/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 01/2002 ! ! Copyright: MAGIC Software Development, 2000-2005 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MF // // With this filter you can filter in all variables from Mars parameter // containers. // // In the constructor you can give the filter rule, like // "MHillas.fLength < 15" // Where MHillas is the name of the parameter container in the parameter // list and fLength is the name of the data member which should be used // for the filter rule. If the name of the container is use specified // (MyHillas) the name to give would be: // "MyHillas.fLength < 15" // // Also more difficult rules are allowed, like: // "MHillas.fWidth<0.5 && MHillas.fLength<0.6" // // You can also use parantheses: // "MHillas.fSize>200 || (MHillas.fWidth<0.5 && MHillas.fLength<0.6)" // // If you want to use mathematic expressions (as defined in MDataChain) // you must encapsulate it in {}-parantheses, eg: // "{log10(MHillas.fSize)}>3" // // For more details on available functions and expressions see MDataChain! // // The allowed logigal conditionals are: // &&: logical and // ||: logical or // ^: exclusive or // // As conditional signs, for now, only: // <, > // are allowed. // // --------> '==' is NOT supported! // // // Warning: There is no priority rule build in. So better use parantheses // to get correct results. The rule is parsed/evaluated from the left // to the right, which means: // // "MHillas.fSize>200 || MHillas.fWidth<0.5 && MHillas.fLength<0.6" // // is parses as // // "(MHillas.fSize>200 || MHillas.fWidth<0.5) && MHillas.fLength<0.6" // // // FIXME: The possibility to use also complete filters is missing. // Maybe we can use gInterpreter->Calc("") for this. // gROOT->ProcessLineFast("line"); // ///////////////////////////////////////////////////////////////////////////// #include "MF.h" #include // isalnum, ... #include // strtod, ... #include // ofstream, ... #include #include "MParList.h" #include "MFilterList.h" #include "MFDataChain.h" #include "MFDataMember.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MF); using namespace std; const TString MF::gsDefName = "MF"; const TString MF::gsDefTitle = "Filter setup by a text-rule"; // -------------------------------------------------------------------------- // // Default Constructor. Don't use. // MF::MF() : fF(NULL), fAllowEmpty(kFALSE) { fName = gsDefName.Data(); fTitle = gsDefTitle.Data(); } // -------------------------------------------------------------------------- // // Constructor. For the text describing the filter rule please see // the class description above. // MF::MF(const char *text, const char *name, const char *title) : fAllowEmpty(kFALSE) { fName = name ? name : gsDefName.Data(); fTitle = title ? title : gsDefTitle.Data(); *fLog << inf << "Parsing filter rule... " << flush; if (!(fF=ParseString(text, 1))) { *fLog << err << dbginf << "Parsing '" << text << "' failed." << endl; return; } *fLog << inf << "found: "; fF->Print(); *fLog << endl; } // -------------------------------------------------------------------------- // // Destructor. Delete filters. // MF::~MF() { if (fF) delete fF; } // -------------------------------------------------------------------------- // // Returns the number of alphanumeric characters (including '.') // in the given string // Int_t MF::IsAlNum(TString txt) const { int l = txt.Length(); for (int i = 0; i'); const Int_t lg = txt.First('>'); const Int_t fl = txt.First('<'); const Int_t ll = txt.First('<'); if (fg<0 && fl<0) { MFilter *f = (MFilter*)GetNewObject(txt, MFilter::Class()); if (!f) { *fLog << err << dbginf << "Syntax Error: '" << txt << "' is neither a MFilter nor conditional sign found." << endl; return NULL; } // FIXME: Search object through list...? txt = ""; return f; } if (fg>=0 && fl>=0) { *fLog << err << dbginf << "Syntax Error: Two coditional signs found in " << txt << endl; *fLog << "Currently you have to enclose all conditions in parantheses, like: \"(xSetName(Form("Chain%02d%c", level, txt[cond])); gLog.SetDebugLevel(lvl); txt = ""; return f; } // -------------------------------------------------------------------------- // // Parse a text string. Returns a corresponding filter of filter list. // MFilter *MF::ParseString(TString txt, Int_t level) { MFilter *filter0=NULL; TString type; int nlist = 0; while (!txt.IsNull()) { MFilter *newfilter = NULL; txt = txt.Strip(TString::kBoth); //*fLog << all << setw(level) << " " << "Text: " << level << " '" << txt << "'" << endl; switch (txt[0]) { case '(': { // // Search for the corresponding parantheses // Int_t first=1; for (int cnt=0; firstInheritsFrom(MFilterList::Class()) || type!