|
|---|
| 354 | return;
|
|---|
| 355 | }
|
|---|
| 356 |
|
|---|
| 357 |
|
|---|
| 358 | //
|
|---|
| 359 | // The number of entries HAS to be a potence of 2,
|
|---|
| 360 | // so we can only cut out from the last potence of 2 to the rest.
|
|---|
| 361 | // Another possibility would be to fill everything with
|
|---|
| 362 | // zeros, but that gives a low frequency peak, which we would
|
|---|
| 363 | // have to cut out later again.
|
|---|
| 364 | //
|
|---|
| 365 | // So, we have to live with the possibility that at the end
|
|---|
| 366 | // of the calibration run, something has happened without noticing
|
|---|
| 367 | // it...
|
|---|
| 368 | //
|
|---|
| 369 |
|
|---|
| 370 | // This cuts only the non-used zero's, but MFFT will later cut the rest
|
|---|
| 371 | MArray::StripZeros(fEvents);
|
|---|
| 372 |
|
|---|
| 373 | if (fEvents.GetSize() < 8)
|
|---|
| 374 | {
|
|---|
| 375 | *fLog << warn << "Cannot create Fourier spectrum. " << endl;
|
|---|
| 376 | *fLog << warn << "Number of events (after stripping of zeros) is smaller than 8 "
|
|---|
| 377 | << "in pixel: " << fPixId << endl;
|
|---|
| 378 | return;
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 | MFFT fourier;
|
|---|
| 382 |
|
|---|
| 383 | fPowerSpectrum = fourier.PowerSpectrumDensity(&fEvents);
|
|---|
| 384 | fHPowerProbability = ProjectArray(*fPowerSpectrum, fPowerProbabilityBins,
|
|---|
| 385 | "PowerProbability",
|
|---|
| 386 | "Probability of Power occurrance");
|
|---|
| 387 | fHPowerProbability->SetXTitle("P(f)");
|
|---|
| 388 | fHPowerProbability->SetDirectory(NULL);
|
|---|
| 389 | //
|
|---|
| 390 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 391 | //
|
|---|
| 392 | const Double_t xmax = fHPowerProbability->GetXaxis()->GetXmax();
|
|---|
| 393 |
|
|---|
| 394 | fFExpFit = new TF1("FExpFit","exp([0]-[1]*x)",0.,xmax);
|
|---|
| 395 |
|
|---|
| 396 | const Double_t slope_guess = (TMath::Log(fHPowerProbability->GetEntries())+1.)/xmax;
|
|---|
| 397 | const Double_t offset_guess = slope_guess*xmax;
|
|---|
| 398 |
|
|---|
| 399 | fFExpFit->SetParameters(offset_guess, slope_guess);
|
|---|
| 400 | fFExpFit->SetParNames("Offset","Slope");
|
|---|
| 401 | fFExpFit->SetParLimits(0,offset_guess/2.,2.*offset_guess);
|
|---|
| 402 | fFExpFit->SetParLimits(1,slope_guess/1.5,1.5*slope_guess);
|
|---|
| 403 | fFExpFit->SetRange(0.,xmax);
|
|---|
| 404 |
|
|---|
| 405 | fHPowerProbability->Fit(fFExpFit,"RQL0");
|
|---|
| 406 |
|
|---|
| 407 | if (GetExpProb() > fProbLimit)
|
|---|
| 408 | SetExpFitOK(kTRUE);
|
|---|
| 409 |
|
|---|
| 410 | //
|
|---|
| 411 | // For the moment, this is the only check, later we can add more...
|
|---|
| 412 | //
|
|---|
| 413 | SetFourierSpectrumOK(IsExpFitOK());
|
|---|
| 414 |
|
|---|
| 415 | return;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | // ----------------------------------------------------------------------------------
|
|---|
| 419 | //
|
|---|
| 420 | // Create a graph to display the array fEvents
|
|---|
| 421 | // If the variable fEventFrequency is set, the x-axis is transformed into real time.
