1 | #ifndef MARS_MHCalibrationChargeBlindPix
|
---|
2 | #define MARS_MHCalibrationChargeBlindPix
|
---|
3 |
|
---|
4 | #ifndef MARS_MHCalibrationPix
|
---|
5 | #include "MHCalibrationPix.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef ROOT_TF1
|
---|
9 | #include <TF1.h>
|
---|
10 | #endif
|
---|
11 |
|
---|
12 | #ifndef ROOT_TVector
|
---|
13 | #include <TVector.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | class TH1F;
|
---|
17 | class TPaveText;
|
---|
18 | class TText;
|
---|
19 | class MExtractedSignalBlindPixel;
|
---|
20 | class MRawEvtPixelIter;
|
---|
21 |
|
---|
22 | class MHCalibrationChargeBlindPix : public MHCalibrationPix
|
---|
23 | {
|
---|
24 | private:
|
---|
25 |
|
---|
26 | static const Float_t fgNumSinglePheLimit; //! Default for fNumSinglePheLimit (now set to: 50)
|
---|
27 | static const Float_t gkSignalInitializer; //! Signal initializer (-9999.)
|
---|
28 |
|
---|
29 | static const Double_t gkElectronicAmp; // Electronic Amplification after the PMT (in FADC counts/N_e)
|
---|
30 | static const Double_t gkElectronicAmpErr; // Error of the electronic amplification
|
---|
31 |
|
---|
32 | Float_t fSinglePheCut; // Value of summed FADC slices upon which event considered as single-phe
|
---|
33 | Float_t fNumSinglePheLimit; // Minimum number of single-phe events
|
---|
34 |
|
---|
35 | TVector fASinglePheFADCSlices; // Averaged FADC slice entries supposed single-phe events
|
---|
36 | TVector fAPedestalFADCSlices; // Averaged FADC slice entries supposed pedestal events
|
---|
37 |
|
---|
38 | TF1 *fSinglePheFit; // Single Phe Fit (Gaussians convoluted with Poisson)
|
---|
39 |
|
---|
40 | UInt_t fNumSinglePhes; // Number of entries in fASinglePheFADCSlices
|
---|
41 | UInt_t fNumPedestals; // Number of entries in fAPedestalFADCSlices
|
---|
42 |
|
---|
43 | Double_t fLambda; // Poisson mean from Single-phe fit
|
---|
44 | Double_t fLambdaCheck; // Poisson mean from Pedestal fit alone
|
---|
45 | Double_t fMu0; // Mean of the pedestal
|
---|
46 | Double_t fMu1; // Mean of single-phe peak
|
---|
47 | Double_t fSigma0; // Sigma of the pedestal
|
---|
48 | Double_t fSigma1; // Sigma of single-phe peak
|
---|
49 | Double_t fLambdaErr; // Error of Poisson mean from Single-phe fit
|
---|
50 | Double_t fLambdaCheckErr; // Error of Poisson mean from Pedestal fit alone
|
---|
51 | Double_t fMu0Err; // Error of Mean of the pedestal
|
---|
52 | Double_t fMu1Err; // Error of Mean of single-phe peak
|
---|
53 | Double_t fSigma0Err; // Error of Sigma of the pedestal
|
---|
54 | Double_t fSigma1Err; // Error of Sigma of single-phe peak
|
---|
55 | Double_t fChisquare; // Chisquare of single-phe fit
|
---|
56 | Int_t fNDF; // Ndof of single-phe fit
|
---|
57 | Double_t fProb; // Probability of singleo-phe fit
|
---|
58 |
|
---|
59 | Byte_t fFlags; // Bit-field for the flags
|
---|
60 | enum { kSinglePheFitOK, kPedestalFitOK }; // Possible bits to be set
|
---|
61 |
|
---|
62 | public:
|
---|
63 |
|
---|
64 | enum FitFunc_t { kEPoisson4, kEPoisson5,
|
---|
65 | kEPoisson6, kEPoisson7,
|
---|
66 | kEPolya, kEMichele }; // Possible fit functions types
|
---|
67 |
|
---|
68 | private:
|
---|
69 |
|
---|
70 | FitFunc_t fFitFunc;
|
---|
71 |
|
---|
72 | TPaveText *fFitLegend; //! Some legend to display the fit results
