| 1 | #ifndef MARS_MHGausEvents
|
|---|
| 2 | #define MARS_MHGausEvents
|
|---|
| 3 |
|
|---|
| 4 | #ifndef ROOT_TH1
|
|---|
| 5 | #include <TH1.h>
|
|---|
| 6 | #endif
|
|---|
| 7 |
|
|---|
| 8 | #ifndef MARS_MH
|
|---|
| 9 | #include "MH.h"
|
|---|
| 10 | #endif
|
|---|
| 11 |
|
|---|
| 12 | class TVirtualPad;
|
|---|
| 13 | class TGraph;
|
|---|
| 14 | class TArrayF;
|
|---|
| 15 | class TH1F;
|
|---|
| 16 | class TH1I;
|
|---|
| 17 | class TF1;
|
|---|
| 18 | class MHGausEvents : public MH
|
|---|
| 19 | {
|
|---|
| 20 | private:
|
|---|
| 21 |
|
|---|
| 22 | const static Float_t fgProbLimit; // Default probability limit for judgement if fit is OK
|
|---|
| 23 | const static Int_t fgNDFLimit; // Default NDF limit for judgement if fit is OK
|
|---|
| 24 | const static Int_t fgPowerProbabilityBins; // Default number of bins for the projected power spectrum
|
|---|
| 25 | const static Int_t fgBinsAfterStripping; // Default number of bins for the Gauss Histogram after stripping off the zeros at both end
|
|---|
| 26 |
|
|---|
| 27 | Int_t fPowerProbabilityBins; // number of bins for the projected power spectrum
|
|---|
| 28 | Int_t fBinsAfterStripping; // number of bins for the Gauss Histogram after stripping off the zeros at both end
|
|---|
| 29 | Float_t fEventFrequency; // The event frequency in Hertz (to be set)
|
|---|
| 30 |
|
|---|
| 31 | TH1I *fHPowerProbability; // Fourier transform of fEvents projected on y-axis
|
|---|
| 32 | TArrayF *fPowerSpectrum; // Fourier transform of fEvents
|
|---|
| 33 |
|
|---|
| 34 | TGraph *fGraphEvents; //! TGraph to display the event array (will not be cloned!!)
|
|---|
| 35 | TGraph *fGraphPowerSpectrum; //! TGraph to display the power spectrum array (will not be cloned!!)
|
|---|
| 36 |
|
|---|
| 37 | Double_t fMean; // Mean of the Gauss fit
|
|---|
| 38 | Double_t fSigma; // Sigma of the Gauss fit
|
|---|
| 39 | Double_t fMeanErr; // Error of the mean of the Gauss fit
|
|---|
| 40 | Double_t fSigmaErr; // Error of the sigma of the Gauss fit
|
|---|
| 41 | Double_t fProb; // Probability of the Gauss fit (derived from Chi-Square and NDF
|
|---|
| 42 |
|
|---|
| 43 | enum { kGausFitOK, kExpFitOK, kFourierSpectrumOK }; // Bits to hold information about fit results
|
|---|
| 44 |
|
|---|
| 45 | Byte_t fFlags; // Byte to hold the bits fit result bits
|
|---|
| 46 |
|
|---|
| 47 | Int_t fCurrentSize; // Current size of the array fEvents
|
|---|
| 48 |
|
|---|
| 49 | protected:
|
|---|
| 50 |
|
|---|
| 51 | TH1F fHGausHist; // Histogram which should hold the Gaussian distribution
|
|---|
| 52 | TArrayF fEvents; // Array which holds the entries of GausHist
|
|---|
| 53 |
|
|---|
| 54 | TF1 *fFGausFit; // Gauss fit for fHGausHist
|
|---|
| 55 | TF1 *fFExpFit; // Exponential fit for FHPowerProbability
|
|---|
| 56 |
|
|---|
| 57 | Float_t fProbLimit; // Probability limit for judgement if fit is OK
|
|---|
| 58 | Int_t fNDFLimit; // NDF limit for judgement if fit is OK
|
|---|
| 59 |
|
|---|
| 60 | // Setters
|
|---|
| 61 | void SetPowerProbabilityBins ( const Int_t nbins=fgPowerProbabilityBins ) { fPowerProbabilityBins = nbins; }
|
|---|
| 62 | void SetBinsAfterStripping ( const Int_t nbins=fgBinsAfterStripping ) { fBinsAfterStripping = nbins; }
|
|---|
| 63 |
|
|---|
| 64 | void DrawEvents(); // Draw a graph of the array fEvents
|
|---|
| 65 | void DrawPowerSpectrum(TVirtualPad &pad, Int_t i); // Draw a graph of the array fPowerSpectrum and the hist fHPowerProbability
|
|---|
| 66 |
|
|---|
| 67 | Float_t *CreateXaxis(Int_t n); // Create an x-axis for the TGraphs
|
|---|
| 68 |
|
|---|
| 69 | public:
|
|---|
| 70 |
|
|---|
| 71 | MHGausEvents(const char* name=NULL, const char* title=NULL);
|
|---|
| 72 | ~MHGausEvents();
|
|---|
| 73 |
|
|---|
| 74 | virtual void Clear(Option_t *o="");
|
|---|
| 75 | virtual void Reset();
|
|---|
| 76 |
|
|---|
| 77 | // Setters
|
|---|
| 78 | void SetEventFrequency(const Float_t f=0) { fEventFrequency = f; }
|
|---|
| 79 |
|
|---|
| 80 | void SetMean ( const Double_t d ) { fMean = d; }
|
|---|
| 81 | void SetMeanErr ( const Double_t d ) { fMeanErr = d; }
|
|---|