|
|---|
| 422 | //
|
|---|
| 423 | void MHGausEvents::CreateGraphEvents()
|
|---|
| 424 | {
|
|---|
| 425 |
|
|---|
| 426 | MArray::StripZeros(fEvents);
|
|---|
| 427 |
|
|---|
| 428 | const Int_t n = fEvents.GetSize();
|
|---|
| 429 |
|
|---|
| 430 | fGraphEvents = new TGraph(n,CreateEventXaxis(n),fEvents.GetArray());
|
|---|
| 431 | fGraphEvents->SetTitle("Evolution of Events with time");
|
|---|
| 432 | fGraphEvents->GetXaxis()->SetTitle((fEventFrequency) ? "Time [s]" : "Event Nr.");
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | // ----------------------------------------------------------------------------------
|
|---|
| 436 | //
|
|---|
| 437 | // Create a graph to display the array fPowerSpectrum
|
|---|
| 438 | // If the variable fEventFrequency is set, the x-axis is transformed into real frequency.
|
|---|
| 439 | //
|
|---|
| 440 | void MHGausEvents::CreateGraphPowerSpectrum()
|
|---|
| 441 | {
|
|---|
| 442 |
|
|---|
| 443 | MArray::StripZeros(*fPowerSpectrum);
|
|---|
| 444 |
|
|---|
| 445 | const Int_t n = fPowerSpectrum->GetSize();
|
|---|
| 446 |
|
|---|
| 447 | fGraphPowerSpectrum = new TGraph(n,CreatePSDXaxis(n),fPowerSpectrum->GetArray());
|
|---|
| 448 | fGraphPowerSpectrum->SetTitle("Power Spectrum Density");
|
|---|
| 449 | fGraphPowerSpectrum->GetXaxis()->SetTitle((fEventFrequency) ? "Frequency [Hz]" : "Frequency");
|
|---|
| 450 | fGraphPowerSpectrum->GetYaxis()->SetTitle("P(f)");
|
|---|
| 451 | }
|
|---|
| 452 |
|
|---|
| 453 |
|
|---|
| 454 | // -----------------------------------------------------------------------------
|
|---|
| 455 | //
|
|---|
| 456 | // Create the x-axis for the event graph
|
|---|
| 457 | //
|
|---|
| 458 | Float_t *MHGausEvents::CreatePSDXaxis(Int_t n)
|
|---|
| 459 | {
|
|---|
| 460 |
|
|---|
| 461 | Float_t *xaxis = new Float_t[n];
|
|---|
| 462 |
|
|---|
| 463 | if (fEventFrequency)
|
|---|
| 464 | for (Int_t i=0;i<n;i++)
|
|---|
| 465 | xaxis[i] = 0.5*(Float_t)i*fEventFrequency/n;
|
|---|
| 466 | else
|
|---|
| 467 | for (Int_t i=0;i<n;i++)
|
|---|
| 468 | xaxis[i] = 0.5*(Float_t)i/n;
|
|---|
| 469 |
|
|---|
| 470 | return xaxis;
|
|---|
| 471 |
|
|---|
| 472 | }
|
|---|
| 473 |
|
|---|
| 474 | // -----------------------------------------------------------------------------
|
|---|
| 475 | //
|
|---|
| 476 | // Default draw:
|
|---|
| 477 | //
|
|---|
| 478 | // The following options can be chosen:
|
|---|
| 479 | //
|
|---|
| 480 | // "EVENTS": displays a TGraph of the array fEvents
|
|---|
| 481 | // "FOURIER": display a TGraph of the fourier transform of fEvents
|
|---|
| 482 | // displays the projection of the fourier transform with the fit
|
|---|
| 483 | //
|
|---|
| 484 | // The following picture shows a typical outcome of call to Draw("fourierevents"):
|
|---|
| 485 | // - The first plot shows the distribution of the values with the Gauss fit
|
|---|
| 486 | // (which did not succeed, in this case, for obvious reasons)
|
|---|
| 487 | // - The second plot shows the TGraph with the events vs. time
|
|---|
| 488 | // - The third plot shows the fourier transform and a small peak at about 85 Hz.
|
|---|
| 489 | // - The fourth plot shows the projection of the fourier components and an exponential
|
|---|
| 490 | // fit, with the result that the observed deviation is still statistical with a
|
|---|
| 491 | // probability of 0.5%.
