| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHCalibrationPix
|
|---|
| 28 | //
|
|---|
| 29 | // A base class for events which are believed to follow a Gaussian distribution
|
|---|
| 30 | // with time, e.g. calibration events, observables containing white noise, ...
|
|---|
| 31 | //
|
|---|
| 32 | // MHCalibrationPix derives from MHGausEvents, thus all features of
|
|---|
| 33 | // MHGausEvents can be used by a class deriving from MHCalibrationPix
|
|---|
| 34 | //
|
|---|
| 35 | // As an additional feature to MHGausEvents, this class offers to skip the fitting
|
|---|
| 36 | // to set mean, sigma and its errors directly from the histograms with the function
|
|---|
| 37 | // BypassFit()
|
|---|
| 38 | //
|
|---|
| 39 | // See also: MHGausEvents
|
|---|
| 40 | //
|
|---|
| 41 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 42 | #include "MHCalibrationPix.h"
|
|---|
| 43 |
|
|---|
| 44 | #include <TH1.h>
|
|---|
| 45 | #include <TF1.h>
|
|---|
| 46 | #include <TGraph.h>
|
|---|
| 47 |
|
|---|
| 48 | #include "MLog.h"
|
|---|
| 49 | #include "MLogManip.h"
|
|---|
| 50 |
|
|---|
| 51 | ClassImp(MHCalibrationPix);
|
|---|
| 52 |
|
|---|
| 53 | using namespace std;
|
|---|
| 54 |
|
|---|
| 55 | const Float_t MHCalibrationPix::fgBlackoutLimit = 5.;
|
|---|
| 56 | const Float_t MHCalibrationPix::fgPickupLimit = 5.;
|
|---|
| 57 | // --------------------------------------------------------------------------
|
|---|
| 58 | //
|
|---|
| 59 | // Default Constructor.
|
|---|
| 60 | // Sets:
|
|---|
| 61 | // - the default number for fPickupLimit (fgPickupLimit)
|
|---|
| 62 | // - the default number for fBlackoutLimit (fgBlackoutLimit)
|
|---|
| 63 | //
|
|---|
| 64 | // Initializes:
|
|---|
| 65 | // - all variables to 0.
|
|---|
| 66 | //
|
|---|
| 67 | MHCalibrationPix::MHCalibrationPix(const char *name, const char *title)
|
|---|
| 68 | {
|
|---|
| 69 |
|
|---|
| 70 | fName = name ? name : "MHCalibrationPix";
|
|---|
| 71 | fTitle = title ? title : "Calibration histogram events";
|
|---|
| 72 |
|
|---|
| 73 | Clear();
|
|---|
| 74 |
|
|---|
| 75 | SetBlackoutLimit();
|
|---|
| 76 | SetPickupLimit();
|
|---|
| 77 | }
|
|---|
| 78 |
|
|---|
| 79 | // --------------------------------------------------------------------------
|
|---|
| 80 | //
|
|---|
| 81 | // Default Clear(), can be overloaded.
|
|---|
| 82 | //
|
|---|
| 83 | // Sets:
|
|---|
| 84 | // - all other pointers to NULL
|
|---|
| 85 | // - all variables to 0., except fPixId to -1
|
|---|
| 86 | // - all flags to kFALSE
|
|---|
| 87 | //
|
|---|
| 88 | // - all pointers
|
|---|
| 89 | //
|
|---|
| 90 | void MHCalibrationPix::Clear(Option_t *o)
|
|---|
| 91 | {
|
|---|
| 92 |
|
|---|
| 93 | MHGausEvents::Clear();
|
|---|
| 94 | fSaturated = 0;
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 | void MHCalibrationPix::Reset()
|
|---|
| 98 | {
|
|---|
| 99 |
|
|---|
| 100 | MHGausEvents::Reset();
|
|---|
| 101 | fSaturated = 0;
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 |
|
|---|
| 105 | // -----------------------------------------------------------------------------
|
|---|
| 106 | //
|
|---|
| 107 | // Bypasses the Gauss fit by taking mean and RMS from the histogram
|
|---|
| 108 | //
|
|---|
| 109 | // Errors are determined in the following way:
|
|---|
| 110 | // MeanErr = RMS / Sqrt(entries)
|
|---|
| 111 | // SigmaErr = RMS / (2.*Sqrt(entries) )
|
|---|
| 112 | //
|
|---|
| 113 | void MHCalibrationPix::BypassFit()
|
|---|
| 114 | {
|
|---|
| 115 |
|
|---|
| 116 | const Stat_t entries = fHGausHist.GetEntries();
|
|---|
| 117 |
|
|---|
| 118 | if (entries <= 0.)
|
|---|
| 119 | {
|
|---|
| 120 | *fLog << warn << GetDescriptor()
|
|---|
| 121 | << ": Cannot bypass fit. Number of entries smaller or equal 0 in pixel: " << GetName() << endl;
|
|---|
| 122 | return;
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | fMean = fHGausHist.GetMean();
|
|---|
| 126 | fMeanErr = fHGausHist.GetRMS() / TMath::Sqrt(entries);
|
|---|
| 127 | fSigma = fHGausHist.GetRMS() ;
|
|---|
| 128 | fSigmaErr = fHGausHist.GetRMS() / TMath::Sqrt(entries) / 2.;
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | // -------------------------------------------------------------------------------
|
|---|
| 132 | //
|
|---|
| 133 | // Return the number of "blackout" events, which are events with values higher
|
|---|
| 134 | // than fBlackoutLimit sigmas from the mean
|
|---|
| 135 | //
|
|---|
| 136 | //
|
|---|
| 137 | const Double_t MHCalibrationPix::GetBlackout() const
|
|---|
| 138 | {
|
|---|
| 139 |
|
|---|
| 140 | if ((fMean == 0.) && (fSigma == 0.))
