source: trunk/MagicSoft/Mars/mcalib/MHGausEvents.h@ 3394

Last change on this file since 3394 was 3295, checked in by gaug, 21 years ago
*** empty log message ***
File size: 6.8 KB
Line 
1#ifndef MARS_MHGausEvents
2#define MARS_MHGausEvents
3
4#ifndef ROOT_TH1
5#include <TH1.h>
6#endif
7
8#ifndef MARS_MH
9#include "MH.h"
10#endif
11
12class TVirtualPad;
13class TGraph;
14class TArrayF;
15class TH1F;
16class TH1I;
17class TF1;
18class MHGausEvents : public MH
19{
20private:
21
22 const static Float_t fgProbLimit; // Default probability limit for judgement if fit is OK
23 const static Int_t fgNDFLimit; // Default NDF limit for judgement if fit is OK
24 const static Int_t fgPowerProbabilityBins; // Default number of bins for the projected power spectrum
25 const static Int_t fgBinsAfterStripping; // Default number of bins for the Gauss Histogram after stripping off the zeros at both end
26
27 Int_t fPowerProbabilityBins; // number of bins for the projected power spectrum
28 Int_t fBinsAfterStripping; // number of bins for the Gauss Histogram after stripping off the zeros at both end
29 Float_t fEventFrequency; // The event frequency in Hertz (to be set)
30
31 TH1I *fHPowerProbability; // Fourier transform of fEvents projected on y-axis
32 TArrayF *fPowerSpectrum; // Fourier transform of fEvents
33
34 TGraph *fGraphEvents; //! TGraph to display the event array (will not be cloned!!)
35 TGraph *fGraphPowerSpectrum; //! TGraph to display the power spectrum array (will not be cloned!!)
36
37 Double_t fMean; // Mean of the Gauss fit
38 Double_t fSigma; // Sigma of the Gauss fit
39 Double_t fMeanErr; // Error of the mean of the Gauss fit
40 Double_t fSigmaErr; // Error of the sigma of the Gauss fit
41 Double_t fProb; // Probability of the Gauss fit (derived from Chi-Square and NDF
42
43 enum { kGausFitOK, kExpFitOK, kFourierSpectrumOK }; // Bits to hold information about fit results
44
45 Byte_t fFlags; // Byte to hold the bits fit result bits
46
47 Int_t fCurrentSize; // Current size of the array fEvents
48
49protected:
50
51 TH1F fHGausHist; // Histogram which should hold the Gaussian distribution
52 TArrayF fEvents; // Array which holds the entries of GausHist
53
54 TF1 *fFGausFit; // Gauss fit for fHGausHist
55 TF1 *fFExpFit; // Exponential fit for FHPowerProbability
56
57 Float_t fProbLimit; // Probability limit for judgement if fit is OK
58 Int_t fNDFLimit; // NDF limit for judgement if fit is OK
59
60 // Setters
61 void SetPowerProbabilityBins ( const Int_t nbins=fgPowerProbabilityBins ) { fPowerProbabilityBins = nbins; }
62 void SetBinsAfterStripping ( const Int_t nbins=fgBinsAfterStripping ) { fBinsAfterStripping = nbins; }
63
64 void DrawEvents(); // Draw a graph of the array fEvents
65 void DrawPowerSpectrum(TVirtualPad &pad, Int_t i); // Draw a graph of the array fPowerSpectrum and the hist fHPowerProbability
66
67 Float_t *CreateXaxis(Int_t n); // Create an x-axis for the TGraphs
68
69public:
70
71 MHGausEvents(const char* name=NULL, const char* title=NULL);
72 ~MHGausEvents();
73
74 virtual void Clear(Option_t *o="");
75 virtual void Reset();
76
77 // Setters
78 void SetEventFrequency(const Float_t f=0) { fEventFrequency = f; }
79
80 void SetMean ( const Double_t d ) { fMean = d; }