=is) { MFilterList *list = new MFilterList(is); list->SetName(Form("List_%s_%d", (const char*)is, 10*level+nlist++)); list->SetOwner(); list->AddToList(filter0); filter0 = list; type = is; } continue; } *fLog << err << dbginf << "Syntax Error: First argument of condition missing." << endl; if (filter0) delete filter0; return NULL; default: newfilter = ParseRule(txt, filter0, level++); if (!newfilter) { if (filter0) delete filter0; return NULL; } } if (!filter0) { filter0 = newfilter; continue; } if (!filter0->InheritsFrom(MFilterList::Class())) continue; ((MFilterList*)filter0)->AddToList(newfilter); } return filter0; } // -------------------------------------------------------------------------- // // PreProcess all filters. // Int_t MF::PreProcess(MParList *plist) { if (!fF) { if (IsAllowEmpty()) return kTRUE; *fLog << err << dbginf << "No filter rule available." << endl; return kFALSE; } if (!fF->CallPreProcess(plist)) { *fLog << err << dbginf << "PreProcessing filters in "; *fLog << fName << " failed." << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Process all filters. // Int_t MF::Process() { return fF ? fF->CallProcess() : kTRUE; } // -------------------------------------------------------------------------- // // Postprocess all filters. // Int_t MF::PostProcess() { return fF ? fF->CallPostProcess() : kTRUE; } // -------------------------------------------------------------------------- // // Return the result of the filter rule. If no filter available the // condition is always true // Bool_t MF::IsExpressionTrue() const { return fF ? fF->IsConditionTrue() : kTRUE; } // -------------------------------------------------------------------------- // // Return a comma seperated list of all data members used in the chain. // This is mainly used in MTask::AddToBranchList // TString MF::GetDataMember() const { return fF ? fF->GetDataMember() : (TString)""; } void MF::StreamPrimitive(ofstream &out) const { out << " MF " << GetUniqueName(); if (!fF) { out << ";" << endl; return; } out << "(\"" << fF->GetRule() << "\""; if (fName!=gsDefName || fTitle!=gsDefTitle) { out << "(\"" << fName << "\""; if (fTitle!=gsDefTitle) out << ", \"" << fTitle << "\""; } out << ");" << endl; } // -------------------------------------------------------------------------- // // Print the rule. // if now filter is set up '' is printed. // void MF::Print(Option_t *opt) const { *fLog << all << underline << GetDescriptor() << endl; if (fF) fF->Print(); else *fLog << ""; *fLog << endl << endl; } // -------------------------------------------------------------------------- // // Check for corresponding entries in resource file and setup filters. // // Assuming your MF-filter is called (Set/GetName): MyFilter // // First you can setup whether the filter is inverted or not: // MyFilter.Inverted: yes, no // // Now setup the condition, eg: // MyFilter.Condition: MHillas.fSize<1000 // or // MyFilter.Condition: MHillas.fSize>500 && MHillas.fSize<10000 // // If you want to use more difficult filters you can split the // condition into subcondistions. Subcondistions are identified // by {}-brackets. Avoid trailing 0's! For example: // // MyFilter.Condition: MHillas.fSize>500 && {0} && {1} // MyFilter.0: MHillas.fSize>1000 // MyFilter.1: MHillas.fSize<10000 // // The numbering must be continous and start with 0. You can use // a subcondition more than once. All {}-brackets are simply replaced // by the correspodning conditions. The rules how conditions can // be written can be found in the class description of MF and MDataChain. // Int_t MF::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { /* Bool_t rc = MFilter::ReadEnv(env, prefix, print); if (rc==kERROR) return kERROR; */ if (IsEnvDefined(env, prefix, "Condition", print)) { TString rule = GetEnvValue(env, prefix, "Condition", ""); rule.ReplaceAll(" ", ""); Int_t idx=0; while (1) { TString cond; if (IsEnvDefined(env, prefix, Form("%d", idx), print)) { cond += "("; cond += GetEnvValue(env, prefix, Form("%d", idx), ""); cond += ")"; } if (cond.IsNull()) break; rule.ReplaceAll(Form("{%d}", idx), cond); idx++; } if (fF) { delete fF; fF = 0; } if (rule.IsNull()) { *fLog << warn << GetDescriptor() << " ::ReadEnv - WARNING: Empty condition found." << endl; SetAllowEmpty(); return kTRUE; } SetAllowEmpty(kFALSE); if (!(fF=ParseString(rule, 1))) { *fLog << err << "MF::ReadEnv - ERROR: Parsing '" << rule << "' failed." << endl; return kERROR; } if (print) { *fLog << inf << "found: "; fF->Print(); *fLog << endl; } } else { if (!fF) { *fLog << warn << GetDescriptor() << " ::ReadEnv - WARNING: No condition found." << endl; SetAllowEmpty(); return kFALSE; } } if (fF->ReadEnv(env, prefix, print)==kERROR) return kERROR; // This is a workaround, because MFilter::ReadEnv and fF->ReadEnv // might check for "Inverted" in this case both gets inverted // and double-inversion is no inversion /* if (IsEnvDefined(env, prefix, "Inverted", print)) if (GetEnvValue(env, prefix, "Inverted", kFALSE)==kTRUE) SetInverted(kFALSE);*/ return kTRUE; }