|
|---|
| 492 | //
|
|---|
| 493 | //Begin_Html
|
|---|
| 494 | /*
|
|---|
| 495 | <img src="images/MHGausEventsDraw.gif">
|
|---|
| 496 | */
|
|---|
| 497 | //End_Html
|
|---|
| 498 | //
|
|---|
| 499 | void MHGausEvents::Draw(const Option_t *opt)
|
|---|
| 500 | {
|
|---|
| 501 |
|
|---|
| 502 | TVirtualPad *pad = gPad ? gPad : MH::MakeDefCanvas(this,600, 900);
|
|---|
| 503 |
|
|---|
| 504 | TString option(opt);
|
|---|
| 505 | option.ToLower();
|
|---|
| 506 |
|
|---|
| 507 | Int_t win = 1;
|
|---|
| 508 |
|
|---|
| 509 | if (option.Contains("events"))
|
|---|
| 510 | {
|
|---|
| 511 | option.ReplaceAll("events","");
|
|---|
| 512 | win += 1;
|
|---|
| 513 | }
|
|---|
| 514 | if (option.Contains("fourier"))
|
|---|
| 515 | {
|
|---|
| 516 | option.ReplaceAll("fourier","");
|
|---|
| 517 | win += 2;
|
|---|
| 518 | }
|
|---|
| 519 |
|
|---|
| 520 | pad->SetTicks();
|
|---|
| 521 | pad->SetBorderMode(0);
|
|---|
| 522 | pad->Divide(1,win);
|
|---|
| 523 | pad->cd(1);
|
|---|
| 524 |
|
|---|
| 525 | if (!IsEmpty())
|
|---|
| 526 | gPad->SetLogy();
|
|---|
| 527 |
|
|---|
| 528 | fHGausHist.Draw(opt);
|
|---|
| 529 |
|
|---|
| 530 | if (fFGausFit)
|
|---|
| 531 | {
|
|---|
| 532 | fFGausFit->SetLineColor(IsGausFitOK() ? kGreen : kRed);
|
|---|
| 533 | fFGausFit->Draw("same");
|
|---|
| 534 | }
|
|---|
| 535 | switch (win)
|
|---|
| 536 | {
|
|---|
| 537 | case 2:
|
|---|
| 538 | pad->cd(2);
|
|---|
| 539 | DrawEvents();
|
|---|
| 540 | break;
|
|---|
| 541 | case 3:
|
|---|
| 542 | pad->cd(2);
|
|---|
| 543 | DrawPowerSpectrum(*pad,3);
|
|---|
| 544 | break;
|
|---|
| 545 | case 4:
|
|---|
| 546 | pad->cd(2);
|
|---|
| 547 | DrawEvents();
|
|---|
| 548 | pad->cd(3);
|
|---|
| 549 | DrawPowerSpectrum(*pad,4);
|
|---|
| 550 | break;
|
|---|
| 551 | }
|
|---|
| 552 | }
|
|---|
| 553 |
|
|---|
| 554 | void MHGausEvents::DrawEvents()
|
|---|
| 555 | {
|
|---|
| 556 |
|
|---|
| 557 | if (!fGraphEvents)
|
|---|
| 558 | CreateGraphEvents();
|
|---|
| 559 |
|
|---|
| 560 | fGraphEvents->SetBit(kCanDelete);
|
|---|
| 561 | fGraphEvents->SetTitle("Events with time");
|
|---|
| 562 | fGraphEvents->Draw("AL");
|
|---|
| 563 |
|
|---|
| 564 | }
|
|---|
| 565 |
|
|---|
| 566 |
|
|---|
| 567 | void MHGausEvents::DrawPowerSpectrum(TVirtualPad &pad, Int_t i)
|
|---|
| 568 | {
|
|---|
| 569 |
|
|---|
| 570 | if (fPowerSpectrum)
|
|---|
| 571 | {
|
|---|
| 572 | if (!fGraphPowerSpectrum)
|
|---|
| 573 | CreateGraphPowerSpectrum();
|
|---|
| 574 |
|
|---|
| 575 | fGraphPowerSpectrum->Draw("AL");
|
|---|
| 576 | fGraphPowerSpectrum->SetBit(kCanDelete);
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|
| 579 | pad.cd(i);
|
|---|
| 580 |
|
|---|
| 581 | if (fHPowerProbability && fHPowerProbability->GetEntries() > 0)
|
|---|
| 582 | {
|
|---|
| 583 | gPad->SetLogy();
|
|---|
| 584 | fHPowerProbability->Draw();
|
|---|
| 585 | if (fFExpFit)
|
|---|
| 586 | {
|
|---|
| 587 | fFExpFit->SetLineColor(IsExpFitOK() ? kGreen : kRed);
