#ifndef MARS_MExtralgoSpline #define MARS_MExtralgoSpline #ifndef ROOT_TROOT #include #endif #include class TComplex; class MExtralgoSpline { public: enum ExtractionType_t { kAmplitude, kIntegral }; //! Possible time and charge extraction types private: ExtractionType_t fExtractionType; private: //Bool_t fIsOwner; // Owner of derivatives.... // Input Float_t *fVal; Int_t fNum; Float_t *fDer1; Float_t *fDer2; Float_t fRiseTime; Float_t fFallTime; Float_t fResolution; // Result Float_t fTime; Float_t fTimeDev; Float_t fSignal; Float_t fSignalDev; Double_t ReMul(const TComplex &c1, const TComplex &th) const; inline Float_t Eval(Float_t val, Float_t a, Float_t deriv) const { return a*val + (a*a*a-a)*deriv; } // Evaluate value of spline in the interval i with x=[0;1[ inline Float_t Eval(const Int_t i, const Float_t x) const { // Eval(i,x) = (fDer2[i+1]-fDer2[i])*x*x*x + 3*fDer2[i]*x*x + // (fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1])*x + fVal[i]; // x := [0; 1[ return Eval(fVal[i], 1-x, fDer2[i]) + Eval(fVal[i+1], x, fDer2[i+1]); } /* inline Float_t EvalAt(const Float_t x) const { Int_t i = TMath::FloorNint(x); // handle under- and overflow of the array-range by extrapolation if (i<0) i=0; if (i>fNum-2) i = fNum-2; return Eval(i, x-i); } */ // Evaluate first derivative of spline in the interval i with x=[0;1[ inline Double_t EvalDeriv1(const Float_t x, const Int_t i) const { // x := [0; 1[ const Double_t difval = fVal[i+1]-fVal[i]; const Double_t difder = fDer2[i+1]-fDer2[i]; return 3*difder*x*x + 6*fDer2[i]*x - 2*fDer2[i] - fDer2[i+1] + difval; } // Evaluate second derivative of spline in the interval i with x=[0;1[ inline Double_t EvalDeriv2(const Float_t x, const Int_t i) const { // x := [0; 1[ return 6*(fDer2[i+1]*x + fDer2[i]*(1-x)); } Double_t FindY(Int_t i, Double_t y=0, Double_t min=0, Double_t max=1) const; Double_t SearchY(Float_t maxpos, Float_t y) const; /* // Evaluate first solution for a possible maximum (x|first deriv==0) inline Double_t EvalDerivEq0S1(const Int_t i) const { // return the x value [0;1[ at which the derivative is zero (solution1) Double_t sumder = fDer2[i]+fDer2[i+1]; Double_t difder = fDer2[i]-fDer2[i+1]; Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1]; Double_t sqt2 = difder*(fVal[i+1]-fVal[i]); Double_t x = 3*fDer2[i] - sqrt(3*sqt1 + 3*sqt2); Double_t denom = 3*(fDer2[i+1]-fDer2[i]); return -x/denom; } // Evaluate second solution for a possible maximum (x|first deriv==0) inline Double_t EvalDerivEq0S2(const Int_t i) const { // return the x value [0;1[ at which the derivative is zero (solution2) Double_t sumder = fDer2[i]+fDer2[i+1]; Double_t difder = fDer2[i]-fDer2[i+1]; Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1]; Double_t sqt2 = difder*(fVal[i+1]-fVal[i]); Double_t x = 3*fDer2[i] + sqrt(3*sqt1 + 3*sqt2); Double_t denom = 3*(fDer2[i+1]-fDer2[i]); return -x/denom; } */ inline void EvalDerivEq0(const Int_t i, Float_t &rc1, Float_t &rc2) const { Double_t sumder = fDer2[i]+fDer2[i+1]; Double_t difder = fDer2[i]-fDer2[i+1]; Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1]; Double_t sqt2 = difder*(fVal[i+1]-fVal[i]); Double_t sqt3 = sqrt(3*sqt1 + 3*sqt2); Double_t denom = 3*(fDer2[i+1]-fDer2[i]); rc1 = -(3*fDer2[i] + sqt3)/denom; rc2 = -(3*fDer2[i] - sqt3)/denom; } // Calculate the "Stammfunktion" of the Eval-function inline Double_t EvalPrimitive(Int_t i, Float_t x) const { /* TO BE CHECKED! if (x==0) return 0; if (x==1) return (fVal[i+1]+fVal[i])/2 - fDer2[i+1]/4; */ Align(i, x); const Double_t x2 = x*x; const Double_t x4 = x2*x2; const Double_t x1 = 1-x; const Double_t x14 = x1*x1*x1*x1; return x2*fVal[i+1]/2 + (x4/2-x2)*fDer2[i+1]/2 + (x-x2/2)*fVal[i] + (x2/2-x-x14/4)*fDer2[i]; } inline void Align(Int_t &i, Float_t &x) const { if (i<0) { x += i; i=0; } if (i>=fNum-1) { x += i-(fNum-2); i=fNum-2; } } // Calculate the intgeral of the Eval-function in // bin i from a=[0;1[ to b=[0;1[ inline Double_t EvalInteg(Int_t i, Float_t a=0, Float_t b=1) const { // This is to make sure that we never access invalid // memory, even if this should never happen. // If it happens anyhow we extraolate the spline Align(i, a); Align(i, b); return EvalPrimitive(i, b)-EvalPrimitive(i, a); } // Calculate the intgeral of the Eval-function betwen x0 and x1 inline Double_t EvalInteg(Float_t x0, Float_t x1) const { const Int_t min = TMath::CeilNint(x0); const Int_t max = TMath::FloorNint(x1); // This happens if x0 and x1 are in the same interval if (min>max) return EvalInteg(max, x0-max, x1-max); // Sum complete intervals Double_t sum = 0; for (int i=min; i0 && GetMax(i-1, xmax1, ymax1); Bool_t rc2 = ifNum-2) { xmax2 = fNum-1; ymax2 = fVal[fNum-1]; rc2 = kTRUE; } // Take a default in case no maximum is found xmax=i; ymax=fVal[i]; if (rc1) { ymax = ymax1; xmax = xmax1; } else if (rc2) { ymax = ymax2; xmax = xmax2; } if (rc2 && ymax2>ymax) { ymax = ymax2; xmax = xmax2; } /* // Search real maximum in [i-0.5, i+1.5] Float_t xmax1, xmax2, xmax3; Float_t ymax1, ymax2, ymax3; Bool_t rc1 = i>0 && GetMax(i-1, xmax1, ymax1, 0.5, 1.0); Bool_t rc2 = GetMax(i, xmax2, ymax2, 0.0, 1.0); Bool_t rc3 = iymax) { ymax = ymax2; xmax = xmax2; } if (rc3 && ymax3>ymax) { ymax = ymax3; xmax = xmax3; } */ } inline Bool_t GetMax(Int_t i, Float_t &xmax, Float_t &ymax, Float_t min=0, Float_t max=1) const { // Find analytical maximum in the bin i in the interval [min,max[ Float_t x1, x2; EvalDerivEq0(i, x1, x2); // const Float_t x1 = EvalDerivEq0S1(i); // const Float_t x2 = EvalDerivEq0S2(i); const Bool_t ismax1 = x1>=min && x1=min && x2y2) { xmax = i+x1; ymax = Eval(i, x1); return kTRUE; } else { xmax = i+x2; ymax = Eval(i, x2); return kTRUE; } return kFALSE;*/ } /* inline Int_t GetMaxPos(Int_t i, Float_t &xmax, Float_t &ymax) const { Double_t x[3]; x[0] = 0; // x[1] = 1; // This means we miss a possible maximum at the // upper edge of the last interval... x[1] = EvalDerivEq0S1(i); x[2] = EvalDerivEq0S2(i); //y[0] = Eval(i, x[0]); //y[1] = Eval(i, x[1]); //y[1] = Eval(i, x[1]); //y[2] = Eval(i, x[2]); Int_t rc = 0; Double_t max = Eval(i, x[0]); for (Int_t j=1; j<3; j++) { if (x[j]<=0 || x[j]>=1) continue; const Float_t y = Eval(i, x[j]); if (y>max) { max = y; rc = j; } } if (max>ymax) { xmax = x[rc]+i; ymax = max; } return rc; } inline void GetMaxPos(Int_t min, Int_t max, Float_t &xmax, Float_t &ymax) const { Float_t xmax=-1; Float_t ymax=-FLT_MAX; for (int i=min; iymax) { ymax = y; xmax = i; } } }*/ void InitDerivatives() const; Float_t CalcIntegral(Float_t start) const; public: MExtralgoSpline(Float_t *val, Int_t n, Float_t *der1, Float_t *der2) : fExtractionType(kIntegral), fVal(val), fNum(n), fDer1(der1), fDer2(der2), fTime(0), fTimeDev(-1), fSignal(0), fSignalDev(-1) { InitDerivatives(); } void SetRiseFallTime(Float_t rise, Float_t fall) { fRiseTime=rise; fFallTime=fall; } void SetExtrationType(ExtractionType_t typ) { fExtractionType = typ; } void SetResolution(Float_t res) { fResolution=res; } Float_t GetTime() const { return fTime; } Float_t GetSignal() const { return fSignal; } Float_t GetTimeDev() const { return fTimeDev; } Float_t GetSignalDev() const { return fSignalDev; } void GetSignal(Float_t &sig, Float_t &dsig) const { sig=fSignal; dsig=fSignalDev; } void GetTime(Float_t &sig, Float_t &dsig) const { sig=fTime; dsig=fTimeDev; } Float_t ExtractNoise(Int_t iter); void Extract(Byte_t sat, Int_t maxpos); }; #endif