/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug 02/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MHCalibrationRelTimeCam // // Fills the extracted relative arrival times of MArrivalTimeCam into // the MHCalibrationPix-classes MHCalibrationPix for every: // // - Pixel, stored in the TObjArray's MHCalibrationCam::fHiGainArray // or MHCalibrationCam::fHiGainArray, respectively, depending if // MArrivalTimePix::IsLoGainUsed() is set. // // - Average pixel per AREA index (e.g. inner and outer for the MAGIC camera), // stored in the TObjArray's MHCalibrationCam::fAverageHiGainAreas and // MHCalibrationCam::fAverageHiGainAreas // // - Average pixel per camera SECTOR (e.g. sectors 1-6 for the MAGIC camera), // stored in the TObjArray's MHCalibrationCam::fAverageHiGainSectors // and MHCalibrationCam::fAverageHiGainSectors // // Every relative time is calculated as the difference between the individual // pixel arrival time and the one of pixel 1 (hardware number: 2). // The relative times are filled into a histogram and an array, in order to perform // a Fourier analysis (see MHGausEvents). The signals are moreover averaged on an // event-by-event basis and written into the corresponding average pixels. // // The histograms are fitted to a Gaussian, mean and sigma with its errors // and the fit probability are extracted. If none of these values are NaN's and // if the probability is bigger than MHGausEvents::fProbLimit (default: 0.5%), // the fit is declared valid. // Otherwise, the fit is repeated within ranges of the previous mean // +- MHCalibrationPix::fPickupLimit (default: 5) sigma (see MHCalibrationPix::RepeatFit()) // In case this does not make the fit valid, the histogram means and RMS's are // taken directly (see MHCalibrationPix::BypassFit()) and the following flags are set: // - MBadPixelsPix::SetUncalibrated( MBadPixelsPix::kRelTimeNotFitted ) and // - MBadPixelsPix::SetUnsuitable( MBadPixelsPix::kUnreliableRun ) // // Outliers of more than MHCalibrationPix::fPickupLimit (default: 5) sigmas // from the mean are counted as Pickup events (stored in MHCalibrationPix::fPickup) // // The class also fills arrays with the signal vs. event number, creates a fourier // spectrum (see MHGausEvents::CreateFourierSpectrum()) and investigates if the // projected fourier components follow an exponential distribution. // In case that the probability of the exponential fit is less than // MHGausEvents::fProbLimit (default: 0.5%), the following flags are set: // - MBadPixelsPix::SetUncalibrated( MBadPixelsPix::kRelTimeOscillating ) and // - MBadPixelsPix::SetUnsuitable( MBadPixelsPix::kUnreliableRun ) // // This same procedure is performed for the average pixels. // // The following results are written into MCalibrationRelTimeCam: // // - MCalibrationPix::SetMean() // - MCalibrationPix::SetMeanErr() // - MCalibrationPix::SetSigma() // - MCalibrationPix::SetSigmaErr() // - MCalibrationPix::SetProb() // - MCalibrationPix::SetNumPickup() // // For all averaged areas, the fitted sigma is multiplied with the square root of // the number involved pixels in order to be able to compare it to the average of // sigmas in the camera. // ///////////////////////////////////////////////////////////////////////////// #include "MHCalibrationRelTimeCam.h" #include "MHCalibrationPix.