source: trunk/MagicSoft/Mars/mextralgo/MExtralgoSpline.cc@ 8158

Last change on this file since 8158 was 8158, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 12.4 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
18! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2002-2006
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MExtralgoSpline
28//
29// Fast Spline extractor using a cubic spline algorithm, adapted from
30// Numerical Recipes in C++, 2nd edition, pp. 116-119.
31//
32// The coefficients "ya" are here denoted as "fVal" corresponding to
33// the FADC value subtracted by the clock-noise corrected pedestal.
34//
35// The coefficients "y2a" get immediately divided 6. and are called here
36// fDer2 although they are now not exactly the second derivative
37// coefficients any more.
38//
39// The calculation of the cubic-spline interpolated value "y" on a point
40// "x" along the FADC-slices axis becomes: EvalAt(x)
41//
42// The coefficients fDer2 are calculated with the simplified
43// algorithm in InitDerivatives.
44//
45// This algorithm takes advantage of the fact that the x-values are all
46// separated by exactly 1 which simplifies the Numerical Recipes algorithm.
47// (Note that the variables fDer are not real first derivative coefficients.)
48//
49//////////////////////////////////////////////////////////////////////////////
50#include "MExtralgoSpline.h"
51
52#include <TRandom.h>
53
54#include "../mbase/MMath.h"
55
56using namespace std;
57
58// --------------------------------------------------------------------------
59//
60// Calculate the first and second derivative for the splie.
61//
62// The coefficients are calculated such that
63// 1) fVal[i] = Eval(i, 0)
64// 2) Eval(i-1, 1)==Eval(i, 0)
65//
66// In other words: The values with the index i describe the spline
67// between fVal[i] and fVal[i+1]
68//
69void MExtralgoSpline::InitDerivatives() const
70{
71 fDer1[0] = 0.;
72 fDer2[0] = 0.;
73
74 for (Int_t i=1; i<fNum-1; i++)
75 {
76 const Float_t pp = fDer2[i-1] + 4.;
77
78 fDer2[i] = -1.0/pp;
79
80 const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
81 fDer1[i] = (6.0*d1-fDer1[i-1])/pp;
82 }
83
84 fDer2[fNum-1] = 0.;
85
86 for (Int_t k=fNum-2; k>=0; k--)
87 fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k];
88
89 for (Int_t k=fNum-2; k>=0; k--)
90 fDer2[k] /= 6.;
91}
92
93// --------------------------------------------------------------------------
94//
95// Returns the highest x value in [min;max[ at which the spline in
96// the bin i is equal to y
97//
98// min and max are defined to be [0;1]
99//
100// The default for min is 0, the default for max is 1
101// The defaule for y is 0
102//
103Double_t MExtralgoSpline::FindY(Int_t i, Double_t y, Double_t min, Double_t max) const
104{
105 // y = a*x^3 + b*x^2 + c*x + d'
106 // 0 = a*x^3 + b*x^2 + c*x + d' - y
107
108 // Calculate coefficients
109 const Double_t a = fDer2[i+1]-fDer2[i];
110 const Double_t b = 3*fDer2[i];
111 const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
112 const Double_t d = fVal[i] - y;
113
114 Double_t x1, x2, x3;
115 const Int_t rc = MMath::SolvePol3(a, b, c, d, x1, x2, x3);
116
117 Double_t x = -1;
118 if (rc>0 && x1>=min && x1<max && x1>x)
119 x = x1;
120 if (rc>1 && x2>=min && x2<max && x2>x)
121 x = x2;
122 if (rc>2 && x3>=min && x3<max && x3>x)
123 x = x3;
124
125 return x<0 ? -1 : x+i;
126}
127
128// --------------------------------------------------------------------------
129//
130// Search analytically downward for the value y of the spline, starting
131// at x, until x==0. If y is not found -1 is returned.
132//
133Double_t MExtralgoSpline::SearchY(Float_t x, Float_t y) const
134{
135 if (x>=fNum-1)
136 x = fNum-1.0001;
137
138 Int_t i = TMath::FloorNint(x);
139 Double_t rc = FindY(i, y, 0, x-i);
140 while (--i>=0 && rc<0)
141 rc = FindY(i, y);
142
143 return rc;
144}
145
146// --------------------------------------------------------------------------
147//
148// Do a range check an then calculate the integral from start-fRiseTime
149// to start+fFallTime. An extrapolation of 0.5 slices is allowed.
