| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | !   Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de> | 
|---|
| 18 | !   Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2002-2007 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | //   MExtralgoSpline | 
|---|
| 28 | // | 
|---|
| 29 | //   Fast Spline extractor using a cubic spline algorithm, adapted from | 
|---|
| 30 | //   Numerical Recipes in C++, 2nd edition, pp. 116-119. | 
|---|
| 31 | // | 
|---|
| 32 | //   The coefficients "ya" are here denoted as "fVal" corresponding to | 
|---|
| 33 | //   the FADC value subtracted by the clock-noise corrected pedestal. | 
|---|
| 34 | // | 
|---|
| 35 | //   The coefficients "y2a" get immediately divided 6. and are called here | 
|---|
| 36 | //   fDer2 although they are now not exactly the second derivative | 
|---|
| 37 | //   coefficients any more. | 
|---|
| 38 | // | 
|---|
| 39 | //   The calculation of the cubic-spline interpolated value "y" on a point | 
|---|
| 40 | //   "x" along the FADC-slices axis becomes: EvalAt(x) | 
|---|
| 41 | // | 
|---|
| 42 | //   The coefficients fDer2 are calculated with the simplified | 
|---|
| 43 | //   algorithm in InitDerivatives. | 
|---|
| 44 | // | 
|---|
| 45 | //   This algorithm takes advantage of the fact that the x-values are all | 
|---|
| 46 | //   separated by exactly 1 which simplifies the Numerical Recipes algorithm. | 
|---|
| 47 | //   (Note that the variables fDer are not real first derivative coefficients.) | 
|---|
| 48 | // | 
|---|
| 49 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 50 | #include "MExtralgoSpline.h" | 
|---|
| 51 |  | 
|---|
| 52 | #include <TRandom.h> | 
|---|
| 53 |  | 
|---|
| 54 | #include "../mbase/MMath.h" | 
|---|
| 55 | #include "../mbase/MArrayF.h" | 
|---|
| 56 |  | 
|---|
| 57 | using namespace std; | 
|---|
| 58 |  | 
|---|
| 59 | // -------------------------------------------------------------------------- | 
|---|
| 60 | // | 
|---|
| 61 | // Calculate the first and second derivative for the splie. | 
|---|
| 62 | // | 
|---|
| 63 | // The coefficients are calculated such that | 
|---|
| 64 | //   1) fVal[i] = Eval(i, 0) | 
|---|
| 65 | //   2) Eval(i-1, 1)==Eval(i, 0) | 
|---|
| 66 | // | 
|---|
| 67 | // In other words: The values with the index i describe the spline | 
|---|
| 68 | // between fVal[i] and fVal[i+1] | 
|---|
| 69 | // | 
|---|
| 70 | void MExtralgoSpline::InitDerivatives() const | 
|---|
| 71 | { | 
|---|
| 72 | if (fNum<2) | 
|---|
| 73 | return; | 
|---|
| 74 |  | 
|---|
| 75 | // Look up table for coefficients | 
|---|
| 76 | static MArrayF lut; | 
|---|
| 77 |  | 
|---|
| 78 | // If the lut is not et large enough resize and reclaculate | 
|---|
| 79 | if (fNum>(Int_t)lut.GetSize()) | 
|---|
| 80 | { | 
|---|
| 81 | lut.Set(fNum); | 
|---|
| 82 |  | 
|---|
| 83 | lut[0] = 0.; | 
|---|
| 84 | for (Int_t i=1; i<fNum-1; i++) | 
|---|
| 85 | lut[i] = -1.0/(lut[i-1] + 4); | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | // Calculate the coefficients used to get reproduce the first and | 
|---|
| 89 | // second derivative. | 
|---|
| 90 | fDer1[0] = 0.; | 
|---|
| 91 | for (Int_t i=1; i<fNum-1; i++) | 
|---|
| 92 | { | 
|---|
| 93 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1]; | 
|---|
| 94 | fDer1[i] = (fDer1[i-1]-d1)*lut[i]; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | fDer2[fNum-1] = 0.; | 
|---|
| 98 | for (Int_t k=fNum-2; k>=0; k--) | 
|---|
| 99 | fDer2[k] = lut[k]*fDer2[k+1] + fDer1[k]; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | // -------------------------------------------------------------------------- | 
|---|
| 103 | // | 
|---|
| 104 | // Return the two results x1 and x2 of f'(x)=0 for the third order | 
|---|
| 105 | // polynomial (spline) in the interval i. Return the number of results. | 