|
|---|
| 588 | fFExpFit->Draw("same");
|
|---|
| 589 | }
|
|---|
| 590 | }
|
|---|
| 591 | }
|
|---|
| 592 |
|
|---|
| 593 |
|
|---|
| 594 | // --------------------------------------------------------------------------
|
|---|
| 595 | //
|
|---|
| 596 | // Fill fEvents with f
|
|---|
| 597 | // If size of fEvents is 0, initializes it to 512
|
|---|
| 598 | // If size of fEvents is smaller than fCurrentSize, double the size
|
|---|
| 599 | // Increase fCurrentSize by 1
|
|---|
| 600 | //
|
|---|
| 601 | void MHGausEvents::FillArray(const Float_t f)
|
|---|
| 602 | {
|
|---|
| 603 | if (fEvents.GetSize() == 0)
|
|---|
| 604 | fEvents.Set(512);
|
|---|
| 605 |
|
|---|
| 606 | if (fCurrentSize >= fEvents.GetSize())
|
|---|
| 607 | fEvents.Set(fEvents.GetSize()*2);
|
|---|
| 608 |
|
|---|
| 609 | fEvents.AddAt(f,fCurrentSize++);
|
|---|
| 610 | }
|
|---|
| 611 |
|
|---|
| 612 |
|
|---|
| 613 | // --------------------------------------------------------------------------
|
|---|
| 614 | //
|
|---|
| 615 | // Fills fHGausHist with f
|
|---|
| 616 | // Returns kFALSE, if overflow or underflow occurred, else kTRUE
|
|---|
| 617 | //
|
|---|
| 618 | Bool_t MHGausEvents::FillHist(const Float_t f)
|
|---|
| 619 | {
|
|---|
| 620 | return fHGausHist.Fill(f) > -1;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 | // --------------------------------------------------------------------------
|
|---|
| 624 | //
|
|---|
| 625 | // Executes:
|
|---|
| 626 | // - FillArray()
|
|---|
| 627 | // - FillHist()
|
|---|
| 628 | //
|
|---|
| 629 | Bool_t MHGausEvents::FillHistAndArray(const Float_t f)
|
|---|
| 630 | {
|
|---|
| 631 |
|
|---|
| 632 | FillArray(f);
|
|---|
| 633 | return FillHist(f);
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | // -------------------------------------------------------------------
|
|---|
| 637 | //
|
|---|
| 638 | // Fit fGausHist with a Gaussian after stripping zeros from both ends
|
|---|
| 639 | // and rebinned to the number of bins specified in fBinsAfterStripping
|
|---|
| 640 | //
|
|---|
| 641 | // The fit results are retrieved and stored in class-own variables.
|
|---|
| 642 | //
|
|---|
| 643 | // A flag IsGausFitOK() is set according to whether the fit probability
|
|---|
| 644 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than
|
|---|
| 645 | // fNDFLimit and whether results are NaNs.
|
|---|
| 646 | //
|
|---|
| 647 | Bool_t MHGausEvents::FitGaus(Option_t *option, const Double_t xmin, const Double_t xmax)
|
|---|
| 648 | {
|
|---|
| 649 |
|
|---|
| 650 | if (IsGausFitOK())
|
|---|
| 651 | return kTRUE;
|
|---|
| 652 |
|
|---|
| 653 | //
|
|---|
| 654 | // First, strip the zeros from the edges which contain only zeros and rebin
|
|---|
| 655 | // to about fBinsAfterStripping bins.
|
|---|
| 656 | //
|
|---|
| 657 | // (ATTENTION: The Chisquare method is more sensitive,
|
|---|
| 658 | // the _less_ bins, you have!)
