| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
|
|---|
| 18 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2002-2006
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MExtralgoSpline
|
|---|
| 28 | //
|
|---|
| 29 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
|---|
| 30 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
|---|
| 31 | //
|
|---|
| 32 | // The coefficients "ya" are here denoted as "fVal" corresponding to
|
|---|
| 33 | // the FADC value subtracted by the clock-noise corrected pedestal.
|
|---|
| 34 | //
|
|---|
| 35 | // The coefficients "y2a" get immediately divided 6. and are called here
|
|---|
| 36 | // fDer2 although they are now not exactly the second derivative
|
|---|
| 37 | // coefficients any more.
|
|---|
| 38 | //
|
|---|
| 39 | // The calculation of the cubic-spline interpolated value "y" on a point
|
|---|
| 40 | // "x" along the FADC-slices axis becomes: EvalAt(x)
|
|---|
| 41 | //
|
|---|
| 42 | // The coefficients fDer2 are calculated with the simplified
|
|---|
| 43 | // algorithm in InitDerivatives.
|
|---|
| 44 | //
|
|---|
| 45 | // This algorithm takes advantage of the fact that the x-values are all
|
|---|
| 46 | // separated by exactly 1 which simplifies the Numerical Recipes algorithm.
|
|---|
| 47 | // (Note that the variables fDer are not real first derivative coefficients.)
|
|---|
| 48 | //
|
|---|
| 49 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 50 | #include "MExtralgoSpline.h"
|
|---|
| 51 |
|
|---|
| 52 | #include <TRandom.h>
|
|---|
| 53 |
|
|---|
| 54 | #include "../mbase/MMath.h"
|
|---|
| 55 |
|
|---|
| 56 | using namespace std;
|
|---|
| 57 |
|
|---|
| 58 | // --------------------------------------------------------------------------
|
|---|
| 59 | //
|
|---|
| 60 | // Calculate the first and second derivative for the splie.
|
|---|
| 61 | //
|
|---|
| 62 | // The coefficients are calculated such that
|
|---|
| 63 | // 1) fVal[i] = Eval(i, 0)
|
|---|
| 64 | // 2) Eval(i-1, 1)==Eval(i, 0)
|
|---|
| 65 | //
|
|---|
| 66 | // In other words: The values with the index i describe the spline
|
|---|
| 67 | // between fVal[i] and fVal[i+1]
|
|---|
| 68 | //
|
|---|
| 69 | void MExtralgoSpline::InitDerivatives() const
|
|---|
| 70 | {
|
|---|
| 71 | fDer1[0] = 0.;
|
|---|
| 72 | fDer2[0] = 0.;
|
|---|
| 73 |
|
|---|
| 74 | for (Int_t i=1; i<fNum-1; i++)
|
|---|
| 75 | {
|
|---|
| 76 | const Float_t pp = fDer2[i-1] + 4.;
|
|---|
| 77 |
|
|---|
| 78 | fDer2[i] = -1.0/pp;
|
|---|
| 79 |
|
|---|
| 80 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
|
|---|
| 81 | fDer1[i] = (6.0*d1-fDer1[i-1])/pp;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | fDer2[fNum-1] = 0.;
|
|---|
| 85 |
|
|---|
| 86 | for (Int_t k=fNum-2; k>=0; k--)
|
|---|
| 87 | fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k];
|
|---|
| 88 |
|
|---|
| 89 | for (Int_t k=fNum-2; k>=0; k--)
|
|---|
| 90 | fDer2[k] /= 6.;
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | // --------------------------------------------------------------------------
|
|---|
| 94 | //
|
|---|
| 95 | // Returns the highest x value in [min;max[ at which the spline in
|
|---|
| 96 | // the bin i is equal to y
|
|---|
| 97 | //
|
|---|
| 98 | // min and max are defined to be [0;1]
|
|---|
| 99 | //
|
|---|
| 100 | // The default for min is 0, the default for max is 1
|
|---|
| 101 | // The defaule for y is 0
|
|---|
| 102 | //
|
|---|
| 103 | Double_t MExtralgoSpline::FindY(Int_t i, Double_t y, Double_t min, Double_t max) const
|
|---|
| 104 | {
|
|---|
| 105 | // y = a*x^3 + b*x^2 + c*x + d'