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MCalibrationIntensityRelTimeCam.h" #include "MCalibrationRelTimeCam.h" #include "MCalibrationRelTimePix.h" #include "MCalibrationPix.h" #include "MArrivalTimeCam.h" #include "MArrivalTimePix.h" #include "MGeomCam.h" #include "MGeomPix.h" #include "MBadPixelsCam.h" #include "MBadPixelsPix.h" ClassImp(MHCalibrationRelTimeCam); using namespace std; const Float_t MHCalibrationRelTimeCam::fgNumHiGainSaturationLimit = 0.25; const UInt_t MHCalibrationRelTimeCam::fgReferencePixel = 1; const Int_t MHCalibrationRelTimeCam::fgRelTimeNbins = 900; const Axis_t MHCalibrationRelTimeCam::fgRelTimeFirst = -5.; const Axis_t MHCalibrationRelTimeCam::fgRelTimeLast = 5.; // -------------------------------------------------------------------------- // // Default Constructor. // // Sets: // - fReferencePixel to fgReferencePixel // - fRelTimeNbins to fgRelTimeNbins // - fRelTimeFirst to fgRelTimeFirst // - fRelTimeLast to fgRelTimeLast // MHCalibrationRelTimeCam::MHCalibrationRelTimeCam(const char *name, const char *title) { fName = name ? name : "MHCalibrationRelTimeCam"; fTitle = title ? title : "Histogram class for the relative time calibration of the camera"; SetNumHiGainSaturationLimit(fgNumHiGainSaturationLimit); SetReferencePixel(); SetRelTimeNbins(); SetRelTimeFirst(); SetRelTimeLast (); } // -------------------------------------------------------------------------- // // Gets or creates the pointers to: // - MCalibrationRelTimeCam // // Searches pointer to: // - MArrivalTimeCam // // Initializes, if empty to MGeomCam::GetNumPixels(): // - MHCalibrationCam::fHiGainArray, MHCalibrationCam::fLoGainArray // // Initializes, if empty to MGeomCam::GetNumAreas() for: // - MHCalibrationCam::fAverageHiGainAreas, MHCalibrationCam::fAverageLoGainAreas // // Initializes, if empty to MGeomCam::GetNumSectors() for: // - MHCalibrationCam::fAverageHiGainSectors, MHCalibrationCam::fAverageLoGainSectors // // Calls MHCalibrationCam::InitHists() for every entry in: // - MHCalibrationCam::fHiGainArray, MHCalibrationCam::fLoGainArray // - MHCalibrationCam::fAverageHiGainAreas, MHCalibrationCam::fAverageLoGainAreas // - MHCalibrationCam::fAverageHiGainSectors, MHCalibrationCam::fAverageLoGainSectors // // Sets Titles and Names for the Histograms // - MHCalibrationCam::fAverageHiGainAreas // - MHCalibrationCam::fAverageHiGainSectors // Bool_t MHCalibrationRelTimeCam::ReInitHists(MParList *pList) { fIntensCam = (MCalibrationIntensityCam*)pList->FindObject(AddSerialNumber("MCalibrationIntensityRelTimeCam")); if (fIntensCam) *fLog << inf << "Found MCalibrationIntensityRelTimeCam ... " << endl; else { fCam = (MCalibrationCam*)pList->FindObject(AddSerialNumber("MCalibrationRelTimeCam")); if (!fCam) { fCam = (MCalibrationCam*)pList->FindCreateObj(AddSerialNumber("MCalibrationRelTimeCam")); if (!fCam) { *fLog << err << "Cannot find nor create MCalibrationRelTimeCam ... abort." << endl; return kFALSE; } fCam->Init(*fGeom); } } MArrivalTimeCam *signal = (MArrivalTimeCam*)pList->FindObject("MArrivalTimeCam"); if (!signal) { *fLog << err << "MArrivalTimeCam not found... abort." << endl; return kFALSE; } const Int_t npixels = fGeom->GetNumPixels(); const Int_t nsectors = fGeom->GetNumSectors(); const Int_t nareas = fGeom->GetNumAreas(); if (fHiGainArray->GetEntries()==0) { fHiGainArray->Expand(npixels); for (Int_t i=0; iSetName ("HRelTimeHiGainPix"); h->SetTitle("Rel. Times High Gain Pixel "); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); InitHists(pix,(*fBadPixels)[i],i); } } if (fLoGainArray->GetEntries()==0 && IsLoGain() ) { fLoGainArray->Expand(npixels); for (Int_t i=0; iSetName ("HRelTimeLoGainPix"); h->SetTitle("Rel. Times Low Gain Pixel "); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); InitHists((*this)(i),(*fBadPixels)[i],i); } } if (fAverageHiGainAreas->GetEntries()==0) { fAverageHiGainAreas->Expand(nareas); for (Int_t j=0; jSetName ("HRelTimeHiGainArea"); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); if (fGeom->InheritsFrom("MGeomCamMagic")) { h->SetTitle(Form("%s%s%s","Rel. Times averaged on event-by-event basis ", j==0 ? "Inner Pixels " : "Outer Pixels ","High Gain Runs: ")); pix.InitBins(); pix.SetEventFrequency(fPulserFrequency); } else { h->SetTitle("Signal averaged on event-by-event basis High Gain Area Idx "); InitHists(pix,fIntensCam ? fIntensCam->GetAverageBadArea(j) : fCam->GetAverageBadArea(j),j); } } } if (fAverageLoGainAreas->GetEntries()==0 && IsLoGain() ) { fAverageLoGainAreas->Expand(nareas); for (Int_t j=0; jSetName ("HRelTimeLoGainArea"); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); if (fGeom->InheritsFrom("MGeomCamMagic")) { h->SetTitle(Form("%s%s%s","Rel. Times averaged on event-by-event basis ", j==0 ? "Inner Pixels " : "Outer Pixels ","Low Gain Runs: ")); pix.InitBins(); pix.SetEventFrequency(fPulserFrequency); } else { h->SetTitle("Rel. Times averaged on event-by-event basis Low Gain Area Idx "); InitHists(pix,fIntensCam ? fIntensCam->GetAverageBadArea(j) : fCam->GetAverageBadArea(j),j); } } } if (fAverageHiGainSectors->GetEntries()==0) { fAverageHiGainSectors->Expand(nsectors); for (Int_t j=0; jSetName ("HRelTimeHiGainSector"); h->SetTitle("Rel. Times average High Gain Sector "); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); InitHists(pix,fIntensCam ? fIntensCam->GetAverageBadSector(j) : fCam->GetAverageBadSector(j),j); } } if (fAverageLoGainSectors->GetEntries()==0 && IsLoGain() ) { fAverageLoGainSectors->Expand(nsectors); for (Int_t j=0; jSetName ("HRelTimeLoGainSector"); h->SetTitle("Rel. Times average Low Gain Sector "); h->SetXTitle("Rel. Arr. Time [FADC slices]"); h->SetYTitle("Nr. of events"); InitHists(pix,fIntensCam ? fIntensCam->GetAverageBadSector(j) : fCam->GetAverageBadSector(j),j); } } fSumareahi .Set(nareas); fSumarealo .Set(nareas); fSumsectorhi.Set(nsectors); fSumsectorlo.Set(nsectors); fNumareahi .Set(nareas); fNumarealo .Set(nareas); fNumsectorhi.Set(nsectors); fNumsectorlo.Set(nsectors); return kTRUE; } // ------------------------------------------------------------------------------- // // Retrieves pointer to MArrivalTimeCam: // // Retrieves from MGeomCam: // - number of pixels // - number of pixel areas // - number of sectors // // Fills HiGain or LoGain histograms (MHGausEvents::FillHistAndArray()), respectively // depending on MArrivalTimePix::IsLoGainUsed(), with: // - MArrivalTimePix::GetArrivalTime(pixid) - MArrivalTimePix::GetArrivalTime(1); // (i.e. the time difference between pixel i and pixel 1 (hardware number: 2) ) // Bool_t MHCalibrationRelTimeCam::FillHists(const MParContainer *par, const Stat_t w) { MArrivalTimeCam *arrtime = (MArrivalTimeCam*)par; if (!arrtime) { gLog << err << "No argument in MArrivalTime::Fill... abort." << endl; return kFALSE; } const Int_t npixels = fGeom->GetNumPixels(); const Int_t nareas = fGeom->GetNumAreas(); const Int_t nsectors = fGeom->GetNumSectors(); fSumareahi .Reset(); fSumarealo .Reset(); fSumsectorhi.Reset(); fSumsectorlo.Reset(); fNumareahi .Reset(); fNumarealo .Reset(); fNumsectorhi.Reset(); fNumsectorlo.Reset(); const MArrivalTimePix &refpix = (*arrtime)[fReferencePixel]; const Float_t reftime = refpix.IsLoGainUsed() ? refpix.GetArrivalTimeLoGain() : refpix.GetArrivalTimeHiGain(); for (Int_t i=0; iGetSize(); i++) { MHCalibrationPix &histhi = (*this)[i]; if (histhi.IsExcluded()) continue; MCalibrationRelTimePix &pix = fIntensCam ? (MCalibrationRelTimePix&)(*fIntensCam)[i] : (MCalibrationRelTimePix&)(*fCam)[i]; if (histhi.GetSaturated() > fNumHiGainSaturationLimit*histhi.GetHGausHist()->GetEntries()) { pix.SetHiGainSaturation(); histhi.SetExcluded(); } else if (IsLoGain()) (*this)(i).SetExcluded(); Stat_t overflow = histhi.GetHGausHist()->GetBinContent(histhi.GetHGausHist()->GetNbinsX()+1); if (overflow > 0.1) { *fLog << warn << GetDescriptor() << ": HiGain Histogram Overflow occurred " << overflow << " times in pixel: " << i << " (without saturation!) " << endl; // bad.SetUncalibrated( MBadPixelsPix::kHiGainOverFlow ); } overflow = histhi.GetHGausHist()->GetBinContent(0); if (overflow > 0.1) { *fLog << warn << GetDescriptor() << ": HiGain Histogram Underflow occurred " << overflow << " times in pixel: " << i << " (without saturation!) " << endl; // bad.SetUncalibrated( MBadPixelsPix::kHiGainOverFlow ); } } for (Int_t j=0; jGetSize(); j++) { MHCalibrationPix &histhi = GetAverageHiGainArea(j); if (histhi.GetSaturated() > fNumHiGainSaturationLimit*histhi.GetHGausHist()->GetEntries()) { MCalibrationRelTimePix &pix = fIntensCam ? (MCalibrationRelTimePix&)fIntensCam->GetAverageArea(j) : (MCalibrationRelTimePix&)fCam->GetAverageArea(j); pix.SetHiGainSaturation(); histhi.SetExcluded(); } else if (IsLoGain()) GetAverageLoGainArea(j).SetExcluded(); } for (Int_t j=0; jGetSize(); j++) { MHCalibrationPix &histhi = GetAverageHiGainSector(j); MCalibrationRelTimePix &pix = fIntensCam ? (MCalibrationRelTimePix&)fIntensCam->GetAverageSector(j) : (MCalibrationRelTimePix&)fCam->GetAverageSector(j); if (histhi.GetSaturated() > fNumHiGainSaturationLimit*histhi.GetHGausHist()->GetEntries()) { pix.SetHiGainSaturation(); histhi.SetExcluded(); } else if (IsLoGain()) GetAverageLoGainSector(j).SetExcluded(); } FitHiGainArrays(fIntensCam ? (MCalibrationCam&)(*fIntensCam->GetCam()) : (MCalibrationCam&)(*fCam), *fBadPixels, MBadPixelsPix::kRelTimeNotFitted, MBadPixelsPix::kRelTimeOscillating); if (IsLoGain()) FitLoGainArrays(fIntensCam ? (MCalibrationCam&)(*fIntensCam->GetCam()) : (MCalibrationCam&)(*fCam), *fBadPixels, MBadPixelsPix::kRelTimeNotFitted, MBadPixelsPix::kRelTimeOscillating); return kTRUE; } // -------------------------------------------------------------------------- // // Sets all pixels to MBadPixelsPix::kUnreliableRun, if following flags are set: // - MBadPixelsPix::kRelTimeNotFitted // - MBadPixelsPix::kRelTimeOscillating // void MHCalibrationRelTimeCam::FinalizeBadPixels() { for (Int_t i=0; iGetSize(); i++) { MBadPixelsPix &bad = (*fBadPixels)[i]; if (bad.IsUncalibrated( MBadPixelsPix::kRelTimeNotFitted )) bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun ); if (bad.IsUncalibrated( MBadPixelsPix::kRelTimeOscillating)) bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun ); } } // -------------------------------------------------------------------------- // // The types are as follows: // // Fitted values: // ============== // // 0: Fitted Mean Relative Arrival Time in FADC slices (MHGausEvents::GetMean() // 1: Error Mean Relative Arrival Time in FADC slices (MHGausEvents::GetMeanErr() // 2: Sigma fitted Relative Arrival Time in FADC slices (MHGausEvents::GetSigma() // 3: Error Sigma Relative Arrival Time in FADC slices (MHGausEvents::GetSigmaErr() // // Useful variables derived from the fit results: // ============================================= // // 4: Returned probability of Gauss fit (calls: MHGausEvents::GetProb()) // // Localized defects: // ================== // // 5: Gaus fit not OK (calls: MHGausEvents::IsGausFitOK()) // 6: Fourier spectrum not OK (calls: MHGausEvents::IsFourierSpectrumOK()) // Bool_t MHCalibrationRelTimeCam::GetPixelContent(Double_t &val, Int_t idx, const MGeomCam &cam, Int_t type) const { if (fHiGainArray->GetSize() <= idx) return kFALSE; const MHCalibrationPix &pix = (*this)[idx]; switch (type) { case 0: val = pix.GetMean(); break; case 1: val = pix.GetMeanErr(); break; case 2: val = pix.GetSigma(); break; case 3: val = pix.GetSigmaErr(); break; case 4: val = pix.GetProb(); break; case 5: if (!pix.IsGausFitOK()) val = 1.; break; case 6: if (!pix.IsFourierSpectrumOK()) val = 1.; break; default: return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Calls MHCalibrationPix::DrawClone() for pixel idx // void MHCalibrationRelTimeCam::DrawPixelContent(Int_t idx) const { (*this)[idx].DrawClone(); }