|
---|
73 | TH1F *fHSinglePheFADCSlices; //! A histogram created and deleted only in Draw()
|
---|
74 | TH1F *fHPedestalFADCSlices; //! A histogram created and deleted only in Draw()
|
---|
75 |
|
---|
76 | // Fit
|
---|
77 | Bool_t InitFit();
|
---|
78 | void ExitFit();
|
---|
79 |
|
---|
80 | void DrawLegend(Option_t *opt="");
|
---|
81 |
|
---|
82 | public:
|
---|
83 |
|
---|
84 | MHCalibrationChargeBlindPix(const char *name=NULL, const char *title=NULL);
|
---|
85 | ~MHCalibrationChargeBlindPix();
|
---|
86 |
|
---|
87 | void Clear(Option_t *o="");
|
---|
88 | void Reset() {}
|
---|
89 |
|
---|
90 | // TObject *Clone(const char *) const;
|
---|
91 |
|
---|
92 | // Getters
|
---|
93 | const Double_t GetLambda () const { return fLambda; }
|
---|
94 | const Double_t GetLambdaCheck () const { return fLambdaCheck; }
|
---|
95 | const Double_t GetMu0 () const { return fMu0; }
|
---|
96 | const Double_t GetMu1 () const { return fMu1; }
|
---|
97 | const Double_t GetSigma0 () const { return fSigma0; }
|
---|
98 | const Double_t GetSigma1 () const { return fSigma1; }
|
---|
99 | const Double_t GetLambdaErr () const { return fLambdaErr; }
|
---|
100 | const Double_t GetLambdaCheckErr() const { return fLambdaCheckErr; }
|
---|
101 | const Double_t GetMu0Err () const { return fMu0Err; }
|
---|
102 | const Double_t GetMu1Err () const { return fMu1Err; }
|
---|
103 | const Double_t GetSigma0Err () const { return fSigma0Err; }
|
---|
104 | const Double_t GetSigma1Err () const { return fSigma1Err; }
|
---|
105 | const Float_t GetSinglePheCut () const { return fSinglePheCut; }
|
---|
106 |
|
---|
107 | TVector &GetASinglePheFADCSlices() { return fASinglePheFADCSlices; }
|
---|
108 | const TVector &GetASinglePheFADCSlices() const { return fASinglePheFADCSlices; }
|
---|
109 |
|
---|
110 | TVector &GetAPedestalFADCSlices() { return fAPedestalFADCSlices; }
|
---|
111 | const TVector &GetAPedestalFADCSlices() const { return fAPedestalFADCSlices; }
|
---|
112 |
|
---|
113 | const Bool_t IsSinglePheFitOK() const;
|
---|
114 | const Bool_t IsPedestalFitOK() const;
|
---|
115 |
|
---|
116 | // Setters
|
---|
117 | void SetFitFunc ( const FitFunc_t func ) { fFitFunc = func; }
|
---|
118 | void SetSinglePheCut ( const Float_t cut = 0. ) { fSinglePheCut = cut; }
|
---|
119 | void SetNumSinglePheLimit ( const Float_t lim =fgNumSinglePheLimit ) { fNumSinglePheLimit = lim; }
|
---|
120 |
|
---|
121 | void SetSinglePheFitOK ( const Bool_t b=kTRUE);
|
---|
122 | void SetPedestalFitOK ( const Bool_t b=kTRUE);
|
---|
123 |
|
---|
124 | // Fill histos
|
---|
125 | void FillSinglePheFADCSlices(const MRawEvtPixelIter &iter);
|
---|
126 | void FillPedestalFADCSlices( const MRawEvtPixelIter &iter);
|
---|
127 | void FinalizeSinglePheSpectrum();
|
---|
128 |
|
---|
129 | // Draws
|
---|
130 | void Draw(Option_t *opt="");
|
---|
131 |
|
---|
132 | // Fits
|
---|
133 | Bool_t FitSinglePhe (Option_t *opt="RL0+Q");
|
---|
134 | void FitPedestal (Option_t *opt="RL0+Q");
|
---|
135 |
|
---|
136 | // Simulation
|
---|
137 | Bool_t SimulateSinglePhe(const Double_t lambda,
|
---|
138 | const Double_t mu0, const Double_t mu1,
|
---|
139 | const Double_t sigma0, const Double_t sigma1);
|
---|
140 |
|
---|
141 | private:
|
---|
142 |
|
---|
143 | inline static Double_t fFitFuncMichele(Double_t *x, Double_t *par)
|
---|
144 | {
|
---|
145 |
|
---|
146 | Double_t lambda1cat = par[0];
|
---|
147 | Double_t lambda1dyn = par[1];
|
---|
148 | Double_t mu0 = par[2];
|
---|
149 | Double_t mu1cat = par[3];
|
---|
150 | Double_t mu1dyn = par[4];
|
---|
151 | Double_t sigma0 = par[5];
|
---|
152 | Double_t sigma1cat = par[6];
|
---|
153 | Double_t sigma1dyn = par[7];
|
---|
154 |
|
---|
155 | Double_t sumcat = 0.;
|
---|
156 | Double_t sumdyn = 0.;
|
---|
157 | Double_t arg = 0.;
|
---|
158 |
|
---|
159 | if (lambda1cat < lambda1dyn)
|
---|
160 | return FLT_MAX;
|
---|
161 |
|
---|
162 | if (mu1cat < mu0)
|
---|
163 | return FLT_MAX;
|
---|
164 |
|
---|
165 | if (mu1dyn < mu0)
|
---|
166 | return FLT_MAX;
|
---|
167 |
|
---|
168 | if (mu1cat < mu1dyn)
|
---|
169 | return FLT_MAX;
|
---|
170 |
|
---|
171 | if (sigma0 < 0.0001)
|
---|
172 | return FLT_MAX;
|
---|
173 |
|
---|
174 | if (sigma1cat < sigma0)
|
---|
175 | return FLT_MAX;
|
---|
176 |
|
---|
177 | if (sigma1dyn < sigma0)
|
---|
178 | return FLT_MAX;
|
---|
179 |
|
---|
180 | Double_t mu2cat = (2.*mu1cat)-mu0;
|
---|
181 | Double_t mu2dyn = (2.*mu1dyn)-mu0;
|
---|
182 | Double_t mu3cat = (3.*mu1cat)-(2.*mu0);
|
---|
183 | Double_t mu3dyn = (3.*mu1dyn)-(2.*mu0);
|
---|
184 |
|
---|
185 | Double_t sigma2cat = TMath::Sqrt((2.*sigma1cat*sigma1cat) - (sigma0*sigma0));
|
---|
186 | Double_t sigma2dyn = TMath::Sqrt((2.*sigma1dyn*sigma1dyn) - (sigma0*sigma0));
|
---|
187 | Double_t sigma3cat = TMath::Sqrt((3.*sigma1cat*sigma1cat) - (2.*sigma0*sigma0));
|
---|
188 | Double_t sigma3dyn = TMath::Sqrt((3.*sigma1dyn*sigma1dyn) - (2.*sigma0*sigma0));
|
---|
189 |
|
---|
190 | Double_t lambda2cat = lambda1cat*lambda1cat;
|
---|
191 | Double_t lambda2dyn = lambda1dyn*lambda1dyn;
|
---|
192 | Double_t lambda3cat = lambda2cat*lambda1cat;
|
---|
193 | Double_t lambda3dyn = lambda2dyn*lambda1dyn;
|
---|
194 |
|
---|
195 | // k=0:
|
---|
196 | arg = (x[0] - mu0)/sigma0;
|
---|
197 | sumcat = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
198 | sumdyn = sumcat;
|
---|
199 |
|
---|
200 | // k=1cat:
|
---|
201 | arg = (x[0] - mu1cat)/sigma1cat;
|
---|
202 | sumcat += lambda1cat*TMath::Exp(-0.5*arg*arg)/sigma1cat;
|
---|
203 | // k=1dyn:
|
---|
204 | arg = (x[0] - mu1dyn)/sigma1dyn;
|
---|
205 | sumdyn += lambda1dyn*TMath::Exp(-0.5*arg*arg)/sigma1dyn;
|
---|
206 |
|
---|
207 | // k=2cat:
|
---|
208 | arg = (x[0] - mu2cat)/sigma2cat;
|
---|
209 | sumcat += 0.5*lambda2cat*TMath::Exp(-0.5*arg*arg)/sigma2cat;
|
---|
210 | // k=2dyn:
|
---|
211 | arg = (x[0] - mu2dyn)/sigma2dyn;
|
---|
212 | sumdyn += 0.5*lambda2dyn*TMath::Exp(-0.5*arg*arg)/sigma2dyn;
|
---|
213 |
|
---|
214 |
|
---|
215 | // k=3cat:
|
---|
216 | arg = (x[0] - mu3cat)/sigma3cat;
|
---|
217 | sumcat += 0.1666666667*lambda3cat*TMath::Exp(-0.5*arg*arg)/sigma3cat;
|
---|
218 | // k=3dyn:
|
---|
219 | arg = (x[0] - mu3dyn)/sigma3dyn;
|
---|
220 | sumdyn += 0.1666666667*lambda3dyn*TMath::Exp(-0.5*arg*arg)/sigma3dyn;
|
---|
221 |
|
---|
222 | sumcat = TMath::Exp(-1.*lambda1cat)*sumcat;
|
---|
223 | sumdyn = TMath::Exp(-1.*lambda1dyn)*sumdyn;
|
---|
224 |
|
---|
225 | return par[8]*(sumcat+sumdyn)/2.;
|
---|
226 |
|
---|
227 | }