|
|---|
| 141 | return -1.;
|
|---|
| 142 |
|
|---|
| 143 | const Int_t first = fHGausHist.GetXaxis()->GetFirst();
|
|---|
| 144 | const Int_t last = fHGausHist.GetXaxis()->FindBin(fMean-fBlackoutLimit*fSigma);
|
|---|
| 145 |
|
|---|
| 146 | if (first >= last)
|
|---|
| 147 | return 0.;
|
|---|
| 148 |
|
|---|
| 149 | return fHGausHist.Integral(first, last);
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | // -------------------------------------------------------------------------------
|
|---|
| 154 | //
|
|---|
| 155 | // Return the number of "pickup" events, which are events with values higher
|
|---|
| 156 | // than fPickupLimit sigmas from the mean
|
|---|
| 157 | //
|
|---|
| 158 | //
|
|---|
| 159 | const Double_t MHCalibrationPix::GetPickup() const
|
|---|
| 160 | {
|
|---|
| 161 | if (!IsValid())
|
|---|
| 162 | return -1.;
|
|---|
| 163 |
|
|---|
| 164 | const Int_t first = fHGausHist.GetXaxis()->FindBin(fMean+fPickupLimit*fSigma);
|
|---|
| 165 | const Int_t last = fHGausHist.GetXaxis()->GetLast();
|
|---|
| 166 |
|
|---|
| 167 | if (first >= last)
|
|---|
| 168 | return 0.;
|
|---|
| 169 |
|
|---|
| 170 | return fHGausHist.Integral(first, last);
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 | // -----------------------------------------------------------------------------
|
|---|
| 174 | //
|
|---|
| 175 | // If flag IsGausFitOK() is set (histogram already successfully fitted),
|
|---|
| 176 | // returns kTRUE
|
|---|
| 177 | //
|
|---|
| 178 | // If both fMean and fSigma are still zero, call FitGaus()
|
|---|
| 179 | //
|
|---|
| 180 | // Repeats the Gauss fit in a smaller range, defined by:
|
|---|
| 181 | //
|
|---|
| 182 | // min = GetMean() - fBlackoutLimit * GetSigma();
|
|---|
| 183 | // max = GetMean() + fPickupLimit * GetSigma();
|
|---|
| 184 | //
|
|---|
| 185 | // The fit results are retrieved and stored in class-own variables.
|
|---|
| 186 | //
|
|---|
| 187 | // A flag IsGausFitOK() is set according to whether the fit probability
|
|---|
| 188 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than
|
|---|
| 189 | // fNDFLimit and whether results are NaNs.
|
|---|
| 190 | //
|
|---|
| 191 | Bool_t MHCalibrationPix::RepeatFit(const Option_t *option)
|
|---|
| 192 | {
|
|---|
| 193 |
|
|---|
| 194 | if (IsGausFitOK())
|
|---|
| 195 | return kTRUE;
|
|---|
| 196 |
|
|---|
| 197 | if (!IsValid())
|
|---|
| 198 | return FitGaus();
|
|---|
| 199 |
|
|---|
| 200 | //
|
|---|
| 201 | // Get new fitting ranges
|
|---|
| 202 | //
|
|---|
| 203 | Axis_t rmin = GetMean() - fBlackoutLimit * GetSigma();
|
|---|
| 204 | Axis_t rmax = GetMean() + fPickupLimit * GetSigma();
|
|---|
| 205 |
|
|---|
| 206 | Axis_t hmin = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst());
|
|---|
| 207 | Axis_t hmax = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) ;
|
|---|
| 208 |
|
|---|
| 209 | fFGausFit->SetRange(hmin < rmin ? rmin : hmin , hmax > rmax ? rmax : hmax);
|
|---|
| 210 |
|
|---|
| 211 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 212 |
|
|---|
| 213 | fMean = fFGausFit->GetParameter(1);
|
|---|
| 214 | fSigma = fFGausFit->GetParameter(2);
|
|---|
| 215 | fMeanErr = fFGausFit->GetParError(1) ;
|
|---|
| 216 | fSigmaErr = fFGausFit->GetParError(2) ;
|
|---|
| 217 | fProb = fFGausFit->GetProb() ;
|
|---|
| 218 |
|
|---|
| 219 | //
|
|---|
| 220 | // The fit result is accepted under condition:
|
|---|
| 221 | // 1) The results are not nan's
|
|---|
| 222 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
|---|
| 223 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
|---|
| 224 | //
|
|---|
| 225 | if ( !TMath::Finite( fMean )
|
|---|
| 226 | || !TMath::Finite( fMeanErr )
|
|---|
| 227 | || !TMath::Finite( fProb )
|
|---|
| 228 | || !TMath::Finite( fSigma )
|
|---|
| 229 | || !TMath::Finite( fSigmaErr )
|
|---|
| 230 | || fFGausFit->GetNDF() < GetNDFLimit()
|
|---|
| 231 | || fProb < GetProbLimit() )
|
|---|
| 232 | return kFALSE;
|
|---|
| 233 |
|
|---|
| 234 | SetGausFitOK(kTRUE);
|
|---|
| 235 | return kTRUE;
|
|---|
| 236 |
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|