source: trunk/MagicSoft/Mars/mhcalib/MHGausEvents.cc@ 5910

Last change on this file since 5910 was 5582, checked in by gaug, 20 years ago
*** empty log message ***
File size: 26.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2000-2004
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MHGausEvents
28//
29// A base class for events which are believed to follow a Gaussian distribution
30// with time, e.g. calibration events, observables containing white noise, ...
31//
32// MHGausEvents derives from MH, thus all features of MH can be used by a class
33// deriving from MHGausEvents, especially the filling functions.
34//
35// The central objects are:
36//
37// 1) The TH1F fHGausHist:
38// ====================
39//
40// It is created with a default name and title and resides in directory NULL.
41// - Any class deriving from MHGausEvents needs to apply a binning to fHGausHist
42// (e.g. by setting the variables fNbins, fFirst, fLast and calling the function
43// InitBins() or by directly calling fHGausHist.SetBins(..) )
44// - The histogram is filled with the functions FillHist() or FillHistAndArray().
45// - The histogram can be fitted with the function FitGaus(). This involves stripping
46// of all zeros at the lower and upper end of the histogram and re-binning to
47// a new number of bins, specified in the variable fBinsAfterStripping.
48// - The fit result's probability is compared to a reference probability fProbLimit
49// The NDF is compared to fNDFLimit and a check is made whether results are NaNs.
50// Accordingly, a flag IsGausFitOK() is set.
51// - One can repeat the fit within a given amount of sigmas from the previous mean
52// (specified by the variables fPickupLimit and fBlackoutLimit) with the function RepeatFit()
53//
54// 2) The TArrayF fEvents:
55// ==========================
56//
57// It is created with 0 entries and not expanded unless FillArray() or FillHistAndArray()
58// are called.
59// - A first call to FillArray() or FillHistAndArray() initializes fEvents by default
60// to 512 entries.
61// - Any later call to FillArray() or FillHistAndArray() fills up the array.
62// Reaching the limit, the array is expanded by a factor 2.
63// - The array can be fourier-transformed into the array fPowerSpectrum.
64// Note that any FFT accepts only number of events which are a power of 2.
65// Thus, fEvents is cut to the next power of 2 smaller than its actual number of entries.
66// Be aware that you might lose information at the end of your analysis.
67// - Calling the function CreateFourierSpectrum() creates the array fPowerSpectrum
68// and its projection fHPowerProbability which in turn is fit to an exponential.
69// - The fit result's probability is compared to a referenc probability fProbLimit
70// and accordingly the flag IsExpFitOK() is set.
71// - The flag IsFourierSpectrumOK() is set accordingly to IsExpFitOK().
72// Later, a closer check will be installed.
73// - You can display all arrays by calls to: CreateGraphEvents() and
74// CreateGraphPowerSpectrum() and successive calls to the corresponding Getters.
75//
76// To see an example, have a look at: Draw()
77//
78//////////////////////////////////////////////////////////////////////////////
79#include "MHGausEvents.h"
80
81#include <TH1.h>
82#include <TF1.h>
83#include <TGraph.h>
84#include <TPad.h>
85#include <TVirtualPad.h>
86#include <TCanvas.h>
87#include <TStyle.h>
88#include <TRandom.h>
89
90#include "MFFT.h"
91#include "MArrayF.h"
92
93#include "MH.h"
94
95#include "MLog.h"
96#include "MLogManip.h"
97
98ClassImp(MHGausEvents);
99
100using namespace std;
101
102const Int_t MHGausEvents::fgNDFLimit = 2;
103const Float_t MHGausEvents::fgProbLimit = 0.001;
104const Int_t MHGausEvents::fgPowerProbabilityBins = 30;
105// --------------------------------------------------------------------------
106//
107// Default Constructor.
108// Sets:
109// - the default Probability Bins for fPowerProbabilityBins (fgPowerProbabilityBins)
110// - the default Probability Limit for fProbLimit (fgProbLimit)
111// - the default NDF Limit for fNDFLimit (fgNDFLimit)
112// - the default number of bins after stripping for fBinsAfterStipping (fgBinsAfterStipping)
113// - the default name of the fHGausHist ("HGausHist")
114// - the default title of the fHGausHist ("Histogram of Events with Gaussian Distribution")
115// - the default directory of the fHGausHist (NULL)
116// - the default for fNbins (100)
117// - the default for fFirst (0.)