150//
151Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
152{
153/*
154 // The number of steps is calculated directly from the integration
155 // window. This is the only way to ensure we are not dealing with
156 // numerical rounding uncertanties, because we always get the same
157 // value under the same conditions -- it might still be different on
158 // other machines!
159 const Float_t start = pos-fRiseTime;
160 const Float_t step = 0.2;
161 const Float_t width = fRiseTime+fFallTime;
162 const Float_t max = fNum-1 - (width+step);
163 const Int_t num = TMath::Nint(width/step);
164
165 // The order is important. In some cases (limlo-/limup-check) it can
166 // happen that max<0. In this case we start at 0
167 if (start > max)
168 start = max;
169 if (start < 0)
170 start = 0;
171
172 start += step/2;
173
174 Double_t sum = 0.;
175 for (Int_t i=0; i<num; i++)
176 {
177 // Note: if x is close to one integer number (= a FADC sample)
178 // we get the same result by using that sample as klo, and the
179 // next one as khi, or using the sample as khi and the previous
180 // one as klo (the spline is of course continuous). So we do not
181 // expect problems from rounding issues in the argument of
182 // Floor() above (we have noticed differences in roundings
183 // depending on the compilation options).
184
185 sum += EvalAt(start + i*step);
186
187 // FIXME? Perhaps the integral should be done analitically
188 // between every two FADC slices, instead of numerically
189 }
190 sum *= step; // Transform sum in integral
191
192 return sum;
193 */
194
195 // In the future we will calculate the intgeral analytically.
196 // It has been tested that it gives identical results within
197 // acceptable differences.
198
199 // We allow extrapolation of 1/2 slice.
200 const Float_t min = fRiseTime; //-0.5+fRiseTime;
201 const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
202
203 if (pos<min)
204 pos = min;
205 if (pos>max)
206 pos = max;
207
208 return EvalInteg(pos-fRiseTime, pos+fFallTime);
209}
210
211Float_t MExtralgoSpline::ExtractNoise(/*Int_t iter*/)
212{
213 // FIXME: Shell we keep the extraction inside one slice
214 // or randomize it along the extraction window?
215 const Float_t nsx = gRandom->Uniform(); //iter * fResolution;
216
217 if (fExtractionType == kAmplitude)
218 return Eval(1, nsx);
219 else
220 return CalcIntegral(2. + nsx);
221}
222
223void MExtralgoSpline::Extract(Byte_t sat, Int_t maxbin)
224{
225 fSignal = 0;
226 fTime = 0;
227 fSignalDev = -1;
228 fTimeDev = -1;
229/*
230 //
231 // Allow no saturated slice and
232 // Don't start if the maxpos is too close to the limits.
233 //
234
235 const Bool_t limlo = maxbin < TMath::Ceil(fRiseTime);
236 const Bool_t limup = maxbin > fNum-TMath::Ceil(fFallTime)-1;
237 if (sat || limlo || limup)
238 {
239 fTimeDev = 1.0;
240 if (fExtractionType == kAmplitude)
241 {
242 fSignal = fVal[maxbin];
243 fTime = maxbin;
244 fSignalDev = 0; // means: is valid
245 return;
246 }
247
248 fSignal = CalcIntegral(limlo ? 0 : fNum);
249 fTime = maxbin - 1;
250 fSignalDev = 0; // means: is valid
251 return;
252 }
253
254 //
255 // Now find the maximum
256 //
257
258 Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
259
260 Int_t klo = maxbin-1;
261
262 Float_t maxpos = maxbin;//! Current position of the maximum of the spline
263 Float_t max = fVal[maxbin];//! Current maximum of the spline
264
265 //
266 // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
267 // If no maximum is found, go to interval maxpos+1.
268 //
269 for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
270 {
271 const Float_t x = klo + step*(i+1);
272 //const Float_t y = Eval(klo, x);
273 const Float_t y = Eval(klo, x-klo);
274 if (y > max)
275 {
276 max = y;
277 maxpos = x;
278 }
279 }
280
281 //
282 // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
283 //
284 if (maxpos > maxbin - 0.1)
285 {
286 klo = maxbin;
287
288 for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
289 {
290 const Float_t x = klo + step*(i+1);
291 //const Float_t y = Eval(klo, x);
292 const Float_t y = Eval(klo, x-klo);
293 if (y > max)
294 {
295 max = y;
296 maxpos = x;
297 }
298 }
299 }
300
301 //
302 // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
303 // Try a better precision.
