| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2004 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | //  MHCalibrationPix | 
|---|
| 28 | // | 
|---|
| 29 | //  A base class for events which are believed to follow a Gaussian distribution | 
|---|
| 30 | //  with time, e.g. calibration events, observables containing white noise, ... | 
|---|
| 31 | // | 
|---|
| 32 | //  MHCalibrationPix derives from MHGausEvents, thus all features of | 
|---|
| 33 | //  MHGausEvents can be used by a class deriving from MHCalibrationPix | 
|---|
| 34 | // | 
|---|
| 35 | //  As an additional feature to MHGausEvents, this class offers to skip the fitting | 
|---|
| 36 | //  to set mean, sigma and its errors directly from the histograms with the function | 
|---|
| 37 | //  BypassFit() | 
|---|
| 38 | // | 
|---|
| 39 | //  See also: MHGausEvents | 
|---|
| 40 | // | 
|---|
| 41 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 42 | #include "MHCalibrationPix.h" | 
|---|
| 43 |  | 
|---|
| 44 | #include <TH1.h> | 
|---|
| 45 | #include <TF1.h> | 
|---|
| 46 | #include <TGraph.h> | 
|---|
| 47 |  | 
|---|
| 48 | #include "MLog.h" | 
|---|
| 49 | #include "MLogManip.h" | 
|---|
| 50 |  | 
|---|
| 51 | ClassImp(MHCalibrationPix); | 
|---|
| 52 |  | 
|---|
| 53 | using namespace std; | 
|---|
| 54 |  | 
|---|
| 55 | const Float_t  MHCalibrationPix::fgBlackoutLimit        = 5.; | 
|---|
| 56 | const Float_t  MHCalibrationPix::fgPickupLimit          = 5.; | 
|---|
| 57 | // -------------------------------------------------------------------------- | 
|---|
| 58 | // | 
|---|
| 59 | // Default Constructor. | 
|---|
| 60 | // Sets: | 
|---|
| 61 | // - the default number for fPickupLimit           (fgPickupLimit) | 
|---|
| 62 | // - the default number for fBlackoutLimit         (fgBlackoutLimit) | 
|---|
| 63 | // | 
|---|
| 64 | // Initializes: | 
|---|
| 65 | // - all variables to 0. | 
|---|
| 66 | // | 
|---|
| 67 | MHCalibrationPix::MHCalibrationPix(const char *name, const char *title) | 
|---|
| 68 | { | 
|---|
| 69 |  | 
|---|
| 70 | fName  = name  ? name  : "MHCalibrationPix"; | 
|---|
| 71 | fTitle = title ? title : "Calibration histogram events"; | 
|---|
| 72 |  | 
|---|
| 73 | Clear(); | 
|---|
| 74 |  | 
|---|
| 75 | SetBlackoutLimit(); | 
|---|
| 76 | SetPickupLimit(); | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 | // -------------------------------------------------------------------------- | 
|---|
| 80 | // | 
|---|
| 81 | // Default Clear(), can be overloaded. | 
|---|
| 82 | // | 
|---|
| 83 | // Sets: | 
|---|
| 84 | // - all other pointers to NULL | 
|---|
| 85 | // - all variables to 0., except fPixId to -1 | 
|---|
| 86 | // - all flags to kFALSE | 
|---|
| 87 | // | 
|---|
| 88 | // - all pointers | 
|---|
| 89 | // | 
|---|
| 90 | void MHCalibrationPix::Clear(Option_t *o) | 
|---|
| 91 | { | 
|---|
| 92 |  | 
|---|
| 93 | MHGausEvents::Clear(); | 
|---|
| 94 | fSaturated         = 0; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | void MHCalibrationPix::Reset() | 
|---|
| 98 | { | 
|---|
| 99 |  | 
|---|
| 100 | MHGausEvents::Reset(); | 
|---|
| 101 | fSaturated = 0; | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 |  | 
|---|
| 105 | // ----------------------------------------------------------------------------- | 
|---|
| 106 | // | 
|---|
| 107 | // Bypasses the Gauss fit by taking mean and RMS from the histogram | 
|---|
| 108 | // | 
|---|
| 109 | // Errors are determined in the following way: | 
|---|
| 110 | // MeanErr  = RMS / Sqrt(entries) | 
|---|
| 111 | // SigmaErr = RMS / (2.*Sqrt(entries) ) | 
|---|
| 112 | // | 
|---|
| 113 | void MHCalibrationPix::BypassFit() | 
|---|
| 114 | { | 
|---|
| 115 |  | 
|---|
| 116 | const Stat_t entries = fHGausHist.GetEntries(); | 
|---|
| 117 |  | 
|---|
| 118 | if (entries <= 0.) | 
|---|
| 119 | { | 
|---|
| 120 | *fLog << warn << GetDescriptor() | 
|---|
| 121 | << ": Cannot bypass fit. Number of entries smaller or equal 0 in pixel: " << GetName() << endl; | 
|---|
| 122 | return; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | fMean     = fHGausHist.GetMean(); | 
|---|
| 126 | fMeanErr  = fHGausHist.GetRMS() / TMath::Sqrt(entries); | 
|---|
| 127 | fSigma    = fHGausHist.GetRMS() ; | 
|---|
| 128 | fSigmaErr = fHGausHist.GetRMS() / TMath::Sqrt(entries) / 2.; | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | // ------------------------------------------------------------------------------- | 
|---|
| 132 | // | 
|---|
| 133 | // Return the number of "blackout" events, which are events with values higher | 
