1 | #ifndef MARS_MExtralgoSpline
|
---|
2 | #define MARS_MExtralgoSpline
|
---|
3 |
|
---|
4 | #ifndef ROOT_TMath
|
---|
5 | #include <TMath.h>
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | class TComplex;
|
---|
9 |
|
---|
10 | class MExtralgoSpline
|
---|
11 | {
|
---|
12 | public:
|
---|
13 | enum ExtractionType_t { kAmplitude, kIntegralRel, kIntegralAbs }; //! Possible time and charge extraction types
|
---|
14 |
|
---|
15 | private:
|
---|
16 | ExtractionType_t fExtractionType;
|
---|
17 |
|
---|
18 | private:
|
---|
19 | //Bool_t fIsOwner; // Owner of derivatives....
|
---|
20 |
|
---|
21 | // Input
|
---|
22 | Float_t const *fVal;
|
---|
23 | const Int_t fNum;
|
---|
24 |
|
---|
25 | Float_t *fDer1;
|
---|
26 | Float_t *fDer2;
|
---|
27 |
|
---|
28 | Float_t fRiseTime;
|
---|
29 | Float_t fFallTime;
|
---|
30 |
|
---|
31 | Float_t fHeightTm;
|
---|
32 |
|
---|
33 | // Result
|
---|
34 | Float_t fTime;
|
---|
35 | Float_t fTimeDev;
|
---|
36 | Float_t fWidth;
|
---|
37 | Float_t fWidthDev;
|
---|
38 | Float_t fSignal;
|
---|
39 | Float_t fSignalDev;
|
---|
40 | Float_t fHeight;
|
---|
41 |
|
---|
42 | Double_t ReMul(const TComplex &c1, const TComplex &th) const;
|
---|
43 |
|
---|
44 | inline Float_t Eval(Float_t val, Float_t a, Float_t deriv) const
|
---|
45 | {
|
---|
46 | return a*val + (a*a*a-a)*deriv;
|
---|
47 | }
|
---|
48 |
|
---|
49 | // Evaluate value of spline in the interval i with x=[0;1[
|
---|
50 | inline Float_t Eval(const Int_t i, const Float_t x) const
|
---|
51 | {
|
---|
52 | // Eval(i,x) = (fDer2[i+1]-fDer2[i])*x*x*x + 3*fDer2[i]*x*x +
|
---|
53 | // (fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1])*x + fVal[i];
|
---|
54 |
|
---|
55 | // x := [0; 1[
|
---|
56 | return Eval(fVal[i], 1-x, fDer2[i]) + Eval(fVal[i+1], x, fDer2[i+1]);
|
---|
57 | }
|
---|
58 |
|
---|
59 | // Evaluate first derivative of spline in the interval i with x=[0;1[
|
---|
60 | inline Double_t EvalDeriv1(const Float_t x, const Int_t i) const
|
---|
61 | {
|
---|
62 | // x := [0; 1[
|
---|
63 | const Double_t difval = fVal[i+1]-fVal[i];
|
---|
64 | const Double_t difder = fDer2[i+1]-fDer2[i];
|
---|
65 |
|
---|
66 | return 3*difder*x*x + 6*fDer2[i]*x - 2*fDer2[i] - fDer2[i+1] + difval;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // Evaluate second derivative of spline in the interval i with x=[0;1[
|
---|
70 | inline Double_t EvalDeriv2(const Float_t x, const Int_t i) const
|
---|
71 | {
|
---|
72 | // x := [0; 1[
|
---|
73 | return 6*(fDer2[i+1]*x + fDer2[i]*(1-x));
|
---|
74 | }
|
---|
75 |
|
---|
76 | Double_t FindY(Int_t i, Bool_t downwards, Double_t y=0, Double_t min=0, Double_t max=1) const;
|
---|
77 | Double_t SearchY(Float_t maxpos, Float_t y) const;
|
---|
78 | Double_t SearchYup(Float_t maxpos, Float_t y) const;
|
---|
79 |
|
---|
