1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
|
---|
18 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2002-2006
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MExtralgoSpline
|
---|
28 | //
|
---|
29 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
---|
30 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
---|
31 | //
|
---|
32 | // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
|
---|
33 | // which means the FADC value subtracted by the clock-noise corrected pedestal.
|
---|
34 | //
|
---|
35 | // The coefficients "y2a" get immediately divided 6. and are called here
|
---|
36 | // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
|
---|
37 | // the second derivative coefficients any more.
|
---|
38 | //
|
---|
39 | // The calculation of the cubic-spline interpolated value "y" on a point
|
---|
40 | // "x" along the FADC-slices axis becomes:
|
---|
41 | //
|
---|
42 | // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
|
---|
43 | // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
|
---|
44 | //
|
---|
45 | // with:
|
---|
46 | // a = (khi - x)
|
---|
47 | // b = (x - klo)
|
---|
48 | //
|
---|
49 | // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
|
---|
50 | // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
|
---|
51 | //
|
---|
52 | // An analogues formula is used for the low-gain values.
|
---|
53 | //
|
---|
54 | // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
|
---|
55 | // following simplified algorithm:
|
---|
56 | //
|
---|
57 | // for (Int_t i=1;i<range-1;i++) {
|
---|
58 | // pp = fHiGainSecondDeriv[i-1] + 4.;
|
---|
59 | // fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
|
---|
60 | // fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
---|
61 | // }
|
---|
62 | //
|
---|
63 | // for (Int_t k=range-2;k>=0;k--)
|
---|
64 | // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
|
---|
65 | //
|
---|
66 | //
|
---|
67 | // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
|
---|
68 | // which simplifies the Numerical Recipes algorithm.
|
---|
69 | // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
|
---|
70 | //
|
---|
71 | // The algorithm to search the time proceeds as follows:
|
---|
72 | //
|
---|
73 | // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
|
---|
74 | // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
|
---|
75 | // the MAGIC FADCs).
|
---|
76 | // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
|
---|
77 | // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
|
---|
78 | // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
|
---|
79 | // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
|
---|
80 | // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
|
---|
81 | // If no maximum is found, go to interval fAbMaxPos+1.
|
---|
82 | // --> 4 function evaluations
|
---|
83 | // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
|
---|
84 | // --> 4 function evaluations
|
---|
85 | // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
|
---|
86 | // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
|
---|
87 | // --> 14 function evaluations
|
---|
88 | // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
|
---|
89 | // returned, else:
|
---|
90 | // 9) The Half Maximum is calculated.
|
---|
91 | // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
|
---|
92 | // is found at "klo".
|
---|
93 | // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
|
---|
94 | // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
|
---|
95 | // --> maximum 12 interations.
|
---|
96 | //
|
---|
97 | // The algorithm to search the charge proceeds as follows:
|
---|
98 | //
|
---|
99 | // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
|
---|
100 | // time search.
|
---|
101 | // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
|
---|
102 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
|
---|
103 | // (Int_t)(fAbMaxPos + fFallTimeHiGain)
|
---|
104 | // (default: fRiseTime: 1.5, fFallTime: 4.5)
|
---|
105 | // sum the fLoGainSignal between:
|
---|
106 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
|
---|
107 | // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
|
---|
108 | // (default: fLoGainStretch: 1.5)
|
---|
109 | //
|
---|
110 | // The values: fNumHiGainSamples and fNumLoGainSamples are set to:
|
---|
111 | // 1) If Charge Type: kAmplitude was chosen: 1.
|
---|
112 | // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
|
---|
113 | // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
|
---|
114 | //
|
---|
115 | // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
|
---|
116 | // to modify the ranges.
|
---|
117 | //
|
---|
118 | // Defaults:
|
---|
119 | // fHiGainFirst = 2
|
---|
120 | // fHiGainLast = 14
|
---|
121 | // fLoGainFirst = 2
|
---|
122 | // fLoGainLast = 14
|
---|
123 | //
|
---|
124 | // Call: SetResolution() to define the resolution of the half-maximum search.
