1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
|
---|
18 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2002-2006
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MExtralgoSpline
|
---|
28 | //
|
---|
29 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
---|
30 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
---|
31 | //
|
---|
32 | // The coefficients "ya" are here denoted as "fVal" corresponding to
|
---|
33 | // the FADC value subtracted by the clock-noise corrected pedestal.
|
---|
34 | //
|
---|
35 | // The coefficients "y2a" get immediately divided 6. and are called here
|
---|
36 | // fDer2 although they are now not exactly the second derivative
|
---|
37 | // coefficients any more.
|
---|
38 | //
|
---|
39 | // The calculation of the cubic-spline interpolated value "y" on a point
|
---|
40 | // "x" along the FADC-slices axis becomes: EvalAt(x)
|
---|
41 | //
|
---|
42 | // The coefficients fDer2 are calculated with the simplified
|
---|
43 | // algorithm in InitDerivatives.
|
---|
44 | //
|
---|
45 | // This algorithm takes advantage of the fact that the x-values are all
|
---|
46 | // separated by exactly 1 which simplifies the Numerical Recipes algorithm.
|
---|
47 | // (Note that the variables fDer are not real first derivative coefficients.)
|
---|
48 | //
|
---|
49 | //////////////////////////////////////////////////////////////////////////////
|
---|
50 | #include "MExtralgoSpline.h"
|
---|
51 |
|
---|
52 | #include <TRandom.h>
|
---|
53 |
|
---|
54 | #include "../mbase/MMath.h"
|
---|
55 |
|
---|
56 | using namespace std;
|
---|
57 |
|
---|
58 | // --------------------------------------------------------------------------
|
---|
59 | //
|
---|
60 | // Calculate the first and second derivative for the splie.
|
---|
61 | //
|
---|
62 | // The coefficients are calculated such that
|
---|
63 | // 1) fVal[i] = Eval(i, 0)
|
---|
64 | // 2) Eval(i-1, 1)==Eval(i, 0)
|
---|
65 | //
|
---|
66 | // In other words: The values with the index i describe the spline
|
---|
67 | // between fVal[i] and fVal[i+1]
|
---|
68 | //
|
---|
69 | void MExtralgoSpline::InitDerivatives() const
|
---|
70 | {
|
---|
71 | if (fNum<2)
|
---|
72 | return;
|
---|
73 |
|
---|
74 | fDer1[0] = 0.;
|
---|
75 | fDer2[0] = 0.;
|
---|
76 |
|
---|
77 | for (Int_t i=1; i<fNum-1; i++)
|
---|
78 | {
|
---|
79 | const Float_t pp = fDer2[i-1] + 4.;
|
---|
80 |
|
---|
81 | fDer2[i] = -1.0/pp;
|
---|
82 |
|
---|
83 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
|
---|
84 | fDer1[i] = (6.0*d1-fDer1[i-1])/pp;
|
---|
85 | }
|
---|
86 |
|
---|
87 | fDer2[fNum-1] = 0.;
|
---|
88 |
|
---|
89 | for (Int_t k=fNum-2; k>=0; k--)
|
---|
90 | fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k];
|
---|
91 |
|
---|
92 | for (Int_t k=fNum-2; k>=0; k--)
|
---|
93 | fDer2[k] /= 6.;
|
---|
94 | }
|
---|
95 |
|
---|
96 | // --------------------------------------------------------------------------
|
---|
97 | //
|
---|
98 | // Returns the highest x value in [min;max[ at which the spline in
|
---|
99 | // the bin i is equal to y
|
---|
100 | //
|
---|
101 | // min and max are defined to be [0;1]
|
---|
102 | //
|
---|
103 | // The default for min is 0, the default for max is 1
|
---|
104 | // The defaule for y is 0
|
---|
105 | //
|
---|
106 | Double_t MExtralgoSpline::FindY(Int_t i, Double_t y, Double_t min, Double_t max) const
|
---|
107 | {
|
---|
108 | // y = a*x^3 + b*x^2 + c*x + d'
|
---|
109 | // 0 = a*x^3 + b*x^2 + c*x + d' - y
|
---|
110 |
|
---|
111 | // Calculate coefficients
|
---|
112 | const Double_t a = fDer2[i+1]-fDer2[i];