|
---|
228 |
|
---|
229 | inline static Double_t fPoissonKto4(Double_t *x, Double_t *par)
|
---|
230 | {
|
---|
231 |
|
---|
232 | Double_t lambda = par[0];
|
---|
233 |
|
---|
234 | Double_t sum = 0.;
|
---|
235 | Double_t arg = 0.;
|
---|
236 |
|
---|
237 | Double_t mu0 = par[1];
|
---|
238 | Double_t mu1 = par[2];
|
---|
239 |
|
---|
240 | if (mu1 < mu0)
|
---|
241 | return FLT_MAX;
|
---|
242 |
|
---|
243 | Double_t sigma0 = par[3];
|
---|
244 | Double_t sigma1 = par[4];
|
---|
245 |
|
---|
246 | if (sigma0 < 0.0001)
|
---|
247 | return FLT_MAX;
|
---|
248 |
|
---|
249 | if (sigma1 < sigma0)
|
---|
250 | return FLT_MAX;
|
---|
251 |
|
---|
252 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
253 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
254 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
255 |
|
---|
256 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
257 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
258 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
259 |
|
---|
260 | Double_t lambda2 = lambda*lambda;
|
---|
261 | Double_t lambda3 = lambda2*lambda;
|
---|
262 | Double_t lambda4 = lambda3*lambda;
|
---|
263 |
|
---|
264 | // k=0:
|
---|
265 | arg = (x[0] - mu0)/sigma0;
|
---|
266 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
267 |
|
---|
268 | // k=1:
|
---|
269 | arg = (x[0] - mu1)/sigma1;
|
---|
270 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
271 |
|
---|
272 | // k=2:
|
---|
273 | arg = (x[0] - mu2)/sigma2;
|
---|
274 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
275 |
|
---|
276 | // k=3:
|
---|
277 | arg = (x[0] - mu3)/sigma3;
|
---|
278 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
279 |
|
---|
280 | // k=4:
|
---|
281 | arg = (x[0] - mu4)/sigma4;
|
---|
282 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
283 |
|
---|
284 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
285 |
|
---|
286 | }
|
---|
287 |
|
---|
288 |
|
---|
289 | inline static Double_t fPoissonKto5(Double_t *x, Double_t *par)
|
---|
290 | {
|
---|
291 |
|
---|
292 | Double_t lambda = par[0];
|
---|
293 |
|
---|
294 | Double_t sum = 0.;
|
---|
295 | Double_t arg = 0.;
|
---|
296 |
|
---|
297 | Double_t mu0 = par[1];
|
---|
298 | Double_t mu1 = par[2];
|
---|
299 |
|
---|
300 | if (mu1 < mu0)
|
---|
301 | return FLT_MAX;
|
---|
302 |
|
---|
303 | Double_t sigma0 = par[3];
|
---|
304 | Double_t sigma1 = par[4];
|
---|
305 |
|
---|
306 | if (sigma0 < 0.0001)
|
---|
307 | return FLT_MAX;
|
---|
308 |
|
---|
309 | if (sigma1 < sigma0)
|
---|
310 | return FLT_MAX;
|
---|
311 |
|
---|
312 |
|
---|
313 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
314 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
315 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
316 | Double_t mu5 = (5.*mu1)-(4.*mu0);
|
---|
317 |
|
---|
318 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
319 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
320 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
321 | Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
|
---|
322 |
|
---|
323 | Double_t lambda2 = lambda*lambda;
|
---|
324 | Double_t lambda3 = lambda2*lambda;
|
---|
325 | Double_t lambda4 = lambda3*lambda;
|
---|
326 | Double_t lambda5 = lambda4*lambda;