|
---|
125 | // Default: 0.01
|
---|
126 | //
|
---|
127 | // Call: SetRiseTime() and SetFallTime() to define the integration ranges
|
---|
128 | // for the case, the extraction type kIntegral has been chosen.
|
---|
129 | //
|
---|
130 | // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
|
---|
131 | // computation of the amplitude at the maximum (default) and extraction
|
---|
132 | // the position of the maximum (default)
|
---|
133 | // --> no further function evaluation needed
|
---|
134 | // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
|
---|
135 | // computation of the integral beneith the spline between fRiseTimeHiGain
|
---|
136 | // from the position of the maximum to fFallTimeHiGain after the position of
|
---|
137 | // the maximum. The Low Gain is computed with half a slice more at the rising
|
---|
138 | // edge and half a slice more at the falling edge.
|
---|
139 | // The time of the half maximum is returned.
|
---|
140 | // --> needs one function evaluations but is more precise
|
---|
141 | //
|
---|
142 | //////////////////////////////////////////////////////////////////////////////
|
---|
143 | #include "MExtralgoSpline.h"
|
---|
144 |
|
---|
145 | using namespace std;
|
---|
146 |
|
---|
147 | void MExtralgoSpline::InitDerivatives() const
|
---|
148 | {
|
---|
149 | fDer1[0] = 0.;
|
---|
150 | fDer2[0] = 0.;
|
---|
151 |
|
---|
152 | for (Int_t i=1; i<fNum-1; i++)
|
---|
153 | {
|
---|
154 | const Float_t pp = fDer2[i-1] + 4.;
|
---|
155 |
|
---|
156 | fDer2[i] = -1.0/pp;
|
---|
157 |
|
---|
158 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
|
---|
159 | fDer1[i] = (6.0*d1-fDer1[i-1])/pp;
|
---|
160 | }
|
---|
161 |
|
---|
162 | fDer2[fNum-1] = 0.;
|
---|
163 |
|
---|
164 | for (Int_t k=fNum-2; k>=0; k--)
|
---|
165 | fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k];
|
---|
166 |
|
---|
167 | for (Int_t k=fNum-2; k>=0; k--)
|
---|
168 | fDer2[k] /= 6.;
|
---|
169 | }
|
---|
170 |
|
---|
171 | Float_t MExtralgoSpline::CalcIntegral(Float_t start, Float_t range) const
|
---|
172 | {
|
---|
173 | // The number of steps is calculated directly from the integration
|
---|
174 | // window. This is the only way to ensure we are not dealing with
|
---|
175 | // numerical rounding uncertanties, because we always get the same
|
---|
176 | // value under the same conditions -- it might still be different on
|
---|
177 | // other machines!
|
---|
178 | const Float_t step = 0.2;
|
---|
179 | const Float_t width = fRiseTime+fFallTime;
|
---|
180 | const Float_t max = range-1 - (width+step);
|
---|
181 | const Int_t num = TMath::Nint(width/step);
|
---|
182 |
|
---|
183 | // The order is important. In some cases (limlo-/limup-check) it can
|
---|
184 | // happen that max<0. In this case we start at 0
|
---|
185 | if (start > max)
|
---|
186 | start = max;
|
---|
187 | if (start < 0)
|
---|
188 | start = 0;
|
---|
189 |
|
---|
190 | start += step/2;
|
---|
191 |
|
---|
192 | Double_t sum = 0.;
|
---|
193 | for (Int_t i=0; i<num; i++)
|
---|
194 | {
|
---|
195 | const Float_t x = start+i*step;
|
---|
196 | const Int_t klo = (Int_t)TMath::Floor(x);
|
---|
197 | // Note: if x is close to one integer number (= a FADC sample)
|
---|
198 | // we get the same result by using that sample as klo, and the
|
---|
199 | // next one as khi, or using the sample as khi and the previous
|
---|
200 | // one as klo (the spline is of course continuous). So we do not
|
---|
201 | // expect problems from rounding issues in the argument of
|
---|
202 | // Floor() above (we have noticed differences in roundings
|
---|
203 | // depending on the compilation options).