|
---|
113 | const Double_t b = 3*fDer2[i];
|
---|
114 | const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
|
---|
115 | const Double_t d = fVal[i] - y;
|
---|
116 |
|
---|
117 | Double_t x1, x2, x3;
|
---|
118 | const Int_t rc = MMath::SolvePol3(a, b, c, d, x1, x2, x3);
|
---|
119 |
|
---|
120 | Double_t x = -1;
|
---|
121 | if (rc>0 && x1>=min && x1<max && x1>x)
|
---|
122 | x = x1;
|
---|
123 | if (rc>1 && x2>=min && x2<max && x2>x)
|
---|
124 | x = x2;
|
---|
125 | if (rc>2 && x3>=min && x3<max && x3>x)
|
---|
126 | x = x3;
|
---|
127 |
|
---|
128 | return x<0 ? -2 : x+i;
|
---|
129 | }
|
---|
130 |
|
---|
131 | // --------------------------------------------------------------------------
|
---|
132 | //
|
---|
133 | // Search analytically downward for the value y of the spline, starting
|
---|
134 | // at x, until x==0. If y is not found -2 is returned.
|
---|
135 | //
|
---|
136 | Double_t MExtralgoSpline::SearchY(Float_t x, Float_t y) const
|
---|
137 | {
|
---|
138 | if (x>=fNum-1)
|
---|
139 | x = fNum-1.0001;
|
---|
140 |
|
---|
141 | Int_t i = TMath::FloorNint(x);
|
---|
142 | Double_t rc = FindY(i, y, 0, x-i);
|
---|
143 | while (--i>=0 && rc<0)
|
---|
144 | rc = FindY(i, y);
|
---|
145 |
|
---|
146 | return rc;
|
---|
147 | }
|
---|
148 |
|
---|
149 | Double_t MExtralgoSpline::SearchYup(Float_t x, Float_t y) const
|
---|
150 | {
|
---|
151 | if (x<0)
|
---|
152 | x = 0.0001;
|
---|
153 |
|
---|
154 | Int_t i = TMath::FloorNint(x);
|
---|
155 | Double_t rc = FindY(i, y, x-i, 1.);
|
---|
156 | while (i++<fNum-1 && rc<0)
|
---|
157 | rc = FindY(i, y);
|
---|
158 |
|
---|
159 | return rc;
|
---|
160 | }
|
---|
161 |
|
---|
162 | // --------------------------------------------------------------------------
|
---|
163 | //
|
---|
164 | // Do a range check an then calculate the integral from start-fRiseTime
|
---|
165 | // to start+fFallTime. An extrapolation of 0.5 slices is allowed.
|
---|
166 | //
|
---|
167 | Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
|
---|
168 | {
|
---|
169 | /*
|
---|
170 | // The number of steps is calculated directly from the integration
|
---|
171 | // window. This is the only way to ensure we are not dealing with
|
---|
172 | // numerical rounding uncertanties, because we always get the same
|
---|
173 | // value under the same conditions -- it might still be different on
|
---|
174 | // other machines!
|
---|
175 | const Float_t start = pos-fRiseTime;
|
---|
176 | const Float_t step = 0.2;
|
---|
177 | const Float_t width = fRiseTime+fFallTime;
|
---|
178 | const Float_t max = fNum-1 - (width+step);
|
---|
179 | const Int_t num = TMath::Nint(width/step);
|
---|
180 |
|
---|
181 | // The order is important. In some cases (limlo-/limup-check) it can
|
---|
182 | // happen that max<0. In this case we start at 0
|
---|
183 | if (start > max)
|
---|
184 | start = max;
|
---|
185 | if (start < 0)
|
---|
186 | start = 0;
|
---|
187 |
|
---|
188 | start += step/2;
|
---|
189 |
|
---|
190 | Double_t sum = 0.;
|
---|
191 | for (Int_t i=0; i<num; i++)
|
---|
192 | {
|
---|
193 | // Note: if x is close to one integer number (= a FADC sample)
|
---|
194 | // we get the same result by using that sample as klo, and the
|
---|
195 | // next one as khi, or using the sample as khi and the previous
|
---|
196 | // one as klo (the spline is of course continuous). So we do not
|
---|
197 | // expect problems from rounding issues in the argument of
|
---|
198 | // Floor() above (we have noticed differences in roundings
|
---|
199 | // depending on the compilation options).
