1 | #ifndef MARS_MExtralgoSpline
|
---|
2 | #define MARS_MExtralgoSpline
|
---|
3 |
|
---|
4 | #ifndef ROOT_TROOT
|
---|
5 | #include <TROOT.h>
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | class TComplex;
|
---|
9 |
|
---|
10 | class MExtralgoSpline
|
---|
11 | {
|
---|
12 | public:
|
---|
13 | enum ExtractionType_t { kAmplitude, kIntegralRel, kIntegralAbs }; //! Possible time and charge extraction types
|
---|
14 |
|
---|
15 | private:
|
---|
16 | ExtractionType_t fExtractionType;
|
---|
17 |
|
---|
18 | private:
|
---|
19 | //Bool_t fIsOwner; // Owner of derivatives....
|
---|
20 |
|
---|
21 | // Input
|
---|
22 | Float_t const *fVal;
|
---|
23 | const Int_t fNum;
|
---|
24 |
|
---|
25 | Float_t *fDer1;
|
---|
26 | Float_t *fDer2;
|
---|
27 |
|
---|
28 | Float_t fRiseTime;
|
---|
29 | Float_t fFallTime;
|
---|
30 |
|
---|
31 | Float_t fHeightTm;
|
---|
32 |
|
---|
33 | // Result
|
---|
34 | Float_t fTime;
|
---|
35 | Float_t fTimeDev;
|
---|
36 | Float_t fWidth;
|
---|
37 | Float_t fWidthDev;
|
---|
38 | Float_t fSignal;
|
---|
39 | Float_t fSignalDev;
|
---|
40 | Float_t fHeight;
|
---|
41 |
|
---|
42 | Double_t ReMul(const TComplex &c1, const TComplex &th) const;
|
---|
43 |
|
---|
44 | inline Float_t Eval(Float_t val, Float_t a, Float_t deriv) const
|
---|
45 | {
|
---|
46 | return a*val + (a*a*a-a)*deriv;
|
---|
47 | }
|
---|
48 |
|
---|
49 | // Evaluate value of spline in the interval i with x=[0;1[
|
---|
50 | inline Float_t Eval(const Int_t i, const Float_t x) const
|
---|
51 | {
|
---|
52 | // Eval(i,x) = (fDer2[i+1]-fDer2[i])*x*x*x + 3*fDer2[i]*x*x +
|
---|
53 | // (fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1])*x + fVal[i];
|
---|
54 |
|
---|
55 | // x := [0; 1[
|
---|
56 | return Eval(fVal[i], 1-x, fDer2[i]) + Eval(fVal[i+1], x, fDer2[i+1]);
|
---|
57 | }
|
---|
58 |
|
---|
59 | // Evaluate first derivative of spline in the interval i with x=[0;1[
|
---|
60 | inline Double_t EvalDeriv1(const Float_t x, const Int_t i) const
|
---|
61 | {
|
---|
62 | // x := [0; 1[
|
---|
63 | const Double_t difval = fVal[i+1]-fVal[i];
|
---|
64 | const Double_t difder = fDer2[i+1]-fDer2[i];
|
---|
65 |
|
---|
66 | return 3*difder*x*x + 6*fDer2[i]*x - 2*fDer2[i] - fDer2[i+1] + difval;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // Evaluate second derivative of spline in the interval i with x=[0;1[
|
---|
70 | inline Double_t EvalDeriv2(const Float_t x, const Int_t i) const
|
---|
71 | {
|
---|
72 | // x := [0; 1[
|
---|
73 | return 6*(fDer2[i+1]*x + fDer2[i]*(1-x));
|
---|
74 | }
|
---|
75 |
|
---|
76 | Double_t FindY(Int_t i, Double_t y=0, Double_t min=0, Double_t max=1) const;
|
---|
77 | Double_t SearchY(Float_t maxpos, Float_t y) const;
|
---|
78 | Double_t SearchYup(Float_t maxpos, Float_t y) const;
|
---|
79 | /*
|
---|
80 | // Evaluate first solution for a possible maximum (x|first deriv==0)
|
---|
81 | inline Double_t EvalDerivEq0S1(const Int_t i) const
|
---|
82 | {
|
---|
83 | // return the x value [0;1[ at which the derivative is zero (solution1)
|
---|
84 |
|
---|
85 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
86 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
87 |
|
---|
88 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
89 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
90 |
|
---|
91 | Double_t x = 3*fDer2[i] - sqrt(3*sqt1 + 3*sqt2);
|
---|
92 |
|
---|