118// - the default for fLast (100.)
119//
120// Initializes:
121// - fEvents to 0 entries
122// - fHGausHist()
123// - all other pointers to NULL
124// - all variables to 0.
125// - all flags to kFALSE
126//
127MHGausEvents::MHGausEvents(const char *name, const char *title)
128 : fEventFrequency(0),
129 fHPowerProbability(NULL),
130 fPowerSpectrum(NULL),
131 fFGausFit(NULL), fFExpFit(NULL),
132 fFirst(0.),
133 fGraphEvents(NULL), fGraphPowerSpectrum(NULL),
134 fLast(100.), fNbins(100)
135{
136
137 fName = name ? name : "MHGausEvents";
138 fTitle = title ? title : "Events with expected Gaussian distributions";
139
140 Clear();
141
142 SetBinsAfterStripping();
143 SetNDFLimit();
144 SetPowerProbabilityBins();
145 SetProbLimit();
146
147 fHGausHist.SetName("HGausHist");
148 fHGausHist.SetTitle("Histogram of Events with Gaussian Distribution");
149 // important, other ROOT will not draw the axes:
150 fHGausHist.UseCurrentStyle();
151 fHGausHist.SetDirectory(NULL);
152 TAxis *yaxe = fHGausHist.GetYaxis();
153 yaxe->CenterTitle();
154}
155
156
157
158// --------------------------------------------------------------------------
159//
160// Default Destructor.
161//
162// Deletes (if Pointer is not NULL):
163//
164// - fHPowerProbability
165// - fPowerSpectrum
166// - fGraphEvents
167// - fGraphPowerSpectrum
168//
169// - fFGausFit
170// - fFExpFit
171//
172MHGausEvents::~MHGausEvents()
173{
174
175 //
176 // The next two lines are important for the case that
177 // the class has been stored to a file and is read again.
178 // In this case, the next two lines prevent a segm. violation
179 // in the destructor
180 //
181 gROOT->GetListOfFunctions()->Remove(fFGausFit);
182 gROOT->GetListOfFunctions()->Remove(fFExpFit);
183
184 // delete fits
185 if (fFGausFit)
186 delete fFGausFit;
187
188 if (fFExpFit)
189 delete fFExpFit;
190
191 // delete histograms
192 if (fHPowerProbability)
193 delete fHPowerProbability;
194
195 // delete arrays
196 if (fPowerSpectrum)
197 delete fPowerSpectrum;
198
199 // delete graphs
200 if (fGraphEvents)
201 delete fGraphEvents;
202
203 if (fGraphPowerSpectrum)
204 delete fGraphPowerSpectrum;
205}
206
207// --------------------------------------------------------------------------
208//
209// Default Clear(), can be overloaded.
210//
211// Sets:
212// - all other pointers to NULL
213// - all variables to 0. and keep fEventFrequency
214// - all flags to kFALSE
215//
216// Deletes (if not NULL):
217// - all pointers
218//
219void MHGausEvents::Clear(Option_t *o)
220{
221
222 SetGausFitOK ( kFALSE );
223 SetExpFitOK ( kFALSE );
224 SetFourierSpectrumOK( kFALSE );
225 SetExcluded ( kFALSE );
226
227 fMean = 0.;
228 fSigma = 0.;
229 fMeanErr = 0.;
230 fSigmaErr = 0.;
231 fProb = 0.;
232
233 fCurrentSize = 0;
234
235 if (fHPowerProbability)
236 {
237 delete fHPowerProbability;
238 fHPowerProbability = NULL;
239 }
240
241 // delete fits
242 if (fFGausFit)
243 {
244 delete fFGausFit;
245 fFGausFit = NULL;
246 }
247
248 if (fFExpFit)
249 {
250 delete fFExpFit;
251 fFExpFit = NULL;
252 }
253
254 // delete arrays
255 if (fPowerSpectrum)
256 {
257 delete fPowerSpectrum;
258 fPowerSpectrum = NULL;
259 }
260
261 // delete graphs
262 if (fGraphEvents)
263 {
264 delete fGraphEvents;
265 fGraphEvents = NULL;
266 }
267
268 if (fGraphPowerSpectrum)
269 {
270 delete fGraphPowerSpectrum;
271 fGraphPowerSpectrum = NULL;
272 }
273}
274
275// -----------------------------------------------------------------------------
276//
277// Create the x-axis for the event graph
278//
279Float_t *MHGausEvents::CreateEventXaxis(Int_t n)
280{
281
282 Float_t *xaxis = new Float_t[n];
283
284 if (fEventFrequency)
285 for (Int_t i=0;i<n;i++)
286 xaxis[i] = (Float_t)i/fEventFrequency;
287 else
288 for (Int_t i=0;i<n;i++)
289 xaxis[i] = (Float_t)i;
290
291 return xaxis;
292
293}
294
295
296// -------------------------------------------------------------------
297//
298// Create the fourier spectrum using the class MFFT.