81 void SetMeanErr ( const Double_t d ) { fMeanErr = d; }
82 void SetSigma ( const Double_t d ) { fSigma = d; }
83 void SetSigmaErr( const Double_t d ) { fSigmaErr = d; }
84 void SetProb ( const Double_t d ) { fProb = d; }
85
86 void SetProbLimit( const Float_t lim=fgProbLimit ) { fProbLimit = lim; }
87 void SetNDFLimit( const Int_t lim=fgNDFLimit ) { fNDFLimit = lim; }
88
89 // Setters ONLY for MC:
90 void SetGausFitOK( const Bool_t b );
91 void SetExpFitOK( const Bool_t b );
92 void SetFourierSpectrumOK( const Bool_t b );
93
94 // Getters
95 const Double_t GetMean() const { return fMean; }
96 const Double_t GetMeanErr() const { return fMeanErr; }
97 const Double_t GetSigma() const { return fSigma; }
98 const Double_t GetSigmaErr() const { return fSigmaErr; }
99 const Double_t GetChiSquare() const;
100 const Double_t GetProb() const { return fProb; }
101 const Int_t GetNdf() const;
102
103 const Double_t GetSlope() const;
104 const Double_t GetOffset() const;
105 const Double_t GetExpChiSquare() const;
106 const Double_t GetExpProb() const;
107 const Int_t GetExpNdf() const;
108
109 TH1F *GetHGausHist() { return &fHGausHist; }
110 const TH1F *GetHGausHist() const { return &fHGausHist; }
111
112 TArrayF *GetEvents() { return &fEvents; }
113 const TArrayF *GetEvents() const { return &fEvents; }
114
115 TArrayF *GetPowerSpectrum() { return fPowerSpectrum; }
116 const TArrayF *GetPowerSpectrum() const { return fPowerSpectrum; }
117
118 TF1 *GetFGausFit() { return fFGausFit; }
119 const TF1 *GetFGausFit() const { return fFGausFit; }
120
121 TH1I *GetHPowerProbability() { return fHPowerProbability; }
122 const TH1I *GetHPowerProbability() const { return fHPowerProbability; }
123
124 TF1 *GetFExpFit() { return fFExpFit; }
125 const TF1 *GetFExpFit() const { return fFExpFit; }
126
127 TGraph *GetGraphEvents() { return fGraphEvents; }
128 const TGraph *GetGraphEvents() const { return fGraphEvents; }
129
130 TGraph *GetGraphPowerSpectrum() { return fGraphPowerSpectrum; }
131 const TGraph *GetGraphPowerSpectrum() const { return fGraphPowerSpectrum; }
132
133 const Bool_t IsGausFitOK() const;
134 const Bool_t IsExpFitOK() const;
135 const Bool_t IsEmpty() const;
136 const Bool_t IsFourierSpectrumOK() const;
137
138 // Fill
139 void FillArray(const Float_t f); // Fill only the array fEvents
140 Bool_t FillHist(const Float_t f); // Fill only the histogram HGausHist
141 Bool_t FillHistAndArray(const Float_t f); // Fill bothe the array fEvents and the histogram HGausHist
142
143 // Fits
144 Bool_t FitGaus(Option_t *option="RQ0", const Double_t xmin=0., const Double_t xmax=0.); // Fit the histogram HGausHist with a Gaussian
145
146 // Draws
147 virtual void Draw(Option_t *option=""); // Default Draw
148
149 // Prints
150 virtual void Print(const Option_t *o="") const; // Default Print
151
152 // Miscelleaneous
153 void CreateFourierSpectrum(); // Create the fourier spectrum out of fEvents
154 void CreateGraphEvents(); // Create the TGraph fGraphEvents of fEvents
155 void CreateGraphPowerSpectrum(); // Create the TGraph fGraphPowerSpectrum out of fPowerSpectrum
156
157 ClassDef(MHGausEvents, 1) // Base class for events with Gaussian distributed values
158};
159
160#endif
Note: See TracBrowser for help on using the repository browser.