|
---|
204 |
|
---|
205 | sum += Eval(x, klo);
|
---|
206 |
|
---|
207 | // FIXME? Perhaps the integral should be done analitically
|
---|
208 | // between every two FADC slices, instead of numerically
|
---|
209 | }
|
---|
210 | sum *= step; // Transform sum in integral
|
---|
211 | return sum;
|
---|
212 | }
|
---|
213 |
|
---|
214 | Float_t MExtralgoSpline::ExtractNoise(Int_t iter)
|
---|
215 | {
|
---|
216 | const Float_t nsx = iter * fResolution;
|
---|
217 |
|
---|
218 | if (fExtractionType == kAmplitude)
|
---|
219 | return Eval(nsx+1, 1);
|
---|
220 | else
|
---|
221 | return CalcIntegral(2. + nsx, fNum);
|
---|
222 | }
|
---|
223 |
|
---|
224 | void MExtralgoSpline::Extract(Byte_t sat, Int_t maxpos)
|
---|
225 | {
|
---|
226 | fSignal = 0;
|
---|
227 | fTime = 0;
|
---|
228 | fSignalDev = -1;
|
---|
229 | fTimeDev = -1;
|
---|
230 |
|
---|
231 | //
|
---|
232 | // Allow no saturated slice and
|
---|
233 | // Don't start if the maxpos is too close to the limits.
|
---|
234 | //
|
---|
235 | const Bool_t limlo = maxpos < TMath::Ceil(fRiseTime);
|
---|
236 | const Bool_t limup = maxpos > fNum-TMath::Ceil(fFallTime)-1;
|
---|
237 | if (sat || limlo || limup)
|
---|
238 | {
|
---|
239 | fTimeDev = 1.0;
|
---|
240 | if (fExtractionType == kAmplitude)
|
---|
241 | {
|
---|
242 | fSignal = fVal[maxpos];
|
---|
243 | fTime = maxpos;
|
---|
244 | fSignalDev = 0; // means: is valid
|
---|
245 | return;
|
---|
246 | }
|
---|
247 |
|
---|
248 | fSignal = CalcIntegral(limlo ? 0 : fNum, fNum);
|
---|
249 | fTime = maxpos - 1;
|
---|
250 | fSignalDev = 0; // means: is valid
|
---|
251 | return;
|
---|
252 | }
|
---|
253 |
|
---|
254 | fTimeDev = fResolution;
|
---|
255 |
|
---|
256 | //
|
---|
257 | // Now find the maximum
|
---|
258 | //
|
---|
259 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
260 |
|
---|
261 | Int_t klo = maxpos-1;
|
---|
262 | Float_t fAbMaxPos = maxpos;//! Current position of the maximum of the spline
|
---|
263 | Float_t fAbMax = fVal[maxpos];//! Current maximum of the spline
|
---|
264 |
|
---|
265 | //
|
---|
266 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
---|
267 | // If no maximum is found, go to interval maxpos+1.
|
---|
268 | //
|
---|
269 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
---|
270 | {
|
---|
271 | const Float_t x = klo + step*(i+1);
|
---|
272 | const Float_t y = Eval(x, klo);
|
---|
273 | if (y > fAbMax)
|
---|
274 | {
|
---|
275 | fAbMax = y;
|
---|
276 | fAbMaxPos = x;
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | //
|
---|
281 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
---|
282 | //
|
---|
283 | if (fAbMaxPos > maxpos - 0.1)
|
---|
284 | {
|
---|
285 | klo = maxpos;
|
---|
286 |
|
---|
287 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
---|
288 | {
|
---|
289 | const Float_t x = klo + step*(i+1);
|
---|
290 | const Float_t y = Eval(x, klo);
|
---|
291 | if (y > fAbMax)
|
---|
292 | {
|
---|
293 | fAbMax = y;
|
---|
294 | fAbMaxPos = x;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 | //
|
---|
300 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
---|
301 | // Try a better precision.
