/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug 02/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MHCalibrationRelTimeCam // // Fills the extracted relative arrival times of MArrivalTimeCam into // the MHCalibrationPix-classes MHCalibrationPix for every: // // - Pixel, stored in the TObjArray's MHCalibrationCam::fHiGainArray // or MHCalibrationCam::fHiGainArray, respectively, depending if // MArrivalTimePix::IsLoGainUsed() is set. // // - Average pixel per AREA index (e.g. inner and outer for the MAGIC camera), // stored in the TObjArray's MHCalibrationCam::fAverageHiGainAreas and // MHCalibrationCam::fAverageHiGainAreas // // - Average pixel per camera SECTOR (e.g. sectors 1-6 for the MAGIC camera), // stored in the TObjArray's MHCalibrationCam::fAverageHiGainSectors // and MHCalibrationCam::fAverageHiGainSectors // // Every relative time is calculated as the difference between the individual // pixel arrival time and the one of pixel 1 (hardware number: 2). // The relative times are filled into a histogram and an array, in order to perform // a Fourier analysis (see MHGausEvents). The signals are moreover averaged on an // event-by-event basis and written into the corresponding average pixels. // // The histograms are fitted to a Gaussian, mean and sigma with its errors // and the fit probability are extracted. If none of these values are NaN's and // if the probability is bigger than MHGausEvents::fProbLimit (default: 0.5%), // the fit is declared valid. // Otherwise, the fit is repeated within ranges of the previous mean // - MHCalibrationPix::fPickupLimit (default: 5) sigma (see MHCalibrationPix::RepeatFit()) // In case this does not make the fit valid, the histogram means and RMS's are // taken directly (see MHCalibrationPix::BypassFit()) and the following flags are set: // - MBadPixelsPix::SetUncalibrated( MBadPixelsPix::kRelTimeNotFitted ) and // - MBadPixelsPix::SetUnsuitable( MBadPixelsPix::kUnreliableRun ) // // Outliers of more than MHCalibrationPix::fPickupLimit (default: 5) sigmas // from the mean are counted as Pickup events (stored in MHCalibrationPix::fPickup) // // The class also fills arrays with the signal vs. event number, creates a fourier // spectrum (see MHGausEvents::CreateFourierSpectrum()) and investigates if the // projected fourier components follow an exponential distribution. // In case that the probability of the exponential fit is less than // MHGausEvents::fProbLimit (default: 0.5%), the following flags are set: // - MBadPixelsPix::SetUncalibrated( MBadPixelsPix::kRelTimeOscillating ) and // - MBadPixelsPix::SetUnsuitable( MBadPixelsPix::kUnreliableRun ) // // This same procedure is performed for the average pixels. // // The following results are written into MCalibrationRelTimeCam: // // - MCalibrationPix::SetMean() // - MCalibrationPix::SetMeanErr() // - MCalibrationPix::SetSigma() // - MCalibrationPix::SetSigmaErr() // - MCalibrationPix::SetProb() // - MCalibrationPix::SetNumPickup() // // For all averaged areas, the fitted sigma is multiplied with the square root of // the number involved pixels in order to be able to compare it to the average of // sigmas in the camera. // ///////////////////////////////////////////////////////////////////////////// #include "MHCalibrationRelTimeCam.h" #include "MHCalibrationPix.