299// The result is projected into a histogram and fitted by an exponential
300//
301void MHGausEvents::CreateFourierSpectrum()
302{
303
304 if (fFExpFit)
305 return;
306
307 if (fEvents.GetSize() < 8)
308 {
309 *fLog << warn << "Cannot create Fourier spectrum in: " << fName
310 << ". Number of events smaller than 8 " << endl;
311 return;
312 }
313
314 //
315 // The number of entries HAS to be a potence of 2,
316 // so we can only cut out from the last potence of 2 to the rest.
317 // Another possibility would be to fill everything with
318 // zeros, but that gives a low frequency peak, which we would
319 // have to cut out later again.
320 //
321 // So, we have to live with the possibility that at the end
322 // of the calibration run, something has happened without noticing
323 // it...
324 //
325
326 // This cuts only the non-used zero's, but MFFT will later cut the rest
327 fEvents.StripZeros();
328
329 if (fEvents.GetSize() < 8)
330 {
331 /*
332 *fLog << warn << "Cannot create Fourier spectrum. " << endl;
333 *fLog << warn << "Number of events (after stripping of zeros) is smaller than 8 "
334 << "in pixel: " << fPixId << endl;
335 */
336 return;
337 }
338
339 MFFT fourier;
340
341 fPowerSpectrum = fourier.PowerSpectrumDensity(&fEvents);
342 fHPowerProbability = ProjectArray(*fPowerSpectrum, fPowerProbabilityBins,
343 Form("%s%s","PowerProb",GetName()),
344 "Probability of Power occurrance");
345 fHPowerProbability->SetXTitle("P(f)");
346 fHPowerProbability->SetYTitle("Counts");
347 fHPowerProbability->GetYaxis()->CenterTitle();
348 fHPowerProbability->SetDirectory(NULL);
349 fHPowerProbability->SetBit(kCanDelete);
350 //
351 // First guesses for the fit (should be as close to reality as possible,
352 //
353 const Double_t xmax = fHPowerProbability->GetXaxis()->GetXmax();
354
355 fFExpFit = new TF1("FExpFit","exp([0]-[1]*x)",0.,xmax);
356
357 const Double_t slope_guess = (TMath::Log(fHPowerProbability->GetEntries())+1.)/xmax;
358 const Double_t offset_guess = slope_guess*xmax;
359
360 //
361 // For the fits, we have to take special care since ROOT
362 // has stored the function pointer in a global list which
363 // lead to removing the object twice. We have to take out
364 // the following functions of the global list of functions
365 // as well:
366 //
367 gROOT->GetListOfFunctions()->Remove(fFExpFit);
368 fFExpFit->SetParameters(offset_guess, slope_guess);
369 fFExpFit->SetParNames("Offset","Slope");
370 fFExpFit->SetParLimits(0,offset_guess/2.,2.*offset_guess);
371 fFExpFit->SetParLimits(1,slope_guess/1.5,1.5*slope_guess);
372 fFExpFit->SetRange(0.,xmax);
373
374 fHPowerProbability->Fit(fFExpFit,"RQL0");
375
376 if (GetExpProb() > fProbLimit)
377 SetExpFitOK(kTRUE);
378
379 //
380 // For the moment, this is the only check, later we can add more...
381 //
382 SetFourierSpectrumOK(IsExpFitOK());
383
384 return;
385}
386
387// ----------------------------------------------------------------------------------
388//
389// Create a graph to display the array fEvents
390// If the variable fEventFrequency is set, the x-axis is transformed into real time.