|
|---|
| 659 | //
|
|---|
| 660 | StripZeros(&fHGausHist,fBinsAfterStripping);
|
|---|
| 661 |
|
|---|
| 662 | //
|
|---|
| 663 | // Get the fitting ranges
|
|---|
| 664 | //
|
|---|
| 665 | Axis_t rmin = (xmin==0.) && (xmax==0.) ? fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst()) : xmin;
|
|---|
| 666 | Axis_t rmax = (xmin==0.) && (xmax==0.) ? fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) : xmax;
|
|---|
| 667 |
|
|---|
| 668 | //
|
|---|
| 669 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 670 | //
|
|---|
| 671 | const Stat_t entries = fHGausHist.Integral("width");
|
|---|
| 672 | const Double_t mu_guess = fHGausHist.GetBinCenter(fHGausHist.GetMaximumBin());
|
|---|
| 673 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
|---|
| 674 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
|---|
| 675 |
|
|---|
| 676 | fFGausFit = new TF1("GausFit","gaus",rmin,rmax);
|
|---|
| 677 |
|
|---|
| 678 | if (!fFGausFit)
|
|---|
| 679 | {
|
|---|
| 680 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
|
|---|
| 681 | << "in pixel: " << fPixId << endl;
|
|---|
| 682 | return kFALSE;
|
|---|
| 683 | }
|
|---|
| 684 |
|
|---|
| 685 | fFGausFit->SetParameters(area_guess,mu_guess,sigma_guess);
|
|---|
| 686 | fFGausFit->SetParNames("Area","#mu","#sigma");
|
|---|
| 687 | fFGausFit->SetParLimits(0,0.,area_guess*1.5);
|
|---|
| 688 | fFGausFit->SetParLimits(1,rmin,rmax);
|
|---|
| 689 | fFGausFit->SetParLimits(2,0.,rmax-rmin);
|
|---|
| 690 | fFGausFit->SetRange(rmin,rmax);
|
|---|
| 691 |
|
|---|
| 692 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 693 |
|
|---|
| 694 |
|
|---|
| 695 | fMean = fFGausFit->GetParameter(1);
|
|---|
| 696 | fSigma = fFGausFit->GetParameter(2);
|
|---|
| 697 | fMeanErr = fFGausFit->GetParError(1);
|
|---|
| 698 | fSigmaErr = fFGausFit->GetParError(2);
|
|---|
| 699 | fProb = fFGausFit->GetProb();
|
|---|
| 700 | //
|
|---|
| 701 | // The fit result is accepted under condition:
|
|---|
| 702 | // 1) The results are not nan's
|
|---|
| 703 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
|---|
| 704 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
|---|
| 705 | //
|
|---|
| 706 | if ( TMath::IsNaN(fMean)
|
|---|
| 707 | || TMath::IsNaN(fMeanErr)
|
|---|
| 708 | || TMath::IsNaN(fProb)
|
|---|
| 709 | || TMath::IsNaN(fSigma)
|
|---|
| 710 | || TMath::IsNaN(fSigmaErr)
|
|---|
| 711 | || fFGausFit->GetNDF() < fNDFLimit
|
|---|
| 712 | || fProb < fProbLimit )
|
|---|
| 713 | return kFALSE;
|
|---|
| 714 |
|
|---|
| 715 | SetGausFitOK(kTRUE);
|
|---|
| 716 | return kTRUE;
|
|---|
| 717 | }
|
|---|
| 718 |
|
|---|
| 719 | // -------------------------------------------------------------------------------
|
|---|
| 720 | //
|
|---|
| 721 | // Return the number of "blackout" events, which are events with values higher
|
|---|
| 722 | // than fBlackoutLimit sigmas from the mean
|
|---|
| 723 | //
|
|---|
| 724 | //
|
|---|
| 725 | const Double_t MHGausEvents::GetBlackout() const
|
|---|
| 726 | {
|
|---|
| 727 |
|
|---|
| 728 | if ((fMean == 0.) && (fSigma == 0.))