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MCalibrationIntensityRelTimeCam.h" #include "MCalibrationRelTimeCam.h" #include "MCalibrationRelTimePix.h" #include "MCalibrationPix.h" #include "MArrivalTimeCam.h" #include "MArrivalTimePix.h" #include "MGeomCam.h" #include "MGeomPix.h" #include "MBadPixelsIntensityCam.h" #include "MBadPixelsCam.h" #include "MBadPixelsPix.h" #include #include #include #include #include #include #include #include #include #include #include ClassImp(MHCalibrationRelTimeCam); using namespace std; const Float_t MHCalibrationRelTimeCam::fgNumHiGainSaturationLimit = 0.25; const UInt_t MHCalibrationRelTimeCam::fgReferencePixel = 1; const Int_t MHCalibrationRelTimeCam::fgNbins = 300; const Axis_t MHCalibrationRelTimeCam::fgFirst = -4.975; const Axis_t MHCalibrationRelTimeCam::fgLast = 10.025; const Float_t MHCalibrationRelTimeCam::fgProbLimit = 0.0; const TString MHCalibrationRelTimeCam::gsHistName = "RelTime"; const TString MHCalibrationRelTimeCam::gsHistTitle = "Arr. Times"; const TString MHCalibrationRelTimeCam::gsHistXTitle = "Arr. Time [FADC slices]"; const TString MHCalibrationRelTimeCam::gsHistYTitle = "Nr. events"; const TString MHCalibrationRelTimeCam::fgReferenceFile = "mjobs/calibrationref.rc"; // -------------------------------------------------------------------------- // // Default Constructor. // // Sets: // - fReferencePixel to fgReferencePixel // - fNbins to fgNbins // - fFirst to fgFirst // - fLast to fgLast // // - fHistName to gsHistName // - fHistTitle to gsHistTitle // - fHistXTitle to gsHistXTitle // - fHistYTitle to gsHistYTitle // MHCalibrationRelTimeCam::MHCalibrationRelTimeCam(const char *name, const char *title) { fName = name ? name : "MHCalibrationRelTimeCam"; fTitle = title ? title : "Histogram class for the relative time calibration of the camera"; SetNumHiGainSaturationLimit(fgNumHiGainSaturationLimit); SetReferencePixel(); SetNbins(fgNbins); SetFirst(fgFirst); SetLast (fgLast ); SetProbLimit(fgProbLimit); SetHistName (gsHistName .Data()); SetHistTitle (gsHistTitle .Data()); SetHistXTitle(gsHistXTitle.Data()); SetHistYTitle(gsHistYTitle.Data()); SetReferenceFile(); fInnerRefTime = 2.95; fOuterRefTime = 3.6; } // -------------------------------------------------------------------------- // // Creates new MHCalibrationRelTimeCam only with the averaged areas: // the rest has to be retrieved directly, e.g. via: // MHCalibrationRelTimeCam *cam = MParList::FindObject("MHCalibrationRelTimeCam"); // - cam->GetAverageSector(5).DrawClone(); // - (*cam)[100].DrawClone() // TObject *MHCalibrationRelTimeCam::Clone(const char *) const { MHCalibrationRelTimeCam *cam = new MHCalibrationRelTimeCam(); // // Copy the data members // cam->fColor = fColor; cam->fRunNumbers = fRunNumbers; cam->fPulserFrequency = fPulserFrequency; cam->fFlags = fFlags; cam->fNbins = fNbins; cam->fFirst = fFirst; cam->fLast = fLast; cam->fReferenceFile = fReferenceFile; cam->fInnerRefTime = fInnerRefTime; cam->fOuterRefTime = fOuterRefTime; // // Copy the MArrays // cam->fAverageAreaRelSigma = fAverageAreaRelSigma; cam->fAverageAreaRelSigmaVar = fAverageAreaRelSigmaVar; cam->fAverageAreaSat = fAverageAreaSat; cam->fAverageAreaSigma = fAverageAreaSigma; cam->fAverageAreaSigmaVar = fAverageAreaSigmaVar; cam->fAverageAreaNum = fAverageAreaNum; cam->fAverageSectorNum = fAverageSectorNum; if (!IsAverageing()) return cam; const Int_t navhi = fAverageHiGainAreas->GetSize(); for (int i=0; ifAverageHiGainAreas->AddAt(GetAverageHiGainArea(i).Clone(),i); if (IsLoGain()) { const Int_t navlo = fAverageLoGainAreas->GetSize(); for (int i=0; ifAverageLoGainAreas->AddAt(GetAverageLoGainArea(i).Clone(),i); } return cam; } // -------------------------------------------------------------------------- // // Gets or creates the pointers to: // - MCalibrationRelTimeCam // // Searches pointer to: // - MArrivalTimeCam // // Calls: // - MHCalibrationCam::InitHiGainArrays() // - MHCalibrationCam::InitLoGainArrays() // // Sets: // - fSumareahi to nareas // - fSumarealo to nareas // - fSumsectorhi to nareas // - fSumsectorlo to nareas // - fNumareahi to nareas // - fNumarealo to nareas // - fNumsectorhi to nareas // - fNumsectorlo to