391//
392void MHGausEvents::CreateGraphEvents()
393{
394
395 fEvents.StripZeros();
396
397 const Int_t n = fEvents.GetSize();
398
399 if (n==0)
400 return;
401
402 fGraphEvents = new TGraph(n,CreateEventXaxis(n),fEvents.GetArray());
403 fGraphEvents->SetTitle("Evolution of Events with time");
404 fGraphEvents->GetXaxis()->SetTitle((fEventFrequency) ? "Time [s]" : "Event Nr.");
405 fGraphEvents->GetYaxis()->SetTitle(fHGausHist.GetXaxis()->GetTitle());
406 fGraphEvents->GetYaxis()->CenterTitle();
407}
408
409// ----------------------------------------------------------------------------------
410//
411// Create a graph to display the array fPowerSpectrum
412// If the variable fEventFrequency is set, the x-axis is transformed into real frequency.
413//
414void MHGausEvents::CreateGraphPowerSpectrum()
415{
416
417 fPowerSpectrum->StripZeros();
418
419 const Int_t n = fPowerSpectrum->GetSize();
420
421 fGraphPowerSpectrum = new TGraph(n,CreatePSDXaxis(n),fPowerSpectrum->GetArray());
422 fGraphPowerSpectrum->SetTitle("Power Spectrum Density");
423 fGraphPowerSpectrum->GetXaxis()->SetTitle((fEventFrequency) ? "Frequency [Hz]" : "Frequency");
424 fGraphPowerSpectrum->GetYaxis()->SetTitle("P(f)");
425 fGraphPowerSpectrum->GetYaxis()->CenterTitle();
426
427}
428
429
430// -----------------------------------------------------------------------------
431//
432// Create the x-axis for the event graph
433//
434Float_t *MHGausEvents::CreatePSDXaxis(Int_t n)
435{
436
437 Float_t *xaxis = new Float_t[n];
438
439 if (fEventFrequency)
440 for (Int_t i=0;i<n;i++)
441 xaxis[i] = 0.5*(Float_t)i*fEventFrequency/n;
442 else
443 for (Int_t i=0;i<n;i++)
444 xaxis[i] = 0.5*(Float_t)i/n;
445
446 return xaxis;
447
448}
449
450// -----------------------------------------------------------------------------
451//
452// Default draw:
453//
454// The following options can be chosen:
455//
456// "EVENTS": displays a TGraph of the array fEvents
457// "FOURIER": display a TGraph of the fourier transform of fEvents
458// displays the projection of the fourier transform with the fit
459//
460// The following picture shows a typical outcome of call to Draw("fourierevents"):
461// - The first plot shows the distribution of the values with the Gauss fit
462// (which did not succeed, in this case, for obvious reasons)
463// - The second plot shows the TGraph with the events vs. time
464// - The third plot shows the fourier transform and a small peak at about 85 Hz.
465// - The fourth plot shows the projection of the fourier components and an exponential
466// fit, with the result that the observed deviation is still statistical with a
467// probability of 0.5%.
468//
469//Begin_Html
470/*
471<img src="images/MHGausEventsDraw.gif">
472*/
473//End_Html
474//
475void MHGausEvents::Draw(const Option_t *opt)
476{
477
478 TVirtualPad *pad = gPad ? gPad : MH::MakeDefCanvas(this,600, 900);
479
480 TString option(opt);
481 option.ToLower();
482
483 Int_t win = 1;
484 Int_t nofit = 0;
485
486 if (option.Contains("events"))
487 {
488 option.ReplaceAll("events","");
489 win += 1;
490 }
491 if (option.Contains("fourier"))
492 {
493 option.ReplaceAll("fourier","");
494 win += 2;
495 }
496
497 if (IsEmpty())
498 win--;
499
500 if (option.Contains("nofit"))
501 {
502 option.ReplaceAll("nofit","");
503 nofit++;
504 }
505
506 pad->SetBorderMode(0);
507 pad->Divide(1,win);
508
509 Int_t cwin = 1;
510
511 gPad->SetTicks();
512
513 if (!IsEmpty())
514 {
515 pad->cd(cwin++);
516
517 if (!IsOnlyOverflow() && !IsOnlyUnderflow())
518 gPad->SetLogy();
519
520 fHGausHist.Draw(option);
521
522 if (!nofit)
523 if (fFGausFit)
524 {
525 fFGausFit->SetLineColor(IsGausFitOK() ? kGreen : kRed);
526 fFGausFit->Draw("same");
527 }
528 }
529
530 if (option.Contains("events"))
531 {
532 pad->cd(cwin++);
533 DrawEvents();
534 }
535 if (option.Contains("fourier"))