|
|---|
| 729 | return -1.;
|
|---|
| 730 |
|
|---|
| 731 | const Int_t first = fHGausHist.GetXaxis()->GetFirst();
|
|---|
| 732 | const Int_t last = fHGausHist.GetXaxis()->FindBin(fMean-fBlackoutLimit*fSigma);
|
|---|
| 733 |
|
|---|
| 734 | if (first >= last)
|
|---|
| 735 | return 0.;
|
|---|
| 736 |
|
|---|
| 737 | return fHGausHist.Integral(first, last, "width");
|
|---|
| 738 | }
|
|---|
| 739 |
|
|---|
| 740 | const Double_t MHGausEvents::GetChiSquare() const
|
|---|
| 741 | {
|
|---|
| 742 | return ( fFGausFit ? fFGausFit->GetChisquare() : 0.);
|
|---|
| 743 | }
|
|---|
| 744 |
|
|---|
| 745 |
|
|---|
| 746 | const Double_t MHGausEvents::GetExpChiSquare() const
|
|---|
| 747 | {
|
|---|
| 748 | return ( fFExpFit ? fFExpFit->GetChisquare() : 0.);
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 |
|
|---|
| 752 | const Int_t MHGausEvents::GetExpNdf() const
|
|---|
| 753 | {
|
|---|
| 754 | return ( fFExpFit ? fFExpFit->GetNDF() : 0);
|
|---|
| 755 | }
|
|---|
| 756 |
|
|---|
| 757 |
|
|---|
| 758 | const Double_t MHGausEvents::GetExpProb() const
|
|---|
| 759 | {
|
|---|
| 760 | return ( fFExpFit ? fFExpFit->GetProb() : 0.);
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 |
|
|---|
| 764 | const Int_t MHGausEvents::GetNdf() const
|
|---|
| 765 | {
|
|---|
| 766 | return ( fFGausFit ? fFGausFit->GetNDF() : 0);
|
|---|
| 767 | }
|
|---|
| 768 |
|
|---|
| 769 | const Double_t MHGausEvents::GetOffset() const
|
|---|
| 770 | {
|
|---|
| 771 | return ( fFExpFit ? fFExpFit->GetParameter(0) : 0.);
|
|---|
| 772 | }
|
|---|
| 773 |
|
|---|
| 774 |
|
|---|
| 775 | // -------------------------------------------------------------------------------
|
|---|
| 776 | //
|
|---|
| 777 | // Return the number of "pickup" events, which are events with values higher
|
|---|
| 778 | // than fPickupLimit sigmas from the mean
|
|---|
| 779 | //
|
|---|
| 780 | //
|
|---|
| 781 | const Double_t MHGausEvents::GetPickup() const
|
|---|
| 782 | {
|
|---|
| 783 |
|
|---|
| 784 | if ((fMean == 0.) && (fSigma == 0.))
|
|---|
| 785 | return -1.;
|
|---|
| 786 |
|
|---|
| 787 | const Int_t first = fHGausHist.GetXaxis()->FindBin(fMean+fPickupLimit*fSigma);
|
|---|
| 788 | const Int_t last = fHGausHist.GetXaxis()->GetLast();
|
|---|
| 789 |
|
|---|
| 790 | if (first >= last)
|
|---|
| 791 | return 0.;
|
|---|
| 792 |
|
|---|
| 793 | return fHGausHist.Integral(first, last, "width");
|
|---|
| 794 | }
|
|---|
| 795 |
|
|---|
| 796 |
|
|---|
| 797 | const Double_t MHGausEvents::GetSlope() const
|
|---|
| 798 | {
|
|---|
| 799 | return ( fFExpFit ? fFExpFit->GetParameter(1) : 0.);
|
|---|
| 800 | }
|
|---|
| 801 |
|
|---|
| 802 | // --------------------------------------------------------------------------
|
|---|
| 803 | //
|
|---|
| 804 | // Default InitBins, can be overloaded.
|
|---|
| 805 | //
|
|---|
| 806 | // Executes:
|
|---|
| 807 | // - fHGausHist.SetBins(fNbins,fFirst,fLast)
|
|---|
| 808 | //
|
|---|
| 809 | void MHGausEvents::InitBins()
|
|---|
| 810 | {
|
|---|
| 811 | fHGausHist.SetBins(fNbins,fFirst,fLast);
|
|---|
| 812 | }
|
|---|
| 813 |
|
|---|
| 814 | const Bool_t MHGausEvents::IsEmpty() const