|
|---|
| 106 | // 0 = a*x^3 + b*x^2 + c*x + d' - y
|
|---|
| 107 |
|
|---|
| 108 | // Calculate coefficients
|
|---|
| 109 | const Double_t a = fDer2[i+1]-fDer2[i];
|
|---|
| 110 | const Double_t b = 3*fDer2[i];
|
|---|
| 111 | const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
|
|---|
| 112 | const Double_t d = fVal[i] - y;
|
|---|
| 113 |
|
|---|
| 114 | Double_t x1, x2, x3;
|
|---|
| 115 | const Int_t rc = MMath::SolvePol3(a, b, c, d, x1, x2, x3);
|
|---|
| 116 |
|
|---|
| 117 | Double_t x = -1;
|
|---|
| 118 | if (rc>0 && x1>=min && x1<max && x1>x)
|
|---|
| 119 | x = x1;
|
|---|
| 120 | if (rc>1 && x2>=min && x2<max && x2>x)
|
|---|
| 121 | x = x2;
|
|---|
| 122 | if (rc>2 && x3>=min && x3<max && x3>x)
|
|---|
| 123 | x = x3;
|
|---|
| 124 |
|
|---|
| 125 | return x<0 ? -1 : x+i;
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | // --------------------------------------------------------------------------
|
|---|
| 129 | //
|
|---|
| 130 | // Search analytically downward for the value y of the spline, starting
|
|---|
| 131 | // at x, until x==0. If y is not found -1 is returned.
|
|---|
| 132 | //
|
|---|
| 133 | Double_t MExtralgoSpline::SearchY(Float_t x, Float_t y) const
|
|---|
| 134 | {
|
|---|
| 135 | if (x>=fNum-1)
|
|---|
| 136 | x = fNum-1.0001;
|
|---|
| 137 |
|
|---|
| 138 | Int_t i = TMath::FloorNint(x);
|
|---|
| 139 | Double_t rc = FindY(i, y, 0, x-i);
|
|---|
| 140 | while (--i>=0 && rc<0)
|
|---|
| 141 | rc = FindY(i, y);
|
|---|
| 142 |
|
|---|
| 143 | return rc;
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | // --------------------------------------------------------------------------
|
|---|
| 147 | //
|
|---|
| 148 | // Do a range check an then calculate the integral from start-fRiseTime
|
|---|
| 149 | // to start+fFallTime. An extrapolation of 0.5 slices is allowed.
|
|---|
| 150 | //
|
|---|
| 151 | Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
|
|---|
| 152 | {
|
|---|
| 153 | /*
|
|---|
| 154 | // The number of steps is calculated directly from the integration
|
|---|
| 155 | // window. This is the only way to ensure we are not dealing with
|
|---|
| 156 | // numerical rounding uncertanties, because we always get the same
|
|---|
| 157 | // value under the same conditions -- it might still be different on
|
|---|
| 158 | // other machines!
|
|---|
| 159 | const Float_t start = pos-fRiseTime;
|
|---|
| 160 | const Float_t step = 0.2;
|
|---|
| 161 | const Float_t width = fRiseTime+fFallTime;
|
|---|
| 162 | const Float_t max = fNum-1 - (width+step);
|
|---|
| 163 | const Int_t num = TMath::Nint(width/step);
|
|---|
| 164 |
|
|---|
| 165 | // The order is important. In some cases (limlo-/limup-check) it can
|
|---|
| 166 | // happen that max<0. In this case we start at 0
|
|---|
| 167 | if (start > max)
|
|---|
| 168 | start = max;
|
|---|
| 169 | if (start < 0)
|
|---|
| 170 | start = 0;
|
|---|
| 171 |
|
|---|
| 172 | start += step/2;
|
|---|
| 173 |
|
|---|
| 174 | Double_t sum = 0.;
|
|---|
| 175 | for (Int_t i=0; i<num; i++)
|
|---|
| 176 | {
|
|---|
| 177 | // Note: if x is close to one integer number (= a FADC sample)
|
|---|
| 178 | // we get the same result by using that sample as klo, and the
|
|---|
| 179 | // next one as khi, or using the sample as khi and the previous
|
|---|
| 180 | // one as klo (the spline is of course continuous). So we do not
|
|---|
| 181 | // expect problems from rounding issues in the argument of
|
|---|
| 182 | // Floor() above (we have noticed differences in roundings
|
|---|
| 183 | // depending on the compilation options).