|---|
| 106 | // (0 if the fist derivative does not have a null-point) | 
|---|
| 107 | // | 
|---|
| 108 | Int_t MExtralgoSpline::EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const | 
|---|
| 109 | { | 
|---|
| 110 | const Double_t difder = fDer2[i+1]-fDer2[i]; | 
|---|
| 111 | const Double_t difval = fVal[i+1] -fVal[i]; | 
|---|
| 112 |  | 
|---|
| 113 | return MMath::SolvePol2(3*difder, 6*fDer2[i], difval-2*fDer2[i]-fDer2[i+1], x1, x2); | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | // -------------------------------------------------------------------------- | 
|---|
| 117 | // | 
|---|
| 118 | // Returns the highest x value in [min;max[ at which the spline in | 
|---|
| 119 | // the bin i is equal to y | 
|---|
| 120 | // | 
|---|
| 121 | // min and max are defined to be [0;1] | 
|---|
| 122 | // | 
|---|
| 123 | // The default for min is 0, the default for max is 1 | 
|---|
| 124 | // The defaule for y is 0 | 
|---|
| 125 | // | 
|---|
| 126 | Double_t MExtralgoSpline::FindY(Int_t i, Bool_t downwards, Double_t y, Double_t min, Double_t max) const | 
|---|
| 127 | { | 
|---|
| 128 | // y = a*x^3 + b*x^2 + c*x + d' | 
|---|
| 129 | // 0 = a*x^3 + b*x^2 + c*x + d' - y | 
|---|
| 130 |  | 
|---|
| 131 | // Calculate coefficients | 
|---|
| 132 | const Double_t a = fDer2[i+1]-fDer2[i]; | 
|---|
| 133 | const Double_t b = 3*fDer2[i]; | 
|---|
| 134 | const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1]; | 
|---|
| 135 | const Double_t d = fVal[i] - y; | 
|---|
| 136 |  | 
|---|
| 137 | // If the first derivative is nowhere==0 and it is increasing | 
|---|
| 138 | // in one point, and the value we search is outside of the | 
|---|
| 139 | // y-interval... it cannot be there | 
|---|
| 140 | // if (c>0 && (d>0 || fVal[i+1]<y) && b*b<3*c*a) | 
|---|
| 141 | //     return -2; | 
|---|
| 142 |  | 
|---|
| 143 | Double_t x1, x2, x3; | 
|---|
| 144 | const Int_t rc = MMath::SolvePol3(a, b, c, d, x1, x2, x3); | 
|---|
| 145 |  | 
|---|
| 146 | if (downwards==kTRUE) | 
|---|
| 147 | { | 
|---|
| 148 | Double_t x = -1; | 
|---|
| 149 |  | 
|---|
| 150 | if (rc>0 && x1>=min && x1<max && x1>x) | 
|---|
| 151 | x = x1; | 
|---|
| 152 | if (rc>1 && x2>=min && x2<max && x2>x) | 
|---|
| 153 | x = x2; | 
|---|
| 154 | if (rc>2 && x3>=min && x3<max && x3>x) | 
|---|
| 155 | x = x3; | 
|---|
| 156 |  | 
|---|
| 157 | return x<0 ? -2 : x+i; | 
|---|
| 158 | } | 
|---|
| 159 | else | 
|---|
| 160 | { | 
|---|
| 161 | Double_t x = 2; | 
|---|
| 162 |  | 
|---|
| 163 | if (rc>0 && x1>min && x1<=max && x1<x) | 
|---|
| 164 | x = x1; | 
|---|
| 165 | if (rc>1 && x2>min && x2<=max && x2<x) | 
|---|
| 166 | x = x2; | 
|---|
| 167 | if (rc>2 && x3>min && x3<=max && x3<x) | 
|---|
| 168 | x = x3; | 
|---|
| 169 |  | 
|---|
| 170 | return x>1 ? -2 : x+i; | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | return -2; | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | // -------------------------------------------------------------------------- | 
|---|
| 177 | // | 
|---|
| 178 | // Search analytically downward for the value y of the spline, starting | 
|---|
| 179 | // at x, until x==0. If y is not found -2 is returned. | 
|---|
| 180 | // | 
|---|
| 181 | Double_t MExtralgoSpline::SearchY(Float_t x, Float_t y) const | 
|---|
| 182 | { | 
|---|
| 183 | if (x>=fNum-1) | 
|---|
| 184 | x = fNum-1.0001; | 
|---|
| 185 |  | 
|---|
| 186 | Int_t i = TMath::FloorNint(x); | 
|---|
| 187 | Double_t rc = FindY(i, kTRUE, y, 0, x-i); | 
|---|
| 188 | while (--i>=0 && rc<0) | 
|---|
| 189 | rc = FindY(i, kTRUE, y); | 
|---|
| 190 |  | 
|---|
| 191 | return rc; | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | Double_t MExtralgoSpline::SearchYup(Float_t x, Float_t y) const | 
|---|
| 195 | { | 
|---|
| 196 | if (x<0) | 
|---|