|
---|
327 |
|
---|
328 | // k=0:
|
---|
329 | arg = (x[0] - mu0)/sigma0;
|
---|
330 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
331 |
|
---|
332 | // k=1:
|
---|
333 | arg = (x[0] - mu1)/sigma1;
|
---|
334 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
335 |
|
---|
336 | // k=2:
|
---|
337 | arg = (x[0] - mu2)/sigma2;
|
---|
338 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
339 |
|
---|
340 | // k=3:
|
---|
341 | arg = (x[0] - mu3)/sigma3;
|
---|
342 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
343 |
|
---|
344 | // k=4:
|
---|
345 | arg = (x[0] - mu4)/sigma4;
|
---|
346 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
347 |
|
---|
348 | // k=5:
|
---|
349 | arg = (x[0] - mu5)/sigma5;
|
---|
350 | sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
|
---|
351 |
|
---|
352 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
353 |
|
---|
354 | }
|
---|
355 |
|
---|
356 |
|
---|
357 | inline static Double_t fPoissonKto6(Double_t *x, Double_t *par)
|
---|
358 | {
|
---|
359 |
|
---|
360 | Double_t lambda = par[0];
|
---|
361 |
|
---|
362 | Double_t sum = 0.;
|
---|
363 | Double_t arg = 0.;
|
---|
364 |
|
---|
365 | Double_t mu0 = par[1];
|
---|
366 | Double_t mu1 = par[2];
|
---|
367 |
|
---|
368 | if (mu1 < mu0)
|
---|
369 | return FLT_MAX;
|
---|
370 |
|
---|
371 | Double_t sigma0 = par[3];
|
---|
372 | Double_t sigma1 = par[4];
|
---|
373 |
|
---|
374 | if (sigma0 < 0.0001)
|
---|
375 | return FLT_MAX;
|
---|
376 |
|
---|
377 | if (sigma1 < sigma0)
|
---|
378 | return FLT_MAX;
|
---|
379 |
|
---|
380 |
|
---|
381 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
382 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
383 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
384 | Double_t mu5 = (5.*mu1)-(4.*mu0);
|
---|
385 | Double_t mu6 = (6.*mu1)-(5.*mu0);
|
---|
386 |
|
---|
387 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
388 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
389 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
390 | Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
|
---|
391 | Double_t sigma6 = TMath::Sqrt((6.*sigma1*sigma1) - (5.*sigma0*sigma0));
|
---|
392 |
|
---|
393 | Double_t lambda2 = lambda*lambda;
|
---|
394 | Double_t lambda3 = lambda2*lambda;
|
---|
395 | Double_t lambda4 = lambda3*lambda;
|
---|
396 | Double_t lambda5 = lambda4*lambda;
|
---|
397 | Double_t lambda6 = lambda5*lambda;
|
---|
398 |
|
---|
399 | // k=0:
|
---|
400 | arg = (x[0] - mu0)/sigma0;
|
---|
401 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
402 |
|
---|
403 | // k=1:
|
---|
404 | arg = (x[0] - mu1)/sigma1;
|
---|
405 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
406 |
|
---|
407 | // k=2:
|
---|
408 | arg = (x[0] - mu2)/sigma2;
|
---|
409 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
410 |
|
---|
411 | // k=3:
|
---|
412 | arg = (x[0] - mu3)/sigma3;
|
---|
413 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
414 |
|
---|
415 | // k=4:
|
---|
416 | arg = (x[0] - mu4)/sigma4;
|
---|
417 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
418 |
|
---|
419 | // k=5:
|
---|
420 | arg = (x[0] - mu5)/sigma5;
|
---|
421 | sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
|
---|
422 |