304 //
305 const Float_t up = maxpos+step - 3.0*fResolution;
306 const Float_t lo = maxpos-step + 3.0*fResolution;
307 const Float_t abmaxpos = maxpos;
308
309 step = 2.*fResolution; // step size of 0.1 FADC slices
310
311 for (int i=0; i<TMath::Nint(TMath::Ceil((up-abmaxpos)/step)); i++)
312 {
313 const Float_t x = abmaxpos + (i+1)*step;
314 //const Float_t y = Eval(klo, x);
315 const Float_t y = Eval(klo, x-klo);
316 if (y > max)
317 {
318 max = y;
319 maxpos = x;
320 }
321 }
322
323 //
324 // Second, try from time down to time-0.2 in steps of fResolution.
325 //
326
327 //
328 // Test the possibility that the absolute maximum has not been found between
329 // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
330 // which requires new setting of klocont and khicont
331 //
332 if (abmaxpos < klo + fResolution)
333 klo--;
334
335 for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--)
336 {
337 const Float_t x = abmaxpos - (i+1)*step;
338 //const Float_t y = Eval(klo, x);
339 const Float_t y = Eval(klo, x-klo);
340 if (y > max)
341 {
342 max = y;
343 maxpos = x;
344 }
345 }
346
347 fTime = maxpos;
348 fTimeDev = fResolution;
349 fSignal = CalcIntegral(maxpos);
350 fSignalDev = 0; // means: is valid
351
352 return;
353*/
354 // --- Start NEW ---
355
356 // This block extracts values very similar to the old algorithm...
357 // for max>10
358 /* Most accurate (old identical) version:
359
360 Float_t xmax=maxpos, ymax=Eval(maxpos-1, 1);
361 Int_t rc = GetMaxPos(maxpos-1, xmax, ymax);
362 if (xmax==maxpos)
363 {
364 GetMaxPos(maxpos, xmax, ymax);
365
366 Float_t y = Eval(maxpos, 1);
367 if (y>ymax)
368 {
369 ymax = y;
370 xmax = maxpos+1;
371 }
372 }*/
373
374 Float_t maxpos, maxval;
375 // FIXME: Check the dfeault if no maximum found!!!
376 GetMaxAroundI(maxbin, maxpos, maxval);
377
378 // --- End NEW ---
379
380 if (fExtractionType == kAmplitude)
381 {
382 fTime = maxpos;
383 fTimeDev = 0;
384 fSignal = maxval;
385 fSignalDev = 0; // means: is valid
386 return;
387 }
388
389 // Search downwards for maxval/2
390 // By doing also a search upwards we could extract the pulse width
391 const Double_t x1 = SearchY(maxpos, maxval/2);
392
393 fTime = x1;
394 fTimeDev = 0;
395 fSignal = CalcIntegral(maxpos);
396 fSignalDev = 0; // means: is valid
397
398 //
399 // Loop from the beginning of the slice upwards to reach the maxhalf:
400 // With means of bisection:
401 //
402 /*
403 static const Float_t sqrt2 = TMath::Sqrt(2.);
404
405 step = sqrt2*3*0.061;//fRiseTime;
406 Float_t x = maxpos-0.86-3*0.061;//fRiseTime*1.25;
407
408// step = sqrt2*0.5;//fRiseTime;
409// Float_t x = maxpos-1.25;//fRiseTime*1.25;
410
411 Int_t cnt =0;
412 while (cnt++<30)
413 {
414 const Float_t y=EvalAt(x);
415
416 if (TMath::Abs(y-maxval/2)<fResolution)
417 break;
418
419 step /= sqrt2; // /2
420 x += y>maxval/2 ? -step : +step;
421 }
422 */
423
424 //
425 // Now integrate the whole thing!
426 //
427 // fTime = cnt==31 ? -1 : x;
428 // fTimeDev = fResolution;
429 // fSignal = cnt==31 ? CalcIntegral(x) : CalcIntegral(maxpos);
430 // fSignalDev = 0; // means: is valid
431}
Note: See TracBrowser for help on using the repository browser.