|
|---|
| 815 | {
|
|---|
| 816 | return !(fHGausHist.GetEntries());
|
|---|
| 817 | }
|
|---|
| 818 |
|
|---|
| 819 |
|
|---|
| 820 | const Bool_t MHGausEvents::IsExcluded() const
|
|---|
| 821 | {
|
|---|
| 822 | return TESTBIT(fFlags,kExcluded);
|
|---|
| 823 | }
|
|---|
| 824 |
|
|---|
| 825 |
|
|---|
| 826 | const Bool_t MHGausEvents::IsExpFitOK() const
|
|---|
| 827 | {
|
|---|
| 828 | return TESTBIT(fFlags,kExpFitOK);
|
|---|
| 829 | }
|
|---|
| 830 |
|
|---|
| 831 | const Bool_t MHGausEvents::IsFourierSpectrumOK() const
|
|---|
| 832 | {
|
|---|
| 833 | return TESTBIT(fFlags,kFourierSpectrumOK);
|
|---|
| 834 | }
|
|---|
| 835 |
|
|---|
| 836 |
|
|---|
| 837 | const Bool_t MHGausEvents::IsGausFitOK() const
|
|---|
| 838 | {
|
|---|
| 839 | return TESTBIT(fFlags,kGausFitOK);
|
|---|
| 840 | }
|
|---|
| 841 |
|
|---|
| 842 |
|
|---|
| 843 | // -----------------------------------------------------------------------------------
|
|---|
| 844 | //
|
|---|
| 845 | // A default print
|
|---|
| 846 | //
|
|---|
| 847 | void MHGausEvents::Print(const Option_t *o) const
|
|---|
| 848 | {
|
|---|
| 849 |
|
|---|
| 850 | *fLog << all << endl;
|
|---|
| 851 | *fLog << all << "Results of the Gauss Fit in pixel: " << fPixId << endl;
|
|---|
| 852 | *fLog << all << "Mean: " << GetMean() << endl;
|
|---|
| 853 | *fLog << all << "Sigma: " << GetSigma() << endl;
|
|---|
| 854 | *fLog << all << "Chisquare: " << GetChiSquare() << endl;
|
|---|
| 855 | *fLog << all << "DoF: " << GetNdf() << endl;
|
|---|
| 856 | *fLog << all << "Probability: " << GetProb() << endl;
|
|---|
| 857 | *fLog << all << endl;
|
|---|
| 858 |
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | // --------------------------------------------------------------------------
|
|---|
| 862 | //
|
|---|
| 863 | // Re-normalize the results, has to be overloaded
|
|---|
| 864 | //
|
|---|
| 865 | void MHGausEvents::Renorm()
|
|---|
| 866 | {
|
|---|
| 867 | }
|
|---|
| 868 |
|
|---|
| 869 | // -----------------------------------------------------------------------------
|
|---|
| 870 | //
|
|---|
| 871 | // If flag IsGausFitOK() is set (histogram already successfully fitted),
|
|---|
| 872 | // returns kTRUE
|
|---|
| 873 | //
|
|---|
| 874 | // If both fMean and fSigma are still zero, call FitGaus()
|
|---|
| 875 | //
|
|---|
| 876 | // Repeats the Gauss fit in a smaller range, defined by:
|
|---|
| 877 | //
|
|---|
| 878 | // min = GetMean() - fBlackoutLimit * GetSigma();
|
|---|
| 879 | // max = GetMean() + fPickupLimit * GetSigma();
|
|---|
| 880 | //
|
|---|
| 881 | // The fit results are retrieved and stored in class-own variables.
|
|---|
| 882 | //
|
|---|
| 883 | // A flag IsGausFitOK() is set according to whether the fit probability
|
|---|
| 884 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than
|
|---|
| 885 | // fNDFLimit and whether results are NaNs.
|
|---|
| 886 | //
|
|---|
| 887 | Bool_t MHGausEvents::RepeatFit(const Option_t *option)
|
|---|
| 888 | {
|
|---|
| 889 |
|
|---|
| 890 | if (IsGausFitOK())
|
|---|
| 891 | return kTRUE;
|
|---|
| 892 |
|
|---|
| 893 | if ((fMean == 0.) && (fSigma == 0.))