| 197 | x = 0.0001; | 
|---|
| 198 |  | 
|---|
| 199 | Int_t i = TMath::FloorNint(x); | 
|---|
| 200 | Double_t rc = FindY(i, kFALSE, y, x-i, 1.); | 
|---|
| 201 | while (i++<fNum-1 && rc<0) | 
|---|
| 202 | rc = FindY(i, kFALSE, y); | 
|---|
| 203 |  | 
|---|
| 204 | return rc; | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | // -------------------------------------------------------------------------- | 
|---|
| 208 | // | 
|---|
| 209 | // Do a range check an then calculate the integral from start-fRiseTime | 
|---|
| 210 | // to start+fFallTime. An extrapolation of 0.5 slices is allowed. | 
|---|
| 211 | // | 
|---|
| 212 | Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const | 
|---|
| 213 | { | 
|---|
| 214 | // In the future we will calculate the intgeral analytically. | 
|---|
| 215 | // It has been tested that it gives identical results within | 
|---|
| 216 | // acceptable differences. | 
|---|
| 217 |  | 
|---|
| 218 | // We allow extrapolation of 1/2 slice. | 
|---|
| 219 | const Float_t min = fRiseTime;        //-0.5+fRiseTime; | 
|---|
| 220 | const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime; | 
|---|
| 221 |  | 
|---|
| 222 | if (pos<min) | 
|---|
| 223 | pos = min; | 
|---|
| 224 | if (pos>max) | 
|---|
| 225 | pos = max; | 
|---|
| 226 |  | 
|---|
| 227 | return EvalInteg(pos-fRiseTime, pos+fFallTime); | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | Float_t MExtralgoSpline::ExtractNoise() | 
|---|
| 231 | { | 
|---|
| 232 | if (fNum<5) | 
|---|
| 233 | return 0; | 
|---|
| 234 |  | 
|---|
| 235 | if (fExtractionType == kAmplitude) | 
|---|
| 236 | { | 
|---|
| 237 | const Int_t   pos = gRandom->Integer(fNum-1); | 
|---|
| 238 | const Float_t nsx = gRandom->Uniform(); | 
|---|
| 239 | return Eval(pos, nsx); | 
|---|
| 240 | } | 
|---|
| 241 | else | 
|---|
| 242 | { | 
|---|
| 243 | const Float_t pos = gRandom->Uniform(fNum-1-fRiseTime-fFallTime)+fRiseTime; | 
|---|
| 244 | return CalcIntegral(pos); | 
|---|
| 245 | } | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | void MExtralgoSpline::Extract(Byte_t sat, Int_t maxbin, Bool_t width) | 
|---|
| 249 | { | 
|---|
| 250 | fSignal    =  0; | 
|---|
| 251 | fTime      =  0; | 
|---|
| 252 | fWidth     =  0; | 
|---|
| 253 | fSignalDev = -1; | 
|---|
| 254 | fTimeDev   = -1; | 
|---|
| 255 | fWidthDev  = -1; | 
|---|
| 256 |  | 
|---|
| 257 | if (fNum<2) | 
|---|
| 258 | return; | 
|---|
| 259 |  | 
|---|
| 260 | Float_t maxpos; | 
|---|
| 261 | // FIXME: Check the default if no maximum found!!! | 
|---|
| 262 | GetMaxAroundI(maxbin, maxpos, fHeight); | 
|---|
| 263 |  | 
|---|
| 264 | // --- End NEW --- | 
|---|
| 265 |  | 
|---|
| 266 | if (fExtractionType == kAmplitude) | 
|---|
| 267 | { | 
|---|
| 268 | fTime      = maxpos; | 
|---|
| 269 | fTimeDev   = 0; | 
|---|
| 270 | fSignal    = fHeight; | 
|---|
| 271 | fSignalDev = 0;  // means: is valid | 
|---|
| 272 | return; | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | fSignal    = CalcIntegral(maxpos); | 
|---|
| 276 | fSignalDev = 0;  // means: is valid | 
|---|
| 277 |  | 
|---|
| 278 | if (fExtractionType==kIntegralRel && fHeightTm<0) | 
|---|
| 279 | { | 
|---|
| 280 | fTime = maxpos; | 
|---|
| 281 | fTimeDev = 0; | 
|---|
| 282 | return; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | const Float_t h = fExtractionType==kIntegralAbs ? fHeightTm : fHeight*fHeightTm; | 
|---|
| 286 |  | 
|---|
| 287 | // Search downwards for fHeight/2 | 
|---|
| 288 | // By doing also a search upwards we could extract the pulse width | 
|---|
| 289 | fTime      = SearchY(maxpos, h); | 
|---|
| 290 | fTimeDev   = 0; | 
|---|
| 291 | if (width) | 
|---|
| 292 | { | 
|---|
| 293 | fWidth    = SearchYup(maxpos, h)-fTime; | 
|---|
| 294 | fWidthDev = 0; | 
|---|
| 295 | } | 
|---|
| 296 | } | 
|---|