nareas // Bool_t MHCalibrationRelTimeCam::ReInitHists(MParList *pList) { if (!InitCams(pList,"RelTime")) return kFALSE; MArrivalTimeCam *signal = (MArrivalTimeCam*)pList->FindObject("MArrivalTimeCam"); if (!signal) { *fLog << err << "MArrivalTimeCam not found... abort." << endl; return kFALSE; } const Int_t npixels = fGeom->GetNumPixels(); const Int_t nsectors = fGeom->GetNumSectors(); const Int_t nareas = fGeom->GetNumAreas(); InitHiGainArrays(npixels,nareas,nsectors); InitLoGainArrays(npixels,nareas,nsectors); fSumareahi .Set(nareas); fSumarealo .Set(nareas); fSumsectorhi.Set(nsectors); fSumsectorlo.Set(nsectors); fNumareahi .Set(nareas); fNumarealo .Set(nareas); fNumsectorhi.Set(nsectors); fNumsectorlo.Set(nsectors); return kTRUE; } // ------------------------------------------------------------------------------- // // Retrieves pointer to MArrivalTimeCam: // // Retrieves from MGeomCam: // - number of pixels // - number of pixel areas // - number of sectors // // Fills HiGain or LoGain histograms (MHGausEvents::FillHistAndArray()), respectively // depending on MArrivalTimePix::IsLoGainUsed(), with: // - MArrivalTimePix::GetArrivalTime(pixid) - MArrivalTimePix::GetArrivalTime(1); // (i.e. the time difference between pixel i and pixel 1 (hardware number: 2) ) // Bool_t MHCalibrationRelTimeCam::FillHists(const MParContainer *par, const Stat_t w) { MArrivalTimeCam *arrtime = (MArrivalTimeCam*)par; if (!arrtime) { gLog << err << "No argument in MArrivalTime::Fill... abort." << endl; return kFALSE; } const Int_t npixels = fGeom->GetNumPixels(); const Int_t nareas = fGeom->GetNumAreas(); const Int_t nsectors = fGeom->GetNumSectors(); fSumareahi .Reset(); fSumarealo .Reset(); fSumsectorhi.Reset(); fSumsectorlo.Reset(); fNumareahi .Reset(); fNumarealo .Reset(); fNumsectorhi.Reset(); fNumsectorlo.Reset(); const MArrivalTimePix &refpix = (*arrtime)[fReferencePixel]; const Float_t reftime = refpix.IsHiGainSaturated() ? refpix.GetArrivalTimeLoGain() : refpix.GetArrivalTimeHiGain(); for (Int_t i=0; iGetCam() : fCam; MBadPixelsCam *badcam = fIntensBad ? fIntensBad->GetCam() : fBadPixels; const Int_t nareas = fAverageHiGainAreas->GetSize(); const Int_t nsectors = fAverageHiGainSectors->GetSize(); TArrayI satarea(nareas); TArrayI satsect(nsectors); fNumareahi .Reset(); fNumsectorhi.Reset(); for (Int_t i=0; iGetSize(); i++) { MHCalibrationPix &histhi = (*this)[i]; if (histhi.IsExcluded()) continue; const Int_t aidx = (*fGeom)[i].GetAidx(); const Int_t sector = (*fGeom)[i].GetSector(); MCalibrationRelTimePix &pix = (MCalibrationRelTimePix&)(*relcam)[i] ; fNumareahi[aidx]++; fNumsectorhi[sector]++; // // Check saturation // if (histhi.GetSaturated() > fNumHiGainSaturationLimit*histhi.GetHGausHist()->GetEntries()) { pix.SetHiGainSaturation(); histhi.SetExcluded(); satarea[aidx]++; satsect[sector]++; } else if (IsLoGain()) (*this)(i).SetExcluded(); // // Check histogram overflow // CheckOverflow(histhi); if (IsLoGain()) CheckOverflow((*this)(i)); } for (Int_t j=0; jGetAverageArea(j); if (satarea[j] > 0.5*fNumareahi[j]) { pix.SetHiGainSaturation(); histhi.SetExcluded(); } else if (IsLoGain()) GetAverageLoGainArea(j).SetExcluded(); // // Check histogram overflow // CheckOverflow(histhi); if (IsLoGain()) CheckOverflow(GetAverageLoGainArea(j)); } for (Int_t j=0; jGetSize(); j++) { MHCalibrationPix &histhi = GetAverageHiGainSector(j); MCalibrationRelTimePix &pix = (MCalibrationRelTimePix&)relcam->GetAverageSector(j) ; if (satsect[j] > 0.5*fNumsectorhi[j]) { pix.SetHiGainSaturation(); histhi.SetExcluded(); } else if (IsLoGain()) GetAverageLoGainSector(j).SetExcluded(); // // Check histogram overflow // CheckOverflow(histhi); if (IsLoGain()) CheckOverflow(GetAverageLoGainSector(j)); } FitHiGainArrays(*relcam,*badcam, MBadPixelsPix::kRelTimeNotFitted, MBadPixelsPix::kRelTimeOscillating); if (IsLoGain()) FitLoGainArrays(*relcam,*badcam, MBadPixelsPix::kRelTimeNotFitted, MBadPixelsPix::kRelTimeOscillating); return kTRUE; } // -------------------------------------------------------------------------- // // Sets all pixels to MBadPixelsPix::kUnreliableRun, if following flags are set: // - MBadPixelsPix::kRelTimeNotFitted // - MBadPixelsPix::kRelTimeOscillating // void MHCalibrationRelTimeCam::FinalizeBadPixels() { MBadPixelsCam *badcam = fIntensBad ? fIntensBad->GetCam() : fBadPixels; for (Int_t i=0; iGetSize(); i++) { MBadPixelsPix &bad = (*badcam)[i]; if (bad.IsUncalibrated( MBadPixelsPix::kRelTimeNotFitted )) bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun ); if (bad.IsUncalibrated( MBadPixelsPix::kRelTimeOscillating)) bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun ); } } // -------------------------------------------------------------------------- // // The types are as follows: // // Fitted values: // ============== // // 0: Fitted Mean Relative Arrival Time in FADC slices (MHGausEvents::GetMean() // 1: Error Mean Relative Arrival Time in FADC slices (MHGausEvents::GetMeanErr() // 2: Sigma fitted Relative Arrival Time in FADC slices (MHGausEvents::GetSigma() // 3: Error Sigma Relative Arrival Time in FADC slices (MHGausEvents::GetSigmaErr() // // Useful variables derived from the fit results: // ============================================= // // 4: Returned probability of Gauss fit (calls: MHGausEvents::GetProb()) // // Localized defects: // ================== // // 5: Gaus fit not OK (calls: MHGausEvents::IsGausFitOK()) // 6: Fourier spectrum not OK (calls: MHGausEvents::IsFourierSpectrumOK()) // Bool_t MHCalibrationRelTimeCam::GetPixelContent(Double_t &val, Int_t idx, const MGeomCam &cam, Int_t type) const { if (fHiGainArray->GetSize() <= idx) return kFALSE; const MHCalibrationPix &pix = (*this)[idx]; switch (type) { case 0: val = pix.GetMean(); break; case 1: val = pix.GetMeanErr(); break; case 2: val = pix.GetSigma(); break; case 3: val = pix.GetSigmaErr(); break; case 4: val = pix.GetProb(); break; case 5: if (!pix.IsGausFitOK()) val = 1.; break; case 6: if (!pix.IsFourierSpectrumOK()) val = 1.; break; default: return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Calls MHCalibrationPix::DrawClone() for pixel idx // void MHCalibrationRelTimeCam::DrawPixelContent(Int_t idx) const { (*this)[idx].DrawClone(); } // ----------------------------------------------------------------------------- // // Default draw: // // Displays the averaged areas, both High Gain and Low Gain // // Calls the Draw of the fAverageHiGainAreas and fAverageLoGainAreas objects with options // void MHCalibrationRelTimeCam::Draw(const Option_t *opt) { const Int_t nareas = fAverageHiGainAreas->GetSize(); if (nareas == 0) return; TString option(opt); option.ToLower(); if (!option.Contains("datacheck")) { MHCalibrationCam::Draw(opt); return; } // // From here on , the datacheck - Draw // TVirtualPad *pad = gPad ? gPad : MH::MakeDefCanvas(this); pad->SetBorderMode(0); pad->Divide(1,nareas); // // Loop over inner and outer pixels // for (Int_t i=0; icd(i+1); MHCalibrationPix &hipix = GetAverageHiGainArea(i); // // Ask for Hi-Gain saturation // if (hipix.IsExcluded() && IsLoGain()) { MHCalibrationPix &lopix = GetAverageLoGainArea(i); DrawDataCheckPixel(lopix,i ? fOuterRefTime+1.5 : fInnerRefTime+1.5); } else DrawDataCheckPixel(hipix,i ? fOuterRefTime : fInnerRefTime); } } void MHCalibrationRelTimeCam::CheckOverflow( MHCalibrationPix &pix ) const { if (pix.IsExcluded()) return; const TH1F &hist = *pix.GetHGausHist(); const Int_t n = hist.GetNbinsX(); const Float_t max = fOverflowLimit*hist.GetEntries(); const Stat_t