93 | Double_t denom = 3*(fDer2[i+1]-fDer2[i]);
|
---|
94 |
|
---|
95 | return -x/denom;
|
---|
96 | }
|
---|
97 |
|
---|
98 | // Evaluate second solution for a possible maximum (x|first deriv==0)
|
---|
99 | inline Double_t EvalDerivEq0S2(const Int_t i) const
|
---|
100 | {
|
---|
101 | // return the x value [0;1[ at which the derivative is zero (solution2)
|
---|
102 |
|
---|
103 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
104 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
105 |
|
---|
106 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
107 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
108 |
|
---|
109 | Double_t x = 3*fDer2[i] + sqrt(3*sqt1 + 3*sqt2);
|
---|
110 |
|
---|
111 | Double_t denom = 3*(fDer2[i+1]-fDer2[i]);
|
---|
112 |
|
---|
113 | return -x/denom;
|
---|
114 | }
|
---|
115 | */
|
---|
116 |
|
---|
117 | Int_t EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const;
|
---|
118 | /*
|
---|
119 | inline void EvalDerivEq0(const Int_t i, Float_t &rc1, Float_t &rc2) const
|
---|
120 | {
|
---|
121 | // --- ORIGINAL CODE ---
|
---|
122 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
123 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
124 |
|
---|
125 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
126 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
127 | Double_t sqt3 = sqrt(3*sqt1 + 3*sqt2);
|
---|
128 | Double_t denom = -3*(fDer2[i+1]-fDer2[i]);
|
---|
129 |
|
---|
130 | rc1 = (3*fDer2[i] + sqt3)/denom;
|
---|
131 | rc2 = (3*fDer2[i] - sqt3)/denom;
|
---|
132 |
|
---|
133 | // --- NEW CODE ---
|
---|
134 | Double_t sumder = fDer2[i]+fDer2[i+1];
|
---|
135 | Double_t difder = fDer2[i]-fDer2[i+1];
|
---|
136 |
|
---|
137 | Double_t sqt1 = sumder*sumder - fDer2[i]*fDer2[i+1];
|
---|
138 | Double_t sqt2 = difder*(fVal[i+1]-fVal[i]);
|
---|
139 | Double_t sqt3 = sqt1+sqt2<0 ? 0 : sqrt((sqt1 + sqt2)/3);
|
---|
140 |
|
---|
141 | rc1 = (fDer2[i] + sqt3)/difder;
|
---|
142 | rc2 = (fDer2[i] - sqt3)/difder;
|
---|
143 | }*/
|
---|
144 |
|
---|
145 | // Calculate the "Stammfunktion" of the Eval-function
|
---|
146 | inline Double_t EvalPrimitive(Int_t i, Float_t x) const
|
---|
147 | {
|
---|
148 | Align(i, x);
|
---|
149 |
|
---|
150 | if (x==0)
|
---|
151 | return -fDer2[i]/4;
|
---|
152 |
|
---|
153 | if (x==1)
|
---|
154 | return (fVal[i+1] + fVal[i])/2 - fDer2[i+1]/4 - fDer2[i]/2;
|
---|
155 |
|
---|
156 | const Double_t x2 = x*x;
|
---|
157 | const Double_t x4 = x2*x2;
|
---|
158 | const Double_t x1 = 1-x;
|
---|
159 | const Double_t x14 = x1*x1*x1*x1;
|
---|
160 |
|
---|
161 | return x2*fVal[i+1]/2 + (x4/2-x2)*fDer2[i+1]/2 + (x-x2/2)*fVal[i] + (x2/2-x-x14/4)*fDer2[i];
|
---|
162 |
|
---|
163 | }
|
---|
164 |
|
---|
165 | inline void Align(Int_t &i, Float_t &x) const
|
---|
166 | {
|
---|
167 | if (i<0)
|
---|
168 | {
|
---|
169 | x += i;
|
---|
170 | i=0;
|
---|
171 | }
|
---|
172 | if (i>=fNum-1)
|
---|
173 | {
|
---|
174 | x += i-(fNum-2);
|
---|
175 | i=fNum-2;
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | // Calculate the intgeral of the Eval-function in
|
---|
180 | // bin i from a=[0;1[ to b=[0;1[
|
---|
181 | inline Double_t EvalInteg(Int_t i, Float_t a, Float_t b) const
|
---|
182 | {
|
---|
183 | return EvalPrimitive(i, b)-EvalPrimitive(i, a);
|
---|
184 | }
|
---|
185 |
|
---|
186 | // Identical to EvalInteg(i, 0, 1) but much faster
|
---|
187 | // Be carefull: NO RANGECHECK!
