/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Thomas Bretz ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2006 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtralgoSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" // which means the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly // the second derivative coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: // // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] // // with: // a = (khi - x) // b = (x - klo) // // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". // // An analogues formula is used for the low-gain values. // // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the // following simplified algorithm: // // for (Int_t i=1;i=0;k--) // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; // // // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 // which simplifies the Numerical Recipes algorithm. // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) // // The algorithm to search the time proceeds as follows: // // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of // the MAGIC FADCs). // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. // If no maximum is found, go to interval fAbMaxPos+1. // --> 4 function evaluations // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 // --> 4 function evaluations // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). // --> 14 function evaluations // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is // returned, else: // 9) The Half Maximum is calculated. // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax // is found at "klo". // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). // --> maximum 12 interations. // // The algorithm to search the charge proceeds as follows: // // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the // time search. // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and // (Int_t)(fAbMaxPos + fFallTimeHiGain) // (default: fRiseTime: 1.5, fFallTime: 4.5) // sum the fLoGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) // (default: fLoGainStretch: 1.5) // // The values: fNumHiGainSamples and fNumLoGainSamples are set to: // 1) If Charge Type: kAmplitude was chosen: 1. // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain // // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) // to modify the ranges. // // Defaults: // fHiGainFirst = 2 // fHiGainLast = 14 // fLoGainFirst = 2 // fLoGainLast = 14 // // Call: SetResolution() to define the resolution of the half-maximum search. // Default: 0.01 // // Call: SetRiseTime() and SetFallTime() to define the integration ranges // for the case, the extraction type kIntegral has been chosen. // // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the // computation of the amplitude at the maximum (default) and extraction // the position of the maximum (default) // --> no further function evaluation needed // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the // computation of the integral beneith the spline between fRiseTimeHiGain // from the position of the maximum to fFallTimeHiGain after the position of // the maximum. The Low Gain is computed with half a slice more at the rising // edge and half a slice more at the falling edge. // The time of the half maximum is returned. // --> needs one function evaluations but is more precise // ////////////////////////////////////////////////////////////////////////////// #include "MExtralgoSpline.h" using namespace std; void MExtralgoSpline::InitDerivatives() const { fDer1[0] = 0.; fDer2[0] = 0.; for (Int_t i=1; i=0; k--) fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k]; for (Int_t k=fNum-2; k>=0; k--) fDer2[k] /= 6.; } Float_t MExtralgoSpline::CalcIntegral(Float_t start, Float_t range) const { // The number of steps is calculated directly from the integration // window. This is the only way to ensure we are not dealing with // numerical rounding uncertanties, because we always get the same // value under the same conditions -- it might still be different on // other machines! const Float_t step = 0.2; const Float_t width = fRiseTime+fFallTime; const Float_t max = range-1 - (width+step); const Int_t num = TMath::Nint(width/step); // The order is important. In some cases (limlo-/limup-check) it can // happen that max<0. In this case we start at 0 if (start > max) start = max; if (start < 0) start = 0; start += step/2; Double_t sum = 0.; for (Int_t i=0; i fNum-TMath::Ceil(fFallTime)-1; if (sat || limlo || limup) { fTimeDev = 1.0; if (fExtractionType == kAmplitude) { fSignal = fVal[maxpos]; fTime = maxpos; fSignalDev = 0; // means: is valid return; } fSignal = CalcIntegral(limlo ? 0 : fNum, fNum); fTime = maxpos - 1; fSignalDev = 0; // means: is valid return; } fTimeDev = fResolution; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Int_t klo = maxpos-1; Float_t fAbMaxPos = maxpos;//! Current position of the maximum of the spline Float_t fAbMax = fVal[maxpos];//! Current maximum of the spline // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // for (Int_t i=0; i fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > maxpos - 0.1) { klo = maxpos; for (Int_t i=0; i fAbMax) { fAbMax = y; fAbMaxPos = x; } } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step - 3.0*fResolution; const Float_t lo = fAbMaxPos-step + 3.0*fResolution; const Float_t abmaxpos = fAbMaxPos; step = 2.*fResolution; // step size of 0.1 FADC slices for (int i=0; i fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Second, try from time down to time-0.2 in steps of fResolution. // // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos // which requires new setting of klocont and khicont // if (abmaxpos < klo + fResolution) klo--; for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--) { const Float_t x = abmaxpos - (i+1)*step; const Float_t y = Eval(x, klo); if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } if (fExtractionType == kAmplitude) { fTime = fAbMaxPos; fSignal = fAbMax; fSignalDev = 0; // means: is valid return; } Float_t fHalfMax = fAbMax/2.;//! Current half maximum of the spline // // Now, loop from the maximum bin leftward down in order to find the // position of the half maximum. First, find the right FADC slice: // klo = maxpos; while (klo > 0) { if (fVal[--klo] < fHalfMax) break; } // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // step = 0.5; Int_t maxcnt = 20; Int_t cnt = 0; Float_t y = Eval(klo, klo); // FIXME: IS THIS CORRECT??????? Float_t x = klo; Bool_t back = kFALSE; while (TMath::Abs(y-fHalfMax) > fResolution) { x += back ? -step : +step; const Float_t y = Eval(x, klo); back = y > fHalfMax; if (++cnt > maxcnt) break; step /= 2.; } // // Now integrate the whole thing! // fTime = x; fSignal = CalcIntegral(fAbMaxPos - fRiseTime, fNum); fSignalDev = 0; // means: is valid }