| 82 | void SetSigma ( const Double_t d ) { fSigma = d; }
|
|---|
| 83 | void SetSigmaErr( const Double_t d ) { fSigmaErr = d; }
|
|---|
| 84 | void SetProb ( const Double_t d ) { fProb = d; }
|
|---|
| 85 |
|
|---|
| 86 | void SetProbLimit( const Float_t lim=fgProbLimit ) { fProbLimit = lim; }
|
|---|
| 87 | void SetNDFLimit( const Int_t lim=fgNDFLimit ) { fNDFLimit = lim; }
|
|---|
| 88 |
|
|---|
| 89 | // Setters ONLY for MC:
|
|---|
| 90 | void SetGausFitOK( const Bool_t b );
|
|---|
| 91 | void SetExpFitOK( const Bool_t b );
|
|---|
| 92 | void SetFourierSpectrumOK( const Bool_t b );
|
|---|
| 93 |
|
|---|
| 94 | // Getters
|
|---|
| 95 | const Double_t GetMean() const { return fMean; }
|
|---|
| 96 | const Double_t GetMeanErr() const { return fMeanErr; }
|
|---|
| 97 | const Double_t GetSigma() const { return fSigma; }
|
|---|
| 98 | const Double_t GetSigmaErr() const { return fSigmaErr; }
|
|---|
| 99 | const Double_t GetChiSquare() const;
|
|---|
| 100 | const Double_t GetProb() const { return fProb; }
|
|---|
| 101 | const Int_t GetNdf() const;
|
|---|
| 102 |
|
|---|
| 103 | const Double_t GetSlope() const;
|
|---|
| 104 | const Double_t GetOffset() const;
|
|---|
| 105 | const Double_t GetExpChiSquare() const;
|
|---|
| 106 | const Double_t GetExpProb() const;
|
|---|
| 107 | const Int_t GetExpNdf() const;
|
|---|
| 108 |
|
|---|
| 109 | TH1F *GetHGausHist() { return &fHGausHist; }
|
|---|
| 110 | const TH1F *GetHGausHist() const { return &fHGausHist; }
|
|---|
| 111 |
|
|---|
| 112 | TArrayF *GetEvents() { return &fEvents; }
|
|---|
| 113 | const TArrayF *GetEvents() const { return &fEvents; }
|
|---|
| 114 |
|
|---|
| 115 | TArrayF *GetPowerSpectrum() { return fPowerSpectrum; }
|
|---|
| 116 | const TArrayF *GetPowerSpectrum() const { return fPowerSpectrum; }
|
|---|
| 117 |
|
|---|
| 118 | TF1 *GetFGausFit() { return fFGausFit; }
|
|---|
| 119 | const TF1 *GetFGausFit() const { return fFGausFit; }
|
|---|
| 120 |
|
|---|
| 121 | TH1I *GetHPowerProbability() { return fHPowerProbability; }
|
|---|
| 122 | const TH1I *GetHPowerProbability() const { return fHPowerProbability; }
|
|---|
| 123 |
|
|---|
| 124 | TF1 *GetFExpFit() { return fFExpFit; }
|
|---|
| 125 | const TF1 *GetFExpFit() const { return fFExpFit; }
|
|---|
| 126 |
|
|---|
| 127 | TGraph *GetGraphEvents() { return fGraphEvents; }
|
|---|
| 128 | const TGraph *GetGraphEvents() const { return fGraphEvents; }
|
|---|
| 129 |
|
|---|
| 130 | TGraph *GetGraphPowerSpectrum() { return fGraphPowerSpectrum; }
|
|---|
| 131 | const TGraph *GetGraphPowerSpectrum() const { return fGraphPowerSpectrum; }
|
|---|
| 132 |
|
|---|
| 133 | const Bool_t IsGausFitOK() const;
|
|---|
| 134 | const Bool_t IsExpFitOK() const;
|
|---|
| 135 | const Bool_t IsEmpty() const;
|
|---|
| 136 | const Bool_t IsFourierSpectrumOK() const;
|
|---|
| 137 |
|
|---|
| 138 | // Fill
|
|---|
| 139 | void FillArray(const Float_t f); // Fill only the array fEvents
|
|---|
| 140 | Bool_t FillHist(const Float_t f); // Fill only the histogram HGausHist
|
|---|
| 141 | Bool_t FillHistAndArray(const Float_t f); // Fill bothe the array fEvents and the histogram HGausHist
|
|---|
| 142 |
|
|---|
| 143 | // Fits
|
|---|
| 144 | Bool_t FitGaus(Option_t *option="RQ0", const Double_t xmin=0., const Double_t xmax=0.); // Fit the histogram HGausHist with a Gaussian
|
|---|
| 145 |
|
|---|
| 146 | // Draws
|
|---|
| 147 | virtual void Draw(Option_t *option=""); // Default Draw
|
|---|
| 148 |
|
|---|
| 149 | // Prints
|
|---|
| 150 | virtual void Print(const Option_t *o="") const; // Default Print
|
|---|
| 151 |
|
|---|
| 152 | // Miscelleaneous
|
|---|
| 153 | void CreateFourierSpectrum(); // Create the fourier spectrum out of fEvents
|
|---|
| 154 | void CreateGraphEvents(); // Create the TGraph fGraphEvents of fEvents
|
|---|
| 155 | void CreateGraphPowerSpectrum(); // Create the TGraph fGraphPowerSpectrum out of fPowerSpectrum
|
|---|
| 156 |
|
|---|
| 157 | ClassDef(MHGausEvents, 1) // Base class for events with Gaussian distributed values
|
|---|
| 158 | };
|
|---|
| 159 |
|
|---|
| 160 | #endif
|
|---|