80 | Int_t EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const;
|
---|
81 | /*
|
---|
82 | inline void EvalDerivEq0(const Int_t i, Float_t &rc1, Float_t &rc2) const
|
---|
83 | {
|
---|
84 | // --- ORIGINAL CODE ---
|
---|
85 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
86 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
87 |
|
---|
88 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
89 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
90 | Double_t sqt3 = sqrt(3*sqt1 + 3*sqt2);
|
---|
91 | Double_t denom = -3*(fDer2[i+1]-fDer2[i]);
|
---|
92 |
|
---|
93 | rc1 = (3*fDer2[i] + sqt3)/denom;
|
---|
94 | rc2 = (3*fDer2[i] - sqt3)/denom;
|
---|
95 |
|
---|
96 | // --- NEW CODE ---
|
---|
97 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
98 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
99 |
|
---|
100 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
101 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
102 | Double_t sqt3 = sqt1+sqt2<0 ? 0 : sqrt((sqt1 + sqt2)/3);
|
---|
103 |
|
---|
104 | rc1 = (fDer2[i] + sqt3)/difder;
|
---|
105 | rc2 = (fDer2[i] - sqt3)/difder;
|
---|
106 | }*/
|
---|
107 |
|
---|
108 | // Calculate the "Stammfunktion" of the Eval-function
|
---|
109 | inline Double_t EvalPrimitive(Int_t i, Float_t x) const
|
---|
110 | {
|
---|
111 | Align(i, x);
|
---|
112 |
|
---|
113 | if (x==0)
|
---|
114 | return -fDer2[i]/4;
|
---|
115 |
|
---|
116 | if (x==1)
|
---|
117 | return (fVal[i+1] + fVal[i])/2 - fDer2[i+1]/4 - fDer2[i]/2;
|
---|
118 |
|
---|
119 | const Double_t x2 = x*x;
|
---|
120 | const Double_t x4 = x2*x2;
|
---|
121 | const Double_t x1 = 1-x;
|
---|
122 | const Double_t x14 = x1*x1*x1*x1;
|
---|
123 |
|
---|
124 | return x2*fVal[i+1]/2 + (x4/2-x2)*fDer2[i+1]/2 + (x-x2/2)*fVal[i] + (x2/2-x-x14/4)*fDer2[i];
|
---|
125 |
|
---|
126 | }
|
---|
127 |
|
---|
128 | inline void Align(Int_t &i, Float_t &x) const
|
---|
129 | {
|
---|
130 | if (i<0)
|
---|
131 | {
|
---|
132 | x += i;
|
---|
133 | i=0;
|
---|
134 | }
|
---|
135 | if (i>=fNum-1)
|
---|
136 | {
|
---|
137 | x += i-(fNum-2);
|
---|
138 | i=fNum-2;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | // Calculate the intgeral of the Eval-function in
|
---|
143 | // bin i from a=[0;1[ to b=[0;1[
|
---|
144 | inline Double_t EvalInteg(Int_t i, Float_t a, Float_t b) const
|
---|
145 | {
|
---|
146 | return EvalPrimitive(i, b)-EvalPrimitive(i, a);
|
---|
147 | }
|
---|
148 |
|
---|
149 | // Identical to EvalInteg(i, 0, 1) but much faster
|
---|
150 | // Be carefull: NO RANGECHECK!
|
---|
151 | inline Double_t EvalInteg(Int_t i) const
|
---|
152 | {
|
---|
153 | return (fVal[i+1] + fVal[i])/2 - (fDer2[i+1] + fDer2[i])/4;
|
---|
154 | }
|
---|
155 |
|
---|
156 | // Identical to sum EvalInteg(i, 0, 1) for i=0 to i<b but much faster
|
---|
157 | // Be carefull: NO RANGECHECK!