536 {
537 pad->cd(cwin++);
538 DrawPowerSpectrum();
539 pad->cd(cwin);
540 DrawPowerProjection();
541 }
542}
543
544// -----------------------------------------------------------------------------
545//
546// DrawEvents:
547//
548// Will draw the graph with the option "A", unless the option:
549// "SAME" has been chosen
550//
551void MHGausEvents::DrawEvents(Option_t *opt)
552{
553
554 if (!fGraphEvents)
555 CreateGraphEvents();
556
557 if (!fGraphEvents)
558 return;
559
560 fGraphEvents->SetBit(kCanDelete);
561 fGraphEvents->SetTitle("Events with time");
562
563 TString option(opt);
564 option.ToLower();
565
566 if (option.Contains("same"))
567 {
568 option.ReplaceAll("same","");
569 fGraphEvents->Draw(option+"L");
570 }
571 else
572 fGraphEvents->Draw(option+"AL");
573}
574
575
576// -----------------------------------------------------------------------------
577//
578// DrawPowerSpectrum
579//
580// Will draw the fourier spectrum of the events sequence with the option "A", unless the option:
581// "SAME" has been chosen
582//
583void MHGausEvents::DrawPowerSpectrum(Option_t *option)
584{
585
586 TString opt(option);
587
588 if (!fPowerSpectrum)
589 CreateFourierSpectrum();
590
591 if (fPowerSpectrum)
592 {
593 if (!fGraphPowerSpectrum)
594 CreateGraphPowerSpectrum();
595
596 if (!fGraphPowerSpectrum)
597 return;
598
599 if (opt.Contains("same"))
600 {
601 opt.ReplaceAll("same","");
602 fGraphPowerSpectrum->Draw(opt+"L");
603 }
604 else
605 {
606 fGraphPowerSpectrum->Draw(opt+"AL");
607 fGraphPowerSpectrum->SetBit(kCanDelete);
608 }
609 }
610}
611
612// -----------------------------------------------------------------------------
613//
614// DrawPowerProjection
615//
616// Will draw the projection of the fourier spectrum onto the power probability axis
617// with the possible options of TH1D
618//
619void MHGausEvents::DrawPowerProjection(Option_t *option)
620{
621
622 TString opt(option);
623
624 if (!fHPowerProbability)
625 CreateFourierSpectrum();
626
627 if (fHPowerProbability && fHPowerProbability->GetEntries() > 0)
628 {
629 gPad->SetLogy();
630 fHPowerProbability->Draw(opt.Data());
631 if (fFExpFit)
632 {
633 fFExpFit->SetLineColor(IsExpFitOK() ? kGreen : kRed);
634 fFExpFit->Draw("same");
635 }
636 }
637}
638
639
640// --------------------------------------------------------------------------
641//
642// Fill fEvents with f
643// If size of fEvents is 0, initializes it to 512
644// If size of fEvents is smaller than fCurrentSize, double the size
645// Increase fCurrentSize by 1
646//
647void MHGausEvents::FillArray(const Float_t f)
648{
649
650 if (fEvents.GetSize() == 0)
651 fEvents.Set(512);
652
653 if (fCurrentSize >= fEvents.GetSize())
654 fEvents.Set(fEvents.GetSize()*2);
655
656 fEvents.AddAt(f,fCurrentSize++);
657}
658
659
660// --------------------------------------------------------------------------
661//
662// Fills fHGausHist with f
663// Returns kFALSE, if overflow or underflow occurred, else kTRUE
664//
665Bool_t MHGausEvents::FillHist(const Float_t f)
666{
667 return fHGausHist.Fill(f) > -1;
668}
669
670// --------------------------------------------------------------------------
671//
672// Executes:
673// - FillArray()
674// - FillHist()
675//
676Bool_t MHGausEvents::FillHistAndArray(const Float_t f)
677{
678
679 FillArray(f);
680 return FillHist(f);
681}
682
683// -------------------------------------------------------------------
684//
685// Fit fGausHist with a Gaussian after stripping zeros from both ends
686// and rebinned to the number of bins specified in fBinsAfterStripping
687//
688// The fit results are retrieved and stored in class-own variables.
689//
690// A flag IsGausFitOK() is set according to whether the fit probability
691// is smaller or bigger than fProbLimit, whether the NDF is bigger than
692// fNDFLimit and