|
|---|
| 184 |
|
|---|
| 185 | sum += EvalAt(start + i*step);
|
|---|
| 186 |
|
|---|
| 187 | // FIXME? Perhaps the integral should be done analitically
|
|---|
| 188 | // between every two FADC slices, instead of numerically
|
|---|
| 189 | }
|
|---|
| 190 | sum *= step; // Transform sum in integral
|
|---|
| 191 |
|
|---|
| 192 | return sum;
|
|---|
| 193 | */
|
|---|
| 194 |
|
|---|
| 195 | // In the future we will calculate the intgeral analytically.
|
|---|
| 196 | // It has been tested that it gives identical results within
|
|---|
| 197 | // acceptable differences.
|
|---|
| 198 |
|
|---|
| 199 | // We allow extrapolation of 1/2 slice.
|
|---|
| 200 | const Float_t min = fRiseTime; //-0.5+fRiseTime;
|
|---|
| 201 | const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
|
|---|
| 202 |
|
|---|
| 203 | if (pos<min)
|
|---|
| 204 | pos = min;
|
|---|
| 205 | if (pos>max)
|
|---|
| 206 | pos = max;
|
|---|
| 207 |
|
|---|
| 208 | return EvalInteg(pos-fRiseTime, pos+fFallTime);
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | Float_t MExtralgoSpline::ExtractNoise(/*Int_t iter*/)
|
|---|
| 212 | {
|
|---|
| 213 | // FIXME: Shell we keep the extraction inside one slice
|
|---|
| 214 | // or randomize it along the extraction window?
|
|---|
| 215 | const Float_t nsx = gRandom->Uniform(); //iter * fResolution;
|
|---|
| 216 |
|
|---|
| 217 | if (fExtractionType == kAmplitude)
|
|---|
| 218 | return Eval(1, nsx);
|
|---|
| 219 | else
|
|---|
| 220 | return CalcIntegral(2. + nsx);
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | void MExtralgoSpline::Extract(Byte_t sat, Int_t maxbin)
|
|---|
| 224 | {
|
|---|
| 225 | fSignal = 0;
|
|---|
| 226 | fTime = 0;
|
|---|
| 227 | fSignalDev = -1;
|
|---|
| 228 | fTimeDev = -1;
|
|---|
| 229 | /*
|
|---|
| 230 | //
|
|---|
| 231 | // Allow no saturated slice and
|
|---|
| 232 | // Don't start if the maxpos is too close to the limits.
|
|---|
| 233 | //
|
|---|
| 234 |
|
|---|
| 235 | const Bool_t limlo = maxbin < TMath::Ceil(fRiseTime);
|
|---|
| 236 | const Bool_t limup = maxbin > fNum-TMath::Ceil(fFallTime)-1;
|
|---|
| 237 | if (sat || limlo || limup)
|
|---|
| 238 | {
|
|---|
| 239 | fTimeDev = 1.0;
|
|---|
| 240 | if (fExtractionType == kAmplitude)
|
|---|
| 241 | {
|
|---|
| 242 | fSignal = fVal[maxbin];
|
|---|
| 243 | fTime = maxbin;
|
|---|
| 244 | fSignalDev = 0; // means: is valid
|
|---|
| 245 | return;
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | fSignal = CalcIntegral(limlo ? 0 : fNum);
|
|---|
| 249 | fTime = maxbin - 1;
|
|---|
| 250 | fSignalDev = 0; // means: is valid
|
|---|
| 251 | return;
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | //
|
|---|
| 255 | // Now find the maximum
|
|---|
| 256 | //
|
|---|
| 257 |
|
|---|
| 258 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 259 |
|
|---|
| 260 | Int_t klo = maxbin-1;
|
|---|
| 261 |
|
|---|
| 262 | Float_t maxpos = maxbin;//! Current position of the maximum of the spline
|
|---|
| 263 | Float_t max = fVal[maxbin];//! Current maximum of the spline
|
|---|
| 264 |
|
|---|
| 265 | //
|
|---|
| 266 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
|---|
| 267 | // If no maximum is found, go to interval maxpos+1.