|
---|
158 | inline Double_t EvalInteg(Int_t a, Int_t b) const
|
---|
159 | {
|
---|
160 | /*
|
---|
161 | Double_t sum = 0;
|
---|
162 | for (int i=a; i<b; i++)
|
---|
163 | sum += EvalInteg(i);
|
---|
164 |
|
---|
165 | return sum;
|
---|
166 | */
|
---|
167 |
|
---|
168 | if (a==b)
|
---|
169 | return 0;
|
---|
170 |
|
---|
171 | Double_t sum=0;
|
---|
172 | for (const Float_t *ptr=fDer2+a+1; ptr<fDer2+b; ptr++)
|
---|
173 | sum -= *ptr;
|
---|
174 |
|
---|
175 | sum -= (fDer2[a]+fDer2[b])/2;
|
---|
176 |
|
---|
177 | sum /= 2;
|
---|
178 |
|
---|
179 | for (const Float_t *ptr=fVal+a+1; ptr<fVal+b; ptr++)
|
---|
180 | sum += *ptr;
|
---|
181 |
|
---|
182 | sum += (fVal[a]+fVal[b])/2;
|
---|
183 |
|
---|
184 | return sum;
|
---|
185 | }
|
---|
186 |
|
---|
187 | // Calculate the intgeral of the Eval-function betwen x0 and x1
|
---|
188 | inline Double_t EvalInteg(Float_t x0, Float_t x1) const
|
---|
189 | {
|
---|
190 | // RANGE CHECK MISSING!
|
---|
191 |
|
---|
192 | const Int_t min = TMath::CeilNint(x0);
|
---|
193 | const Int_t max = TMath::FloorNint(x1);
|
---|
194 |
|
---|
195 | // This happens if x0 and x1 are in the same interval
|
---|
196 | if (min>max)
|
---|
197 | return EvalInteg(max, x0-max, x1-max);
|
---|
198 |
|
---|
199 | // Sum complete intervals
|
---|
200 | Double_t sum = EvalInteg(min, max);
|
---|
201 |
|
---|
202 | // Sum the incomplete intervals at the beginning and end
|
---|
203 | sum += EvalInteg(min-1, 1-(min-x0), 1);
|
---|
204 | sum += EvalInteg(max, 0, x1-max);
|
---|
205 |
|
---|
206 | // return result
|
---|
207 | return sum;
|
---|
208 | }
|
---|
209 |
|
---|
210 | // We search for the maximum from x=i-1 to x=i+1
|
---|
211 | // (Remeber: i corresponds to the value in bin i, i+1 to the
|
---|
212 | // next bin and i-1 to the last bin)
|
---|
213 | inline void GetMaxAroundI(Int_t i, Float_t &xmax, Float_t &ymax) const
|
---|
214 | {
|
---|
215 | Float_t xmax1=0, xmax2=0;
|
---|
216 | Float_t ymax1=0, ymax2=0;
|
---|
217 |
|
---|
218 | Bool_t rc1 = i>0 && GetMax(i-1, xmax1, ymax1);
|
---|
219 | Bool_t rc2 = i<fNum-1 && GetMax(i, xmax2, ymax2);
|
---|
220 |
|
---|
221 | // In case the medium bin is the first or last bin
|
---|
222 | // take the lower or upper edge of the region into account.
|
---|
223 | if (i==0)
|
---|
224 | {
|
---|
225 | xmax1 = 0;
|
---|
226 | ymax1 = fVal[0];
|
---|
227 | rc1 = kTRUE;
|
---|
228 | }
|
---|
229 | if (i>=fNum-1)
|
---|
230 | {
|
---|
231 | xmax2 = fNum-1;
|
---|
232 | ymax2 = fVal[fNum-1];
|
---|
233 | rc2 = kTRUE;
|
---|
234 | }
|
---|
235 |
|
---|
236 | // Take a default in case no maximum is found
|
---|
237 | // FIXME: Check THIS!!!
|
---|
238 | xmax=i;
|
---|
239 | ymax=fVal[i];
|
---|
240 |
|
---|
241 | if (rc1)
|
---|
242 | {
|
---|
243 | ymax = ymax1;
|
---|
244 | xmax = xmax1;
|
---|
245 | }
|
---|
246 | else
|
---|
247 | if (rc2)
|
---|
248 | {
|
---|
249 | ymax = ymax2;
|
---|
250 | xmax = xmax2;
|
---|
251 | }
|
---|
252 |
|
---|
253 | if (rc2 && ymax2>ymax)
|
---|
254 | {
|
---|
255 | ymax = ymax2;
|
---|
256 | xmax = xmax2;
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 | inline Bool_t GetMax(Int_t i, Float_t &xmax, Float_t &ymax, Float_t min=0, Float_t max=1) const
|
---|
261 | {
|
---|
262 | // Find analytical maximum in the bin i in the interval [min,max[
|
---|
263 |
|
---|
264 | Double_t x1=-1; // This initialisation should not really be
|
---|
265 | Double_t x2=-1; // necessary but makes valgriund happy.
