/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 04/2002 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MDataChain // ========== // // With this chain you can concatenate simple mathematical operations on // members of mars containers. // // // Rules // ----- // // In the constructor you can give rule, like // "HillasSource.fDist / MHillas.fLength" // Where MHillas/HillasSource is the name of the parameter container in // the parameter list and fDist/fLength is the name of the data members // in the containers. The result will be fDist divided by fLength. // // In case you want to access a data-member which is a data member object // you can acces it with (Remark: it must derive from MParContainer): // "MCameraLV.fPowerSupplyA.fVoltagePos5V" // // You can also use parantheses: // "HillasDource.fDist / (MHillas.fLength + MHillas.fWidth)" // // // Operators // --------- // // The allowed operations are: +, -, *, /, %, ^ // // While a%b returns the floating point reminder of a/b. // While a^b returns a to the power of b // // Warning: There is no priority rule build in. So better use parantheses // to get correct results. The rule is parsed/evaluated from the left // to the right, which means: // // "MHillas.fWidth + MHillas.fLength / HillasSource.fDist" // // is parses as // // "(MHillas.fWidth + MHillas.fLength) / HillasSource.fDist" // // You can also use mathmatical operators, eg: // "5*log10(MMcEvt.fEnergy*MHillas.fSize)" // // The allowed operators are: // exp(x) e^x // log(x) natural logarithm of x // pow10(x) 10^x // log2(x) logarithm of x to base two // log10(x) logarithm of x to base ten // cos(x) cosine of x // sin(x) sine of x // tan(x) tangent of x // cosh(x) hyperbolic cosine of x // sinh(x) hyperbolic sine of x // tanh(x) hyperbolic tangent of x // acosh(x) arc hyperbolic cosine of x // asinh(x) arc hyperbolic sine of x // atanh(x) arc hyperbolic tangent of x // acos(x) arc cosine (inverse cosine) of x // asin(x) arc sine (inverse sine) of x // atan(x) arc tangent (inverse tangent) of x // sqrt(x) square root of x // sqr(x) square of x // abs(x) absolute value of x, |x| // floor(x) round down to the nearest integer (floor(9.9)=9) // ceil(x) round up to the nearest integer (floor(9.1)=10) // round(x) round to the nearest integer // r2d(x) transform radians to degrees // d2r(x) transform degrees to radians // rand(x) returns a uniform deviate on the interval ( 0, x ]. // (gRandom->Uniform(x) is returned) // randp(x) returns gRandom->Poisson(x) // rande(x) returns gRandom->Exp(x) // randi(x) returns gRandom->Integer(x) // randg(x) returns gRandom->Gaus(0, x) // randl(x) returns gRandom->Landau(0, x) // isnan(x) return 1 if x is NaN (Not a Number) otherwise 0 // finite(x) return 1 if the number is a valid double (not NaN, inf) // // NaN (Not a Number) means normally a number which is to small to be // stored in a floating point variable (eg. 0 // isalnum, ... #include // strtod, ... #include #include #include "MLog.h" #include "MLogManip.h" #include "MDataList.h" #include "MDataValue.h" #include "MDataMember.h" #include "MDataFormula.h" #include "MDataElement.h" ClassImp(MDataChain); using namespace std; // -------------------------------------------------------------------------- // // Constructor which takes a rule and a surrounding operator as argument // MDataChain::MDataChain(const char *rule, OperatorType_t op) : fOperatorType(op) { fName = "MDataChain"; fTitle = rule; fMember=ParseString(rule, 1); } // -------------------------------------------------------------------------- // // Constructor taking a rule as an argument. For more details see // class description // MDataChain::MDataChain(const char *rule, const char *name, const char *title) : fMember(NULL), fOperatorType(kENoop) { fName = name ? name : "MDataChain"; fTitle = title ? title : rule; if (TString(rule).IsNull()) return; *fLog << inf << "Trying to resolve rule... " << flush; if (!