|---|
| 134 | // than fBlackoutLimit sigmas from the mean | 
|---|
| 135 | // | 
|---|
| 136 | // | 
|---|
| 137 | const Double_t MHCalibrationPix::GetBlackout() const | 
|---|
| 138 | { | 
|---|
| 139 |  | 
|---|
| 140 | if ((fMean == 0.) && (fSigma == 0.)) | 
|---|
| 141 | return -1.; | 
|---|
| 142 |  | 
|---|
| 143 | const Int_t first = fHGausHist.GetXaxis()->GetFirst(); | 
|---|
| 144 | const Int_t last  = fHGausHist.GetXaxis()->FindBin(fMean-fBlackoutLimit*fSigma); | 
|---|
| 145 |  | 
|---|
| 146 | if (first >= last) | 
|---|
| 147 | return 0.; | 
|---|
| 148 |  | 
|---|
| 149 | return fHGausHist.Integral(first, last); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 |  | 
|---|
| 153 | // ------------------------------------------------------------------------------- | 
|---|
| 154 | // | 
|---|
| 155 | // Return the number of "pickup" events, which are events with values higher | 
|---|
| 156 | // than fPickupLimit sigmas from the mean | 
|---|
| 157 | // | 
|---|
| 158 | // | 
|---|
| 159 | const Double_t MHCalibrationPix::GetPickup() const | 
|---|
| 160 | { | 
|---|
| 161 |  | 
|---|
| 162 | if ((fMean == 0.) && (fSigma == 0.)) | 
|---|
| 163 | return -1.; | 
|---|
| 164 |  | 
|---|
| 165 | const Int_t first = fHGausHist.GetXaxis()->FindBin(fMean+fPickupLimit*fSigma); | 
|---|
| 166 | const Int_t last  = fHGausHist.GetXaxis()->GetLast(); | 
|---|
| 167 |  | 
|---|
| 168 | if (first >= last) | 
|---|
| 169 | return 0.; | 
|---|
| 170 |  | 
|---|
| 171 | return fHGausHist.Integral(first, last); | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 | // ----------------------------------------------------------------------------- | 
|---|
| 175 | // | 
|---|
| 176 | // If flag IsGausFitOK() is set (histogram already successfully fitted), | 
|---|
| 177 | // returns kTRUE | 
|---|
| 178 | // | 
|---|
| 179 | // If both fMean and fSigma are still zero, call FitGaus() | 
|---|
| 180 | // | 
|---|
| 181 | // Repeats the Gauss fit in a smaller range, defined by: | 
|---|
| 182 | // | 
|---|
| 183 | // min = GetMean() - fBlackoutLimit * GetSigma(); | 
|---|
| 184 | // max = GetMean() + fPickupLimit   * GetSigma(); | 
|---|
| 185 | // | 
|---|
| 186 | // The fit results are retrieved and stored in class-own variables. | 
|---|
| 187 | // | 
|---|
| 188 | // A flag IsGausFitOK() is set according to whether the fit probability | 
|---|
| 189 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than | 
|---|
| 190 | // fNDFLimit and whether results are NaNs. | 
|---|
| 191 | // | 
|---|
| 192 | Bool_t MHCalibrationPix::RepeatFit(const Option_t *option) | 
|---|
| 193 | { | 
|---|
| 194 |  | 
|---|
| 195 | if (IsGausFitOK()) | 
|---|
| 196 | return kTRUE; | 
|---|
| 197 |  | 
|---|
| 198 | if ((fMean == 0.) && (fSigma == 0.)) | 
|---|
| 199 | return FitGaus(); | 
|---|
| 200 |  | 
|---|
| 201 | // | 
|---|
| 202 | // Get new fitting ranges | 
|---|
| 203 | // | 
|---|
| 204 | Axis_t rmin = fMean - fBlackoutLimit * fSigma; | 
|---|
| 205 | Axis_t rmax = fMean + fPickupLimit   * fSigma; | 
|---|
| 206 |  | 
|---|
| 207 | Axis_t hmin = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst()); | 
|---|
| 208 | Axis_t hmax = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) ; | 
|---|
| 209 |  | 
|---|
| 210 | fFGausFit->SetRange(hmin < rmin ? rmin : hmin , hmax > rmax ? rmax : hmax); | 
|---|
| 211 |  | 
|---|
| 212 | fHGausHist.Fit(fFGausFit,option); | 
|---|
| 213 |  | 
|---|
| 214 | fMean     = fFGausFit->GetParameter(1); | 
|---|
| 215 | fSigma    = fFGausFit->GetParameter(2); | 
|---|
| 216 | fMeanErr  = fFGausFit->GetParError(1) ; | 
|---|
| 217 | fSigmaErr = fFGausFit->GetParError(2) ; | 
|---|
| 218 | fProb     = fFGausFit->GetProb()      ; | 
|---|
| 219 |  | 
|---|
| 220 | // | 
|---|
| 221 | // The fit result is accepted under condition: | 
|---|
| 222 | // 1) The results are not nan's | 
|---|
| 223 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit) | 
|---|
| 224 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit) | 
|---|
| 225 | // | 
|---|
| 226 | if (   TMath::IsNaN ( fMean     ) | 
|---|
| 227 | || TMath::IsNaN ( fMeanErr  ) | 
|---|
| 228 | || TMath::IsNaN ( fProb     ) | 
|---|
| 229 | || TMath::IsNaN ( fSigma    ) | 
|---|
| 230 | || TMath::IsNaN ( fSigmaErr ) | 
|---|
| 231 | || fFGausFit->GetNDF() < fNDFLimit | 
|---|
| 232 | || fProb < fProbLimit ) | 
|---|
| 233 | return kFALSE; | 
|---|
| 234 |  | 
|---|
| 235 | SetGausFitOK(kTRUE); | 
|---|
| 236 | return kTRUE; | 
|---|
| 237 |  | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|