|
---|
266 |
|
---|
267 | if (!EvalDerivEq0(i, x1, x2))
|
---|
268 | return kFALSE;
|
---|
269 |
|
---|
270 | const Bool_t ismax1 = x1>=min && x1<max && EvalDeriv2(x1, i)<0;
|
---|
271 | const Bool_t ismax2 = x2>=min && x2<max && EvalDeriv2(x2, i)<0;
|
---|
272 |
|
---|
273 | if (!ismax1 && !ismax2)
|
---|
274 | return kFALSE;
|
---|
275 |
|
---|
276 | if (ismax1 && !ismax2)
|
---|
277 | {
|
---|
278 | xmax = i+x1;
|
---|
279 | ymax = Eval(i, x1);
|
---|
280 | return kTRUE;
|
---|
281 | }
|
---|
282 |
|
---|
283 | if (!ismax1 && ismax2)
|
---|
284 | {
|
---|
285 | xmax = i+x2;
|
---|
286 | ymax = Eval(i, x2);
|
---|
287 | return kTRUE;
|
---|
288 | }
|
---|
289 |
|
---|
290 | // Somehting must be wrong...
|
---|
291 | return kFALSE;
|
---|
292 | }
|
---|
293 |
|
---|
294 | void InitDerivatives() const;
|
---|
295 | Float_t CalcIntegral(Float_t start) const;
|
---|
296 |
|
---|
297 | public:
|
---|
298 | MExtralgoSpline(const Float_t *val, Int_t n, Float_t *der1, Float_t *der2)
|
---|
299 | : fExtractionType(kIntegralRel), fVal(val), fNum(n), fDer1(der1), fDer2(der2), fHeightTm(0.5), fTime(0), fTimeDev(-1), fSignal(0), fSignalDev(-1)
|
---|
300 | {
|
---|
301 | InitDerivatives();
|
---|
302 | }
|
---|
303 |
|
---|
304 | void SetRiseFallTime(Float_t rise, Float_t fall) { fRiseTime=rise; fFallTime=fall; }
|
---|
305 | void SetExtractionType(ExtractionType_t typ) { fExtractionType = typ; }
|
---|
306 | void SetHeightTm(Float_t h) { fHeightTm = h; }
|
---|
307 |
|
---|
308 | Float_t GetTime() const { return fTime; }
|
---|
309 | Float_t GetWidth() const { return fWidth; }
|
---|
310 | Float_t GetSignal() const { return fSignal; }
|
---|
311 | Float_t GetHeight() const { return fHeight; }
|
---|
312 |
|
---|
313 | Float_t GetTimeDev() const { return fTimeDev; }
|
---|
314 | Float_t GetWidthDev() const { return fWidthDev; }
|
---|
315 | Float_t GetSignalDev() const { return fSignalDev; }
|
---|
316 |
|
---|
317 | void GetSignal(Float_t &sig, Float_t &dsig) const { sig=fSignal; dsig=fSignalDev; }
|
---|
318 | void GetWidth(Float_t &sig, Float_t &dsig) const { sig=fWidth; dsig=fWidthDev; }
|
---|
319 | void GetTime(Float_t &sig, Float_t &dsig) const { sig=fTime; dsig=fTimeDev; }
|
---|
320 |
|
---|
321 | Float_t ExtractNoise(/*Int_t iter*/);
|
---|
322 | void Extract(Int_t maxpos, Bool_t width=kFALSE);
|
---|
323 |
|
---|
324 | Float_t EvalAt(const Float_t x) const;
|
---|
325 | };
|
---|
326 |
|
---|
327 | inline Float_t MExtralgoSpline::EvalAt(const Float_t x) const
|
---|
328 | {
|
---|
329 | Int_t i = TMath::FloorNint(x);
|
---|
330 | Float_t f = x-i;
|
---|
331 |
|
---|
332 | Align(i, f);
|
---|
333 |
|
---|
334 | return Eval(i, f);
|
---|
335 | }
|
---|
336 |
|
---|
337 | #endif
|
---|