(fMember=ParseString(rule, 1))) { *fLog << err << dbginf << "Parsing '" << rule << "' failed." << endl; return; } *fLog << inf << "found: " << GetRule() << endl; } // -------------------------------------------------------------------------- // // PreProcesses all members in the list // Bool_t MDataChain::PreProcess(const MParList *pList) { return fMember ? fMember->PreProcess(pList) : kFALSE; } // -------------------------------------------------------------------------- // // Checks whether at least one member has the ready-to-save flag. // Bool_t MDataChain::IsReadyToSave() const { *fLog << all << "fM=" << fMember << "/" << (int)fMember->IsReadyToSave() << " " << endl; return fMember ? fMember->IsReadyToSave() : kFALSE; } // -------------------------------------------------------------------------- // // Destructor. Delete filters. // MDataChain::~MDataChain() { if (fMember) delete fMember; } // -------------------------------------------------------------------------- // // Returns the number of alphanumeric characters (including '.' and ';') // in the given string // Int_t MDataChain::IsAlNum(TString txt) { int l = txt.Length(); for (int i=0; i=0 || txt.First("++")>=0 || txt.First("+-")>=0 || txt.First("-+")>=0) { txt.ReplaceAll("--", "+"); txt.ReplaceAll("++", "+"); txt.ReplaceAll("-+", "-"); txt.ReplaceAll("+-", "-"); } } // -------------------------------------------------------------------------- // // Core of the data chain. Here the chain is constructed out of the rule. // MData *MDataChain::ParseString(TString txt, Int_t level) { if (level==0) SimplifyString(txt); MData *member0=NULL; char type=0; int nlist = 0; while (!txt.IsNull()) { MData *newmember = NULL; txt = txt.Strip(TString::kBoth); switch (txt[0]) { case '(': { // // Search for the corresponding parantheses // const Int_t first=GetBracket(txt, '(', ')'); if (first==txt.Length()) { *fLog << err << dbginf << "Syntax Error: ')' missing." << endl; if (member0) delete member0; return NULL; } // // Make a copy of the 'interieur' and delete the substring // including the brackets // TString sub = txt(1, first-1); txt.Remove(0, first+1); // // Parse the substring // newmember = ParseString(sub, level+1); if (!newmember) { *fLog << err << dbginf << "Parsing '" << sub << "' failed." << endl; if (member0) delete member0; return NULL; } } break; case ')': *fLog << err << dbginf << "Syntax Error: Too many ')'" << endl; if (member0) delete member0; return NULL; case '+': case '-': case '*': case '/': case '%': case '^': if (member0) { // // Check for the type of the symbol // char is = txt[0]; txt.Remove(0, 1); // // If no filter is available or the available filter // is of a different symbols we have to create a new // data list with the new symbol // if (/*!member0->InheritsFrom(MDataMember::Class()) ||*/ type!=is) { MDataList *list = new MDataList(is); list->SetName(Form("List_%c_%d", is, 10*level+nlist++)); list->SetOwner(); list->AddToList(member0); member0 = list; type = is; } continue; } if (txt[0]!='-' && txt[0]!='+') { *fLog << err << dbginf << "Syntax Error: First argument of '"; *fLog << txt[0] << "' opartor missing." << endl; if (member0) delete member0; return NULL; } // FALLTHROU case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '[': case ']': if ((txt[0]!='-' && txt[0]!='+') || isdigit(txt[1]) || txt[1]=='.') { if (!txt.IsNull() && txt[0]=='[') { Int_t first = GetBracket(txt, '[', ']'); TString op = txt(1, first-1); txt.Remove(0, first+1); newmember = new MDataValue(0, atoi(op)); break; } char *end; Double_t num = strtod(txt.Data(), &end); if (!end || txt.Data()==end) { *fLog << err << dbginf << "Error trying to convert '" << txt << "' to value." << endl; if (member0) delete member0; return NULL; } txt.Remove(0, end-txt.Data()); newmember = new MDataValue(num); break; } // FALLTHROUH default: int i = IsAlNum(txt); if (i==0) { *fLog << err << dbginf << "Syntax Error: Name of data member missing in '" << txt << "'" << endl; if (member0) delete member0; return NULL; } TString text = txt(0, i); txt.Remove(0, i); txt = txt.Strip(TString::kBoth); if (!txt.IsNull() && txt[0]=='[') { Int_t first = GetBracket(txt, '[', ']'); TString op = txt(1, first-1); txt.Remove(0, first+1); newmember = new MDataElement(text, atoi(op)); break; } if ((txt.IsNull() || txt[0]!='(') && text[0]!='-' && text[0]!