|
|---|
| 268 | //
|
|---|
| 269 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
|---|
| 270 | {
|
|---|
| 271 | const Float_t x = klo + step*(i+1);
|
|---|
| 272 | //const Float_t y = Eval(klo, x);
|
|---|
| 273 | const Float_t y = Eval(klo, x-klo);
|
|---|
| 274 | if (y > max)
|
|---|
| 275 | {
|
|---|
| 276 | max = y;
|
|---|
| 277 | maxpos = x;
|
|---|
| 278 | }
|
|---|
| 279 | }
|
|---|
| 280 |
|
|---|
| 281 | //
|
|---|
| 282 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
|---|
| 283 | //
|
|---|
| 284 | if (maxpos > maxbin - 0.1)
|
|---|
| 285 | {
|
|---|
| 286 | klo = maxbin;
|
|---|
| 287 |
|
|---|
| 288 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
|---|
| 289 | {
|
|---|
| 290 | const Float_t x = klo + step*(i+1);
|
|---|
| 291 | //const Float_t y = Eval(klo, x);
|
|---|
| 292 | const Float_t y = Eval(klo, x-klo);
|
|---|
| 293 | if (y > max)
|
|---|
| 294 | {
|
|---|
| 295 | max = y;
|
|---|
| 296 | maxpos = x;
|
|---|
| 297 | }
|
|---|
| 298 | }
|
|---|
| 299 | }
|
|---|
| 300 |
|
|---|
| 301 | //
|
|---|
| 302 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
|---|
| 303 | // Try a better precision.
|
|---|
| 304 | //
|
|---|
| 305 | const Float_t up = maxpos+step - 3.0*fResolution;
|
|---|
| 306 | const Float_t lo = maxpos-step + 3.0*fResolution;
|
|---|
| 307 | const Float_t abmaxpos = maxpos;
|
|---|
| 308 |
|
|---|
| 309 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
|---|
| 310 |
|
|---|
| 311 | for (int i=0; i<TMath::Nint(TMath::Ceil((up-abmaxpos)/step)); i++)
|
|---|
| 312 | {
|
|---|
| 313 | const Float_t x = abmaxpos + (i+1)*step;
|
|---|
| 314 | //const Float_t y = Eval(klo, x);
|
|---|
| 315 | const Float_t y = Eval(klo, x-klo);
|
|---|
| 316 | if (y > max)
|
|---|
| 317 | {
|
|---|
| 318 | max = y;
|
|---|
| 319 | maxpos = x;
|
|---|
| 320 | }
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | //
|
|---|
| 324 | // Second, try from time down to time-0.2 in steps of fResolution.
|
|---|
| 325 | //
|
|---|
| 326 |
|
|---|
| 327 | //
|
|---|
| 328 | // Test the possibility that the absolute maximum has not been found between
|
|---|
| 329 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
|---|
| 330 | // which requires new setting of klocont and khicont
|
|---|
| 331 | //
|
|---|
| 332 | if (abmaxpos < klo + fResolution)
|
|---|
| 333 | klo--;
|
|---|
| 334 |
|
|---|
| 335 | for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--)
|
|---|
| 336 | {
|
|---|
| 337 | const Float_t x = abmaxpos - (i+1)*step;
|
|---|
| 338 | //const Float_t y = Eval(klo, x);
|
|---|
| 339 | const Float_t y = Eval(klo, x-klo);
|
|---|
| 340 | if (y > max)
|
|---|
| 341 | {
|
|---|
| 342 | max = y;
|
|---|
| 343 | maxpos = x;
|
|---|
| 344 | }
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | fTime = maxpos;
|
|---|
| 348 | fTimeDev = fResolution;
|
|---|
| 349 | fSignal = CalcIntegral(maxpos);
|
|---|
| 350 | fSignalDev = 0; // means: is valid
|
|---|
| 351 |
|
|---|
| 352 | return;
|
|---|
| 353 | */
|
|---|
| 354 | // --- Start NEW ---
|
|---|
| 355 |
|
|---|
| 356 | // This block extracts values very similar to the old algorithm...