|
|---|
| 894 | return FitGaus();
|
|---|
| 895 |
|
|---|
| 896 | //
|
|---|
| 897 | // Get new fitting ranges
|
|---|
| 898 | //
|
|---|
| 899 | Axis_t rmin = fMean - fBlackoutLimit * fSigma;
|
|---|
| 900 | Axis_t rmax = fMean + fPickupLimit * fSigma;
|
|---|
| 901 |
|
|---|
| 902 | Axis_t hmin = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst());
|
|---|
| 903 | Axis_t hmax = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) ;
|
|---|
| 904 |
|
|---|
| 905 | fFGausFit->SetRange(hmin < rmin ? rmin : hmin , hmax > rmax ? rmax : hmax);
|
|---|
| 906 |
|
|---|
| 907 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 908 |
|
|---|
| 909 | fMean = fFGausFit->GetParameter(1);
|
|---|
| 910 | fMeanErr = fFGausFit->GetParameter(2);
|
|---|
| 911 | fSigma = fFGausFit->GetParError(1) ;
|
|---|
| 912 | fSigmaErr = fFGausFit->GetParError(2) ;
|
|---|
| 913 | fProb = fFGausFit->GetProb() ;
|
|---|
| 914 |
|
|---|
| 915 | //
|
|---|
| 916 | // The fit result is accepted under condition:
|
|---|
| 917 | // 1) The results are not nan's
|
|---|
| 918 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
|---|
| 919 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
|---|
| 920 | //
|
|---|
| 921 | if ( TMath::IsNaN ( fMean )
|
|---|
| 922 | || TMath::IsNaN ( fMeanErr )
|
|---|
| 923 | || TMath::IsNaN ( fProb )
|
|---|
| 924 | || TMath::IsNaN ( fSigma )
|
|---|
| 925 | || TMath::IsNaN ( fSigmaErr )
|
|---|
| 926 | || fFGausFit->GetNDF() < fNDFLimit
|
|---|
| 927 | || fProb < fProbLimit )
|
|---|
| 928 | return kFALSE;
|
|---|
| 929 |
|
|---|
| 930 | SetGausFitOK(kTRUE);
|
|---|
| 931 | return kTRUE;
|
|---|
| 932 |
|
|---|
| 933 | }
|
|---|
| 934 |
|
|---|
| 935 | // --------------------------------------------------------------------------
|
|---|
| 936 | //
|
|---|
| 937 | // Default Reset(), can be overloaded.
|
|---|
| 938 | //
|
|---|
| 939 | // Executes:
|
|---|
| 940 | // - Clear()
|
|---|
| 941 | // - fHGausHist.Reset()
|
|---|
| 942 | // - fEvents.Set(0)
|
|---|
| 943 | //
|
|---|
| 944 | void MHGausEvents::Reset()
|
|---|
| 945 | {
|
|---|
| 946 |
|
|---|
| 947 | Clear();
|
|---|
| 948 | fHGausHist.Reset();
|
|---|
| 949 | fEvents.Set(0);
|
|---|
| 950 |
|
|---|
| 951 | }
|
|---|
| 952 |
|
|---|
| 953 | // --------------------------------------------------------------------------
|
|---|
| 954 | //
|
|---|
| 955 | // Set Excluded bit from outside
|
|---|
| 956 | //
|
|---|
| 957 | void MHGausEvents::SetExcluded(const Bool_t b)
|
|---|
| 958 | {
|
|---|
| 959 | b ? SETBIT(fFlags,kExcluded) : CLRBIT(fFlags,kExcluded);
|
|---|
| 960 | }
|
|---|
| 961 |
|
|---|
| 962 |
|
|---|
| 963 | // -------------------------------------------------------------------
|
|---|
| 964 | //
|
|---|
| 965 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 966 | //
|
|---|
| 967 | void MHGausEvents::SetExpFitOK(const Bool_t b)
|
|---|
| 968 | {
|
|---|
| 969 |
|
|---|
| 970 | b ? SETBIT(fFlags,kExpFitOK) : CLRBIT(fFlags,kExpFitOK);
|
|---|
| 971 | }
|
|---|
| 972 |
|
|---|
| 973 | // -------------------------------------------------------------------
|
|---|
| 974 | //
|
|---|
| 975 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 976 | //
|
|---|
| 977 | void MHGausEvents::SetFourierSpectrumOK(const Bool_t b)
|
|---|
| 978 | {
|
|---|
| 979 |
|
|---|
| 980 | b ? SETBIT(fFlags,kFourierSpectrumOK) : CLRBIT(fFlags,kFourierSpectrumOK);
|
|---|
| 981 | }
|
|---|
| 982 |
|
|---|
| 983 |
|
|---|
| 984 | // -------------------------------------------------------------------
|
|---|
| 985 | //
|
|---|
| 986 | // The flag setters are to be used ONLY for Monte-Carlo!!
|
|---|
| 987 | //
|
|---|
| 988 | void MHGausEvents::SetGausFitOK(const Bool_t b)
|
|---|
| 989 | {
|
|---|
| 990 | b ? SETBIT(fFlags,kGausFitOK) : CLRBIT(fFlags,kGausFitOK);
|
|---|
| 991 |
|
|---|
| 992 | }
|
|---|