overflow = hist.GetBinContent(n+1); if (overflow > max) { *fLog << warn << overflow << " overflows above " << hist.GetBinLowEdge(n); *fLog << " in " << pix.GetName() << " (w/o saturation!) " << endl; } const Stat_t underflow = hist.GetBinContent(0); if (underflow > max) { *fLog << warn << underflow << " underflows below " << hist.GetBinLowEdge(1); *fLog << " in " << pix.GetName() << " (w/o saturation!) " << endl; } } // ----------------------------------------------------------------------------- // // Draw the average pixel for the datacheck: // // Displays the averaged areas, both High Gain and Low Gain // // Calls the Draw of the fAverageHiGainAreas and fAverageLoGainAreas objects with options // void MHCalibrationRelTimeCam::DrawDataCheckPixel(MHCalibrationPix &pix, const Float_t refline) { if (pix.IsEmpty()) return; TVirtualPad *newpad = gPad; newpad->Divide(1,2); newpad->cd(1); gPad->SetTicks(); if (!pix.IsEmpty() && !pix.IsOnlyOverflow() && !pix.IsOnlyUnderflow()) gPad->SetLogy(); TH1F *hist = pix.GetHGausHist(); TH1F *null = new TH1F("Null",hist->GetTitle(),100,0.,pix.GetLast()); null->SetMaximum(1.1*hist->GetMaximum()); null->SetDirectory(NULL); null->SetBit(kCanDelete); null->SetStats(kFALSE); // // set the labels bigger // TAxis *xaxe = null->GetXaxis(); TAxis *yaxe = null->GetYaxis(); xaxe->CenterTitle(); yaxe->CenterTitle(); xaxe->SetTitleSize(0.07); yaxe->SetTitleSize(0.07); xaxe->SetTitleOffset(0.65); yaxe->SetTitleOffset(0.55); xaxe->SetLabelSize(0.06); yaxe->SetLabelSize(0.06); xaxe->SetTitle(hist->GetXaxis()->GetTitle()); yaxe->SetTitle(hist->GetYaxis()->GetTitle()); null->Draw(); hist->Draw("same"); gStyle->SetOptFit(); TF1 *fit = pix.GetFGausFit(); if (fit) { switch ( fColor ) { case MCalibrationCam::kGREEN: fit->SetLineColor(kGreen); break; case MCalibrationCam::kBLUE: fit->SetLineColor(kBlue); break; case MCalibrationCam::kUV: fit->SetLineColor(106); break; case MCalibrationCam::kCT1: fit->SetLineColor(006); break; default: fit->SetLineColor(kRed); } fit->Draw("same"); } DisplayRefLines(null,refline); newpad->cd(2); gPad->SetTicks(); TH1F *null2 = new TH1F("Null2",hist->GetTitle(),100,0.,pix.GetEvents()->GetSize()/pix.GetEventFrequency()); null2->SetMinimum(pix.GetMean()-10.*pix.GetSigma()); null2->SetMaximum(pix.GetMean()+10.*pix.GetSigma()); null2->SetDirectory(NULL); null2->SetBit(kCanDelete); null2->SetStats(kFALSE); // // set the labels bigger // TAxis *xaxe2 = null2->GetXaxis(); TAxis *yaxe2 = null2->GetYaxis(); xaxe2->CenterTitle(); yaxe2->CenterTitle(); xaxe2->SetTitleSize(0.07); yaxe2->SetTitleSize(0.07); xaxe2->SetTitleOffset(0.65); yaxe2->SetTitleOffset(0.55); xaxe2->SetLabelSize(0.06); yaxe2->SetLabelSize(0.06); pix.CreateGraphEvents(); TGraph *gr = pix.GetGraphEvents(); if (gr) { xaxe2->SetTitle(gr->GetXaxis()->GetTitle()); yaxe2->SetTitle(gr->GetYaxis()->GetTitle()); } null2->Draw(); pix.DrawEvents("same"); return; } void MHCalibrationRelTimeCam::DisplayRefLines(const TH1F *hist, const Float_t refline) const { TGraph *gr = new TGraph(2); gr->SetPoint(0,refline,0.); gr->SetPoint(1,refline,hist->GetMaximum()); gr->SetBit(kCanDelete); gr->SetLineColor(kGreen); gr->SetLineStyle(2); gr->SetLineWidth(3); gr->Draw("L"); TLegend *leg = new TLegend(0.75,0.7,0.99,0.99); leg->SetBit(kCanDelete); leg->AddEntry(gr,"Trigger Calibration","l"); leg->Draw(); } Int_t MHCalibrationRelTimeCam::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "ReferenceFile", print)) { SetReferenceFile(GetEnvValue(env,prefix,"ReferenceFile",fReferenceFile.Data())); rc = kTRUE; } TEnv refenv(fReferenceFile); fInnerRefTime = refenv.GetValue("InnerRefTime",fInnerRefTime); fOuterRefTime = refenv.GetValue("OuterRefTime",fOuterRefTime); return MHCalibrationCam::ReadEnv(env,prefix,print) ? kTRUE : rc; }