|
|---|
| 357 | // for max>10
|
|---|
| 358 | /* Most accurate (old identical) version:
|
|---|
| 359 |
|
|---|
| 360 | Float_t xmax=maxpos, ymax=Eval(maxpos-1, 1);
|
|---|
| 361 | Int_t rc = GetMaxPos(maxpos-1, xmax, ymax);
|
|---|
| 362 | if (xmax==maxpos)
|
|---|
| 363 | {
|
|---|
| 364 | GetMaxPos(maxpos, xmax, ymax);
|
|---|
| 365 |
|
|---|
| 366 | Float_t y = Eval(maxpos, 1);
|
|---|
| 367 | if (y>ymax)
|
|---|
| 368 | {
|
|---|
| 369 | ymax = y;
|
|---|
| 370 | xmax = maxpos+1;
|
|---|
| 371 | }
|
|---|
| 372 | }*/
|
|---|
| 373 |
|
|---|
| 374 | Float_t maxpos, maxval;
|
|---|
| 375 | // FIXME: Check the dfeault if no maximum found!!!
|
|---|
| 376 | GetMaxAroundI(maxbin, maxpos, maxval);
|
|---|
| 377 |
|
|---|
| 378 | // --- End NEW ---
|
|---|
| 379 |
|
|---|
| 380 | if (fExtractionType == kAmplitude)
|
|---|
| 381 | {
|
|---|
| 382 | fTime = maxpos;
|
|---|
| 383 | fTimeDev = 0;
|
|---|
| 384 | fSignal = maxval;
|
|---|
| 385 | fSignalDev = 0; // means: is valid
|
|---|
| 386 | return;
|
|---|
| 387 | }
|
|---|
| 388 |
|
|---|
| 389 | // Search downwards for maxval/2
|
|---|
| 390 | // By doing also a search upwards we could extract the pulse width
|
|---|
| 391 | const Double_t x1 = SearchY(maxpos, maxval/2);
|
|---|
| 392 |
|
|---|
| 393 | fTime = x1;
|
|---|
| 394 | fTimeDev = 0;
|
|---|
| 395 | fSignal = CalcIntegral(maxpos);
|
|---|
| 396 | fSignalDev = 0; // means: is valid
|
|---|
| 397 |
|
|---|
| 398 | //
|
|---|
| 399 | // Loop from the beginning of the slice upwards to reach the maxhalf:
|
|---|
| 400 | // With means of bisection:
|
|---|
| 401 | //
|
|---|
| 402 | /*
|
|---|
| 403 | static const Float_t sqrt2 = TMath::Sqrt(2.);
|
|---|
| 404 |
|
|---|
| 405 | step = sqrt2*3*0.061;//fRiseTime;
|
|---|
| 406 | Float_t x = maxpos-0.86-3*0.061;//fRiseTime*1.25;
|
|---|
| 407 |
|
|---|
| 408 | // step = sqrt2*0.5;//fRiseTime;
|
|---|
| 409 | // Float_t x = maxpos-1.25;//fRiseTime*1.25;
|
|---|
| 410 |
|
|---|
| 411 | Int_t cnt =0;
|
|---|
| 412 | while (cnt++<30)
|
|---|
| 413 | {
|
|---|
| 414 | const Float_t y=EvalAt(x);
|
|---|
| 415 |
|
|---|
| 416 | if (TMath::Abs(y-maxval/2)<fResolution)
|
|---|
| 417 | break;
|
|---|
| 418 |
|
|---|
| 419 | step /= sqrt2; // /2
|
|---|
| 420 | x += y>maxval/2 ? -step : +step;
|
|---|
| 421 | }
|
|---|
| 422 | */
|
|---|
| 423 |
|
|---|
| 424 | //
|
|---|
| 425 | // Now integrate the whole thing!
|
|---|
| 426 | //
|
|---|
| 427 | // fTime = cnt==31 ? -1 : x;
|
|---|
| 428 | // fTimeDev = fResolution;
|
|---|
| 429 | // fSignal = cnt==31 ? CalcIntegral(x) : CalcIntegral(maxpos);
|
|---|
| 430 | // fSignalDev = 0; // means: is valid
|
|---|
| 431 | }
|
|---|