|
---|
200 |
|
---|
201 | sum += EvalAt(start + i*step);
|
---|
202 |
|
---|
203 | // FIXME? Perhaps the integral should be done analitically
|
---|
204 | // between every two FADC slices, instead of numerically
|
---|
205 | }
|
---|
206 | sum *= step; // Transform sum in integral
|
---|
207 |
|
---|
208 | return sum;
|
---|
209 | */
|
---|
210 |
|
---|
211 | // In the future we will calculate the intgeral analytically.
|
---|
212 | // It has been tested that it gives identical results within
|
---|
213 | // acceptable differences.
|
---|
214 |
|
---|
215 | // We allow extrapolation of 1/2 slice.
|
---|
216 | const Float_t min = fRiseTime; //-0.5+fRiseTime;
|
---|
217 | const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
|
---|
218 |
|
---|
219 | if (pos<min)
|
---|
220 | pos = min;
|
---|
221 | if (pos>max)
|
---|
222 | pos = max;
|
---|
223 |
|
---|
224 | return EvalInteg(pos-fRiseTime, pos+fFallTime);
|
---|
225 | }
|
---|
226 |
|
---|
227 | Float_t MExtralgoSpline::ExtractNoise(/*Int_t iter*/)
|
---|
228 | {
|
---|
229 | if (fNum<5)
|
---|
230 | return 0;
|
---|
231 |
|
---|
232 | // FIXME: Shell we keep the extraction inside one slice
|
---|
233 | // or randomize it along the extraction window?
|
---|
234 | const Float_t nsx = gRandom->Uniform(); //iter * fResolution;
|
---|
235 |
|
---|
236 | if (fExtractionType == kAmplitude)
|
---|
237 | return Eval(2, nsx);
|
---|
238 | else
|
---|
239 | return CalcIntegral(2 + nsx);
|
---|
240 | }
|
---|
241 |
|
---|
242 | void MExtralgoSpline::Extract(Byte_t sat, Int_t maxbin, Bool_t width)
|
---|
243 | {
|
---|
244 | fSignal = 0;
|
---|
245 | fTime = 0;
|
---|
246 | fWidth = 0;
|
---|
247 | fSignalDev = -1;
|
---|
248 | fTimeDev = -1;
|
---|
249 | fWidthDev = -1;
|
---|
250 |
|
---|
251 | if (fNum<2)
|
---|
252 | return;
|
---|
253 | /*
|
---|
254 | //
|
---|
255 | // Allow no saturated slice and
|
---|
256 | // Don't start if the maxpos is too close to the limits.
|
---|
257 | //
|
---|
258 |
|
---|
259 | const Bool_t limlo = maxbin < TMath::Ceil(fRiseTime);
|
---|
260 | const Bool_t limup = maxbin > fNum-TMath::Ceil(fFallTime)-1;
|
---|
261 | if (sat || limlo || limup)
|
---|
262 | {
|
---|
263 | fTimeDev = 1.0;
|
---|
264 | if (fExtractionType == kAmplitude)
|
---|
265 | {
|
---|
266 | fSignal = fVal[maxbin];
|
---|
267 | fTime = maxbin;
|
---|
268 | fSignalDev = 0; // means: is valid
|
---|
269 | return;
|
---|
270 | }
|
---|
271 |
|
---|
272 | fSignal = CalcIntegral(limlo ? 0 : fNum);
|
---|
273 | fTime = maxbin - 1;
|
---|
274 | fSignalDev = 0; // means: is valid
|
---|
275 | return;
|
---|
276 | }
|
---|
277 |
|
---|
278 | //
|
---|
279 | // Now find the maximum
|
---|
280 | //
|
---|
281 |
|
---|
282 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
283 |
|
---|
284 | Int_t klo = maxbin-1;
|
---|
285 |
|
---|
286 | Float_t maxpos = maxbin;//! Current position of the maximum of the spline
|
---|
287 | Float_t max = fVal[maxbin];//! Current maximum of the spline
|
---|
288 |
|
---|
289 | //
|
---|
290 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
---|
291 | // If no maximum is found, go to interval maxpos+1.