|
---|
302 | //
|
---|
303 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
---|
304 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
---|
305 | const Float_t abmaxpos = fAbMaxPos;
|
---|
306 |
|
---|
307 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
---|
308 |
|
---|
309 | for (int i=0; i<TMath::Nint(TMath::Ceil((up-abmaxpos)/step)); i++)
|
---|
310 | {
|
---|
311 | const Float_t x = abmaxpos + (i+1)*step;
|
---|
312 | const Float_t y = Eval(x, klo);
|
---|
313 | if (y > fAbMax)
|
---|
314 | {
|
---|
315 | fAbMax = y;
|
---|
316 | fAbMaxPos = x;
|
---|
317 | }
|
---|
318 | }
|
---|
319 |
|
---|
320 | //
|
---|
321 | // Second, try from time down to time-0.2 in steps of fResolution.
|
---|
322 | //
|
---|
323 |
|
---|
324 | //
|
---|
325 | // Test the possibility that the absolute maximum has not been found between
|
---|
326 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
---|
327 | // which requires new setting of klocont and khicont
|
---|
328 | //
|
---|
329 | if (abmaxpos < klo + fResolution)
|
---|
330 | klo--;
|
---|
331 |
|
---|
332 | for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--)
|
---|
333 | {
|
---|
334 | const Float_t x = abmaxpos - (i+1)*step;
|
---|
335 | const Float_t y = Eval(x, klo);
|
---|
336 | if (y > fAbMax)
|
---|
337 | {
|
---|
338 | fAbMax = y;
|
---|
339 | fAbMaxPos = x;
|
---|
340 | }
|
---|
341 | }
|
---|
342 |
|
---|
343 | if (fExtractionType == kAmplitude)
|
---|
344 | {
|
---|
345 | fTime = fAbMaxPos;
|
---|
346 | fSignal = fAbMax;
|
---|
347 | fSignalDev = 0; // means: is valid
|
---|
348 | return;
|
---|
349 | }
|
---|
350 |
|
---|
351 | Float_t fHalfMax = fAbMax/2.;//! Current half maximum of the spline
|
---|
352 |
|
---|
353 | //
|
---|
354 | // Now, loop from the maximum bin leftward down in order to find the
|
---|
355 | // position of the half maximum. First, find the right FADC slice:
|
---|
356 | //
|
---|
357 | klo = maxpos;
|
---|
358 | while (klo > 0)
|
---|
359 | {
|
---|
360 | if (fVal[--klo] < fHalfMax)
|
---|
361 | break;
|
---|
362 | }
|
---|
363 |
|
---|
364 | //
|
---|
365 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
---|
366 | // With means of bisection:
|
---|
367 | //
|
---|
368 | step = 0.5;
|
---|
369 |
|
---|
370 | Int_t maxcnt = 20;
|
---|
371 | Int_t cnt = 0;
|
---|
372 |
|
---|
373 | Float_t y = Eval(klo, klo); // FIXME: IS THIS CORRECT???????
|
---|
374 | Float_t x = klo;
|
---|
375 | Bool_t back = kFALSE;
|
---|
376 |
|
---|
377 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
---|
378 | {
|
---|
379 | x += back ? -step : +step;
|
---|
380 |
|
---|
381 | const Float_t y = Eval(x, klo);
|
---|
382 |
|
---|
383 | back = y > fHalfMax;
|
---|
384 |
|
---|
385 | if (++cnt > maxcnt)
|
---|
386 | break;
|
---|
387 |
|
---|
388 | step /= 2.;
|
---|
389 | }
|
---|
390 |
|
---|
391 | //
|
---|
392 | // Now integrate the whole thing!
|
---|
393 | //
|
---|
394 | fTime = x;
|
---|
395 | fSignal = CalcIntegral(fAbMaxPos - fRiseTime, fNum);
|
---|
396 | fSignalDev = 0; // means: is valid
|
---|
397 | }
|
---|