|
---|
188 | inline Double_t EvalInteg(Int_t i) const
|
---|
189 | {
|
---|
190 | return (fVal[i+1] + fVal[i])/2 - (fDer2[i+1] + fDer2[i])/4;
|
---|
191 | }
|
---|
192 |
|
---|
193 | // Identical to sum EvalInteg(i, 0, 1) for i=0 to i<b but much faster
|
---|
194 | // Be carefull: NO RANGECHECK!
|
---|
195 | inline Double_t EvalInteg(Int_t a, Int_t b) const
|
---|
196 | {
|
---|
197 | /*
|
---|
198 | Double_t sum = 0;
|
---|
199 | for (int i=a; i<b; i++)
|
---|
200 | sum += EvalInteg(i);
|
---|
201 |
|
---|
202 | return sum;
|
---|
203 | */
|
---|
204 | Double_t sum=0;
|
---|
205 | for (const Float_t *ptr=fDer2+a+1; ptr<fDer2+b; ptr++)
|
---|
206 | sum -= *ptr;
|
---|
207 |
|
---|
208 | sum -= (fDer2[a]+fDer2[b])/2;
|
---|
209 |
|
---|
210 | sum /= 2;
|
---|
211 |
|
---|
212 | for (const Float_t *ptr=fVal+a+1; ptr<fVal+b; ptr++)
|
---|
213 | sum += *ptr;
|
---|
214 |
|
---|
215 | sum += (fVal[a]+fVal[b])/2;
|
---|
216 |
|
---|
217 | return sum;
|
---|
218 | }
|
---|
219 |
|
---|
220 | // Calculate the intgeral of the Eval-function betwen x0 and x1
|
---|
221 | inline Double_t EvalInteg(Float_t x0, Float_t x1) const
|
---|
222 | {
|
---|
223 | // RANGE CHECK MISSING!
|
---|
224 |
|
---|
225 | const Int_t min = TMath::CeilNint(x0);
|
---|
226 | const Int_t max = TMath::FloorNint(x1);
|
---|
227 |
|
---|
228 | // This happens if x0 and x1 are in the same interval
|
---|
229 | if (min>max)
|
---|
230 | return EvalInteg(max, x0-max, x1-max);
|
---|
231 |
|
---|
232 | // Sum complete intervals
|
---|
233 | Double_t sum = EvalInteg(min, max);
|
---|
234 |
|
---|
235 | // Sum the incomplete intervals at the beginning and end
|
---|
236 | sum += EvalInteg(min-1, 1-(min-x0), 1);
|
---|
237 | sum += EvalInteg(max, 0, x1-max);
|
---|
238 |
|
---|
239 | // return result
|
---|
240 | return sum;
|
---|
241 | }
|
---|
242 |
|
---|
243 | // We search for the maximum from x=i-1 to x=i+1
|
---|
244 | // (Remeber: i corresponds to the value in bin i, i+1 to the
|
---|
245 | // next bin and i-1 to the last bin)
|
---|
246 | inline void GetMaxAroundI(Int_t i, Float_t &xmax, Float_t &ymax) const
|
---|
247 | {
|
---|
248 | Float_t xmax1=0, xmax2=0;
|
---|
249 | Float_t ymax1=0, ymax2=0;
|
---|
250 |
|
---|
251 | Bool_t rc1 = i>0 && GetMax(i-1, xmax1, ymax1);
|
---|
252 | Bool_t rc2 = i<fNum-1 && GetMax(i, xmax2, ymax2);
|
---|
253 |
|
---|
254 | // In case the medium bin is the first or last bin
|
---|
255 | // take the lower or upper edge of the region into account.