|
---|
292 | //
|
---|
293 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
---|
294 | {
|
---|
295 | const Float_t x = klo + step*(i+1);
|
---|
296 | //const Float_t y = Eval(klo, x);
|
---|
297 | const Float_t y = Eval(klo, x-klo);
|
---|
298 | if (y > max)
|
---|
299 | {
|
---|
300 | max = y;
|
---|
301 | maxpos = x;
|
---|
302 | }
|
---|
303 | }
|
---|
304 |
|
---|
305 | //
|
---|
306 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
---|
307 | //
|
---|
308 | if (maxpos > maxbin - 0.1)
|
---|
309 | {
|
---|
310 | klo = maxbin;
|
---|
311 |
|
---|
312 | for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
|
---|
313 | {
|
---|
314 | const Float_t x = klo + step*(i+1);
|
---|
315 | //const Float_t y = Eval(klo, x);
|
---|
316 | const Float_t y = Eval(klo, x-klo);
|
---|
317 | if (y > max)
|
---|
318 | {
|
---|
319 | max = y;
|
---|
320 | maxpos = x;
|
---|
321 | }
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 | //
|
---|
326 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
---|
327 | // Try a better precision.
|
---|
328 | //
|
---|
329 | const Float_t up = maxpos+step - 3.0*fResolution;
|
---|
330 | const Float_t lo = maxpos-step + 3.0*fResolution;
|
---|
331 | const Float_t abmaxpos = maxpos;
|
---|
332 |
|
---|
333 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
---|
334 |
|
---|
335 | for (int i=0; i<TMath::Nint(TMath::Ceil((up-abmaxpos)/step)); i++)
|
---|
336 | {
|
---|
337 | const Float_t x = abmaxpos + (i+1)*step;
|
---|
338 | //const Float_t y = Eval(klo, x);
|
---|
339 | const Float_t y = Eval(klo, x-klo);
|
---|
340 | if (y > max)
|
---|
341 | {
|
---|
342 | max = y;
|
---|
343 | maxpos = x;
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | //
|
---|
348 | // Second, try from time down to time-0.2 in steps of fResolution.
|
---|
349 | //
|
---|
350 |
|
---|
351 | //
|
---|
352 | // Test the possibility that the absolute maximum has not been found between
|
---|
353 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
---|
354 | // which requires new setting of klocont and khicont
|
---|
355 | //
|
---|
356 | if (abmaxpos < klo + fResolution)
|
---|
357 | klo--;
|
---|
358 |
|
---|
359 | for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--)
|
---|
360 | {
|
---|
361 | const Float_t x = abmaxpos - (i+1)*step;
|
---|
362 | //const Float_t y = Eval(klo, x);
|
---|
363 | const Float_t y = Eval(klo, x-klo);
|
---|
364 | if (y > max)
|
---|
365 | {
|
---|
366 | max = y;
|
---|
367 | maxpos = x;
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | fTime = maxpos;
|
---|
372 | fTimeDev = fResolution;
|
---|
373 | fSignal = CalcIntegral(maxpos);
|
---|
374 | fSignalDev = 0; // means: is valid
|
---|
375 |
|
---|
376 | return;
|
---|
377 | */
|
---|
378 | // --- Start NEW ---
|
---|
379 |
|
---|
380 | // This block extracts values very similar to the old algorithm...