|
---|
423 | // k=6:
|
---|
424 | arg = (x[0] - mu6)/sigma6;
|
---|
425 | sum += 0.001388888888889*lambda6*TMath::Exp(-0.5*arg*arg)/sigma6;
|
---|
426 |
|
---|
427 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
428 |
|
---|
429 | }
|
---|
430 |
|
---|
431 | inline static Double_t fPolya(Double_t *x, Double_t *par)
|
---|
432 | {
|
---|
433 |
|
---|
434 | const Double_t QEcat = 0.247; // mean quantum efficiency
|
---|
435 | const Double_t sqrt2 = 1.4142135623731;
|
---|
436 | const Double_t sqrt3 = 1.7320508075689;
|
---|
437 | const Double_t sqrt4 = 2.;
|
---|
438 |
|
---|
439 | const Double_t lambda = par[0]; // mean number of photons
|
---|
440 |
|
---|
441 | const Double_t excessPoisson = par[1]; // non-Poissonic noise contribution
|
---|
442 | const Double_t delta1 = par[2]; // amplification first dynode
|
---|
443 | const Double_t delta2 = par[3]; // amplification subsequent dynodes
|
---|
444 |
|
---|
445 | const Double_t electronicAmpl = par[4]; // electronic amplification and conversion to FADC charges
|
---|
446 |
|
---|
447 | const Double_t pmtAmpl = delta1*delta2*delta2*delta2*delta2*delta2; // total PMT gain
|
---|
448 | const Double_t A = 1. + excessPoisson - QEcat
|
---|
449 | + 1./delta1
|
---|
450 | + 1./delta1/delta2
|
---|
451 | + 1./delta1/delta2/delta2; // variance contributions from PMT and QE
|
---|
452 |
|
---|
453 | const Double_t totAmpl = QEcat*pmtAmpl*electronicAmpl; // Total gain and conversion
|
---|
454 |
|
---|
455 | const Double_t mu0 = par[7]; // pedestal
|
---|
456 | const Double_t mu1 = totAmpl; // single phe position
|
---|
457 | const Double_t mu2 = 2*totAmpl; // double phe position
|
---|
458 | const Double_t mu3 = 3*totAmpl; // triple phe position
|
---|
459 | const Double_t mu4 = 4*totAmpl; // quadruple phe position
|
---|
460 |
|
---|
461 | const Double_t sigma0 = par[5];
|
---|
462 | const Double_t sigma1 = electronicAmpl*pmtAmpl*TMath::Sqrt(QEcat*A);
|
---|
463 | const Double_t sigma2 = sqrt2*sigma1;
|
---|
464 | const Double_t sigma3 = sqrt3*sigma1;
|
---|
465 | const Double_t sigma4 = sqrt4*sigma1;
|
---|
466 |
|
---|
467 | const Double_t lambda2 = lambda*lambda;
|
---|
468 | const Double_t lambda3 = lambda2*lambda;
|
---|
469 | const Double_t lambda4 = lambda3*lambda;
|
---|
470 |
|
---|
471 | //-- calculate the area----
|
---|
472 | Double_t arg = (x[0] - mu0)/sigma0;
|
---|
473 | Double_t sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
474 |
|
---|
475 | // k=1:
|
---|
476 | arg = (x[0] - mu1)/sigma1;
|
---|
477 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
478 |
|
---|
479 | // k=2:
|
---|
480 | arg = (x[0] - mu2)/sigma2;
|
---|
481 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
482 |
|
---|
483 | // k=3:
|
---|
484 | arg = (x[0] - mu3)/sigma3;
|
---|
485 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
486 |
|
---|
487 | // k=4:
|
---|
488 | arg = (x[0] - mu4)/sigma4;
|
---|
489 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
490 |
|
---|
491 | return TMath::Exp(-1.*lambda)*par[6]*sum;
|
---|
492 | }
|
---|
493 |
|
---|
494 | ClassDef(MHCalibrationChargeBlindPix, 1) // Histogram class for Charge Blind Pixel Calibration
|
---|
495 | };
|
---|
496 |
|
---|
497 | #endif /* MARS_MHCalibrationChargeBlindPix */
|
---|