|
---|
256 | if (i==0)
|
---|
257 | {
|
---|
258 | xmax1 = 0;
|
---|
259 | ymax1 = fVal[0];
|
---|
260 | rc1 = kTRUE;
|
---|
261 | }
|
---|
262 | if (i>=fNum-1)
|
---|
263 | {
|
---|
264 | xmax2 = fNum-1;
|
---|
265 | ymax2 = fVal[fNum-1];
|
---|
266 | rc2 = kTRUE;
|
---|
267 | }
|
---|
268 |
|
---|
269 | // Take a default in case no maximum is found
|
---|
270 | // FIXME: Check THIS!!!
|
---|
271 | xmax=i;
|
---|
272 | ymax=fVal[i];
|
---|
273 |
|
---|
274 | if (rc1)
|
---|
275 | {
|
---|
276 | ymax = ymax1;
|
---|
277 | xmax = xmax1;
|
---|
278 | }
|
---|
279 | else
|
---|
280 | if (rc2)
|
---|
281 | {
|
---|
282 | ymax = ymax2;
|
---|
283 | xmax = xmax2;
|
---|
284 | }
|
---|
285 |
|
---|
286 | if (rc2 && ymax2>ymax)
|
---|
287 | {
|
---|
288 | ymax = ymax2;
|
---|
289 | xmax = xmax2;
|
---|
290 | }
|
---|
291 | /*
|
---|
292 | // Search real maximum in [i-0.5, i+1.5]
|
---|
293 | Float_t xmax1, xmax2, xmax3;
|
---|
294 | Float_t ymax1, ymax2, ymax3;
|
---|
295 |
|
---|
296 | Bool_t rc1 = i>0 && GetMax(i-1, xmax1, ymax1, 0.5, 1.0);
|
---|
297 | Bool_t rc2 = GetMax(i, xmax2, ymax2, 0.0, 1.0);
|
---|
298 | Bool_t rc3 = i<fNum-1 && GetMax(i+1, xmax3, ymax3, 0.0, 0.5);
|
---|
299 |
|
---|
300 | // In case the medium bin is the first or last bin
|
---|
301 | // take the lower or upper edge of the region into account.
|
---|
302 | if (i==0)
|
---|
303 | {
|
---|
304 | xmax1 = 0;
|
---|
305 | ymax1 = Eval(0, 0);
|
---|
306 | rc1 = kTRUE;
|
---|
307 | }
|
---|
308 | if (i==fNum-1)
|
---|
309 | {
|
---|
310 | xmax3 = fNum-1e-5;
|
---|
311 | ymax3 = Eval(fNum-1, 1);
|
---|
312 | rc3 = kTRUE;
|
---|
313 | }
|
---|
314 |
|
---|
315 | // Take a real default in case no maximum is found
|
---|
316 | xmax=i+0.5;
|
---|
317 | ymax=Eval(i, 0.5);
|
---|
318 |
|
---|
319 | //if (!rc1 && !rc2 && !rc3)
|
---|
320 | // cout << "!!!!!!!!!!!!!!!" << endl;
|
---|
321 |
|
---|
322 | if (rc1)
|
---|
323 | {
|
---|
324 | ymax = ymax1;
|
---|
325 | xmax = xmax1;
|
---|
326 | }
|
---|
327 | else
|
---|
328 | if (rc2)
|
---|
329 | {
|
---|
330 | ymax = ymax2;
|
---|
331 | xmax = xmax2;
|
---|
332 | }
|
---|
333 | else
|
---|
334 | if (rc3)
|
---|
335 | {
|
---|
336 | ymax = ymax3;
|
---|
337 | xmax = xmax3;
|
---|