|
---|
381 | // for max>10
|
---|
382 | /* Most accurate (old identical) version:
|
---|
383 |
|
---|
384 | Float_t xmax=maxpos, ymax=Eval(maxpos-1, 1);
|
---|
385 | Int_t rc = GetMaxPos(maxpos-1, xmax, ymax);
|
---|
386 | if (xmax==maxpos)
|
---|
387 | {
|
---|
388 | GetMaxPos(maxpos, xmax, ymax);
|
---|
389 |
|
---|
390 | Float_t y = Eval(maxpos, 1);
|
---|
391 | if (y>ymax)
|
---|
392 | {
|
---|
393 | ymax = y;
|
---|
394 | xmax = maxpos+1;
|
---|
395 | }
|
---|
396 | }*/
|
---|
397 |
|
---|
398 | Float_t maxpos;
|
---|
399 | // FIXME: Check the default if no maximum found!!!
|
---|
400 | GetMaxAroundI(maxbin, maxpos, fHeight);
|
---|
401 |
|
---|
402 | // --- End NEW ---
|
---|
403 |
|
---|
404 | if (fExtractionType == kAmplitude)
|
---|
405 | {
|
---|
406 | fTime = maxpos;
|
---|
407 | fTimeDev = 0;
|
---|
408 | fSignal = fHeight;
|
---|
409 | fSignalDev = 0; // means: is valid
|
---|
410 | return;
|
---|
411 | }
|
---|
412 |
|
---|
413 | const Float_t h = fExtractionType==kIntegralAbs ? fHeightTm : fHeight*fHeightTm;
|
---|
414 |
|
---|
415 | // Search downwards for fHeight/2
|
---|
416 | // By doing also a search upwards we could extract the pulse width
|
---|
417 | fTime = SearchY(maxpos, h);
|
---|
418 | fTimeDev = 0;
|
---|
419 | if (width)
|
---|
420 | {
|
---|
421 | fWidth = SearchYup(maxpos, h)-fTime;
|
---|
422 | fWidthDev = 0;
|
---|
423 | }
|
---|
424 | fSignal = CalcIntegral(maxpos);
|
---|
425 | fSignalDev = 0; // means: is valid
|
---|
426 |
|
---|
427 | //
|
---|
428 | // Loop from the beginning of the slice upwards to reach the maxhalf:
|
---|
429 | // With means of bisection:
|
---|
430 | //
|
---|
431 | /*
|
---|
432 | static const Float_t sqrt2 = TMath::Sqrt(2.);
|
---|
433 |
|
---|
434 | step = sqrt2*3*0.061;//fRiseTime;
|
---|
435 | Float_t x = maxpos-0.86-3*0.061;//fRiseTime*1.25;
|
---|
436 |
|
---|
437 | // step = sqrt2*0.5;//fRiseTime;
|
---|
438 | // Float_t x = maxpos-1.25;//fRiseTime*1.25;
|
---|
439 |
|
---|
440 | Int_t cnt =0;
|
---|
441 | while (cnt++<30)
|
---|
442 | {
|
---|
443 | const Float_t y=EvalAt(x);
|
---|
444 |
|
---|
445 | if (TMath::Abs(y-maxval/2)<fResolution)
|
---|
446 | break;
|
---|
447 |
|
---|
448 | step /= sqrt2; // /2
|
---|
449 | x += y>maxval/2 ? -step : +step;
|
---|
450 | }
|
---|
451 | */
|
---|
452 |
|
---|
453 | //
|
---|
454 | // Now integrate the whole thing!
|
---|
455 | //
|
---|
456 | // fTime = cnt==31 ? -1 : x;
|
---|
457 | // fTimeDev = fResolution;
|
---|
458 | // fSignal = cnt==31 ? CalcIntegral(x) : CalcIntegral(maxpos);
|
---|
459 | // fSignalDev = 0; // means: is valid
|
---|
460 | }
|
---|