='+') { newmember = ParseDataMember(text.Data()); break; } OperatorType_t op = ParseOperator(text); Int_t first = GetBracket(txt, '(', ')'); TString sub = op==kENegative || op==kEPositive ? text.Remove(0,1) + txt : txt(1, first-1); txt.Remove(0, first+1); if (op==kENoop) { newmember = new MDataFormula(Form("%s(%s)", (const char*)text, (const char*)sub)); if (newmember->IsValid()) break; *fLog << err << dbginf << "Syntax Error: Operator '" << text << "' unknown." << endl; if (member0) delete member0; return NULL; } newmember = new MDataChain(sub, op); if (!newmember->IsValid()) { *fLog << err << dbginf << "Syntax Error: Error parsing contents '" << sub << "' of operator " << text << endl; delete newmember; if (member0) delete member0; return NULL; } } if (!member0) { member0 = newmember; continue; } if (!member0->InheritsFrom(MDataList::Class())) continue; ((MDataList*)member0)->AddToList(newmember); } return member0; } // -------------------------------------------------------------------------- // // Returns the value described by the rule // Double_t MDataChain::GetValue() const { if (!fMember) { //*fLog << warn << "MDataChain not valid." << endl; return 0; } const Double_t val = fMember->GetValue(); switch (fOperatorType) { case kEAbs: return TMath::Abs(val); case kELog: return TMath::Log(val); case kELog2: return TMath::Log2(val); case kELog10: return TMath::Log10(val); case kESin: return TMath::Sin(val); case kECos: return TMath::Cos(val); case kETan: return TMath::Tan(val); case kESinH: return TMath::SinH(val); case kECosH: return TMath::CosH(val); case kETanH: return TMath::TanH(val); case kEASin: return TMath::ASin(val); case kEACos: return TMath::ACos(val); case kEATan: return TMath::ATan(val); case kEASinH: return TMath::ASinH(val); case kEACosH: return TMath::ACosH(val); case kEATanH: return TMath::ATanH(val); case kESqrt: return TMath::Sqrt(val); case kESqr: return val*val; case kEExp: return TMath::Exp(val); case kEPow10: return TMath::Power(10, val); case kESgn: return val<0 ? -1 : 1; case kENegative: return -val; case kEPositive: return val; case kEFloor: return TMath::Floor(val); case kECeil: return TMath::Ceil(val); case kERound: return TMath::Nint(val); case kERad2Deg: return val*180/TMath::Pi(); case kEDeg2Rad: return val*TMath::Pi()/180; case kERandom: return gRandom ? gRandom->Uniform(val) : 0; case kERandomP: return gRandom ? gRandom->Poisson(val) : 0; case kERandomE: return gRandom ? gRandom->Exp(val) : 0; case kERandomI: return gRandom ? gRandom->Integer((int)val) : 0; case kERandomG: return gRandom ? gRandom->Gaus(0, val) : 0; case kERandomL: return gRandom ? gRandom->Landau(0, val) : 0; case kEIsNaN: return TMath::IsNaN(val); case kEFinite: return TMath::Finite(val); case kENoop: return val; } *fLog << warn << "No Case for " << fOperatorType << " available." << endl; return 0; } // -------------------------------------------------------------------------- // // Builds a rule from all the chain members. This is a rule which could // be used to rebuild the chain. // TString MDataChain::GetRule() const { if (!fMember) return ""; TString str; Bool_t bracket = fOperatorType!=kENoop && !fMember->InheritsFrom(MDataList::Class()); switch (fOperatorType) { case kEAbs: str += "abs" ; break; case kELog: str += "log" ; break; case kELog2: str += "log2" ; break; case kELog10: str += "log10" ; break; case kESin: str += "sin" ; break; case kECos: str += "cos" ; break; case kETan: str += "tan" ; break; case kESinH: str += "sinh" ; break; case kECosH: str += "cosh" ; break; case kETanH: str += "tanh" ; break; case kEASin: str += "asin" ; break; case kEACos: str += "acos" ; break; case kEATan: str += "atan" ; break; case kEASinH: str += "asinh" ; break; case kEACosH: str += "acosh" ; break; case kEATanH: str += "atanh" ; break; case kESqrt: str += "sqrt" ; break; case kESqr: str += "sqr" ; break; case kEExp: str += "exp" ; break; case kEPow10: str += "pow10" ; break; case kESgn: str += "sgn" ; break; case kENegative: str += "-" ; break; case kEPositive: str += "+" ; break; case kEFloor: str += "floor" ; break; case kECeil: str += "ceil" ; break; case kERound: str += "round" ; break; case kERad2Deg: str += "r2d" ; break; case kEDeg2Rad: str += "d2r" ; break; case kERandom: str += "rand" ; break; case kERandomP: str += "randp" ; break; case kERandomE: str += "rande" ; break; case kERandomI: str += "randi" ; break; case kERandomG: str += "randg" ; break; case kERandomL: str += "randl" ; break; case kEIsNaN: str += "isnan" ; break; case kEFinite: str += "finite"; break; case kENoop: break; } if (bracket) str += "("; str += fMember->GetRule(); if (bracket) str += ")"; return str; } // -------------------------------------------------------------------------- // // Return a comma seperated list of all data members used in the chain. // This is mainly used in MTask::AddToBranchList // TString MDataChain::GetDataMember() const { return fMember->GetDataMember(); } void MDataChain::SetVariables(const TArrayD &arr) { return fMember->SetVariables(arr); }