338 | }
|
---|
339 |
|
---|
340 | if (rc2 && ymax2>ymax)
|
---|
341 | {
|
---|
342 | ymax = ymax2;
|
---|
343 | xmax = xmax2;
|
---|
344 | }
|
---|
345 | if (rc3 && ymax3>ymax)
|
---|
346 | {
|
---|
347 | ymax = ymax3;
|
---|
348 | xmax = xmax3;
|
---|
349 | }
|
---|
350 | */
|
---|
351 | }
|
---|
352 |
|
---|
353 | inline Bool_t GetMax(Int_t i, Float_t &xmax, Float_t &ymax, Float_t min=0, Float_t max=1) const
|
---|
354 | {
|
---|
355 | // Find analytical maximum in the bin i in the interval [min,max[
|
---|
356 |
|
---|
357 | Double_t x1, x2;
|
---|
358 | if (!EvalDerivEq0(i, x1, x2))
|
---|
359 | return kFALSE;
|
---|
360 |
|
---|
361 | // const Float_t x1 = EvalDerivEq0S1(i);
|
---|
362 | // const Float_t x2 = EvalDerivEq0S2(i);
|
---|
363 |
|
---|
364 | const Bool_t ismax1 = x1>=min && x1<max && EvalDeriv2(x1, i)<0;
|
---|
365 | const Bool_t ismax2 = x2>=min && x2<max && EvalDeriv2(x2, i)<0;
|
---|
366 |
|
---|
367 | if (!ismax1 && !ismax2)
|
---|
368 | return kFALSE;
|
---|
369 |
|
---|
370 | if (ismax1 && !ismax2)
|
---|
371 | {
|
---|
372 | xmax = i+x1;
|
---|
373 | ymax = Eval(i, x1);
|
---|
374 | return kTRUE;
|
---|
375 | }
|
---|
376 |
|
---|
377 | if (!ismax1 && ismax2)
|
---|
378 | {
|
---|
379 | xmax = i+x2;
|
---|
380 | ymax = Eval(i, x2);
|
---|
381 | return kTRUE;
|
---|
382 | }
|
---|
383 |
|
---|
384 | // Somehting must be wrong...
|
---|
385 | return kFALSE;
|
---|
386 | /*
|
---|
387 | std::cout << "?????????????" << std::endl;
|
---|
388 |
|
---|
389 | const Double_t y1 = Eval(i, x1);
|
---|
390 | const Double_t y2 = Eval(i, x2);
|
---|
391 |
|
---|
392 | if (y1>y2)
|
---|
393 | {
|
---|
394 | xmax = i+x1;
|
---|
395 | ymax = Eval(i, x1);
|
---|
396 | return kTRUE;
|
---|
397 | }
|
---|
398 | else
|
---|
399 | {
|
---|
400 | xmax = i+x2;
|
---|
401 | ymax = Eval(i, x2);
|
---|
402 | return kTRUE;
|
---|
403 | }
|
---|
404 |
|
---|
405 | return kFALSE;*/
|
---|
406 | }
|
---|
407 | /*
|
---|
408 | inline Int_t GetMaxPos(Int_t i, Float_t &xmax, Float_t &ymax) const
|
---|
409 | {
|
---|
410 | Double_t x[3];
|
---|
411 |
|
---|
412 | x[0] = 0;
|
---|
413 | // x[1] = 1; // This means we miss a possible maximum at the
|
---|
414 | // upper edge of the last interval...
|
---|
415 |
|
---|
416 | x[1] = EvalDerivEq0S1(i);
|
---|
417 | x[2] = EvalDerivEq0S2(i);
|
---|
418 |
|
---|
419 | //y[0] = Eval(i, x[0]);
|
---|
420 | //y[1] = Eval(i, x[1]);
|
---|
421 | //y[1] = Eval(i, x[1]);
|
---|
422 | //y[2] = Eval(i, x[2]);
|
---|
423 |
|
---|
424 | Int_t rc = 0;
|
---|
425 | Double_t max = Eval(i, x[0]);
|
---|
426 |
|
---|
427 | for (Int_t j=1; j<3; j++)
|
---|
428 | {
|
---|
429 | if (x[j]<=0 || x[j]>=1)
|
---|
430 | continue;
|
---|
431 |
|
---|
432 | const Float_t y = Eval(i, x[j]);
|
---|
433 | if (y>max)
|
---|
434 | {
|
---|
435 | max = y;
|
---|
436 | rc = j;
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | if (max>ymax)
|
---|
441 | {
|
---|
442 | xmax = x[rc]+i;
|
---|
443 | ymax = max;
|
---|
444 | }
|
---|
445 |
|
---|
446 | return rc;
|
---|
447 | }
|
---|
448 |
|
---|
449 | inline void GetMaxPos(Int_t min, Int_t max, Float_t &xmax, Float_t &ymax) const
|
---|
450 | {
|
---|
451 | Float_t xmax=-1;
|
---|
452 | Float_t ymax=-FLT_MAX;
|
---|
453 |
|
---|
454 | for (int i=min; i<max; i++)
|
---|
455 | GetMaxPos(i, xmax, ymax);
|
---|
456 |
|
---|
457 | for (int i=min+1; i<max; i++)
|
---|
458 | {
|
---|
459 | Float_t y = Eval(i, 0);
|
---|
460 | if (y>ymax)
|
---|
461 | {
|
---|
462 | ymax = y;
|
---|
463 | xmax = i;
|
---|
464 | }
|
---|
465 | }
|
---|
466 |
|
---|
467 | }*/
|
---|
468 |
|
---|
469 |
|
---|
470 | void InitDerivatives() const;
|
---|
471 | Float_t CalcIntegral(Float_t start) const;
|
---|
472 |
|
---|
473 | public:
|
---|
474 | MExtralgoSpline(const Float_t *val, Int_t n, Float_t *der1, Float_t *der2)
|
---|
475 | : fExtractionType(kIntegralRel), fVal(val), fNum(n), fDer1(der1), fDer2(der2), fHeightTm(0.5), fTime(0), fTimeDev(-1), fSignal(0), fSignalDev(-1)
|
---|
476 | {
|
---|
477 | InitDerivatives();
|
---|
478 | }
|
---|
479 |
|
---|
480 | void SetRiseFallTime(Float_t rise, Float_t fall) { fRiseTime=rise; fFallTime=fall; }
|
---|
481 | void SetExtractionType(ExtractionType_t typ) { fExtractionType = typ; }
|
---|
482 | void SetHeightTm(Float_t h) { fHeightTm = h; }
|
---|
483 |
|
---|
484 | Float_t GetTime() const { return fTime; }
|
---|
485 | Float_t GetWidth() const { return fWidth; }
|
---|
486 | Float_t GetSignal() const { return fSignal; }
|
---|
487 | Float_t GetHeight() const { return fHeight; }
|
---|
488 |
|
---|
489 | Float_t GetTimeDev() const { return fTimeDev; }
|
---|
490 | Float_t GetWidthDev() const { return fWidthDev; }
|
---|
491 | Float_t GetSignalDev() const { return fSignalDev; }
|
---|
492 |
|
---|
493 | void GetSignal(Float_t &sig, Float_t &dsig) const { sig=fSignal; dsig=fSignalDev; }
|
---|
494 | void GetWidth(Float_t &sig, Float_t &dsig) const { sig=fWidth; dsig=fWidthDev; }
|
---|
495 | void GetTime(Float_t &sig, Float_t &dsig) const { sig=fTime; dsig=fTimeDev; }
|
---|
496 |
|
---|
497 | Float_t ExtractNoise(/*Int_t iter*/);
|
---|
498 | void Extract(Byte_t sat, Int_t maxpos, Bool_t width=kFALSE);
|
---|
499 |
|
---|
500 | Float_t EvalAt(const Float_t x) const;
|
---|
501 | };
|
---|
502 |
|
---|
503 | inline Float_t MExtralgoSpline::EvalAt(const Float_t x) const
|
---|
504 | {
|
---|
505 | Int_t i = TMath::FloorNint(x);
|
---|
506 | Float_t f = x-i;
|
---|
507 |
|
---|
508 | Align(i, f);
|
---|
509 |
|
---|
510 | return Eval(i, f);
|
---|
511 | }
|
---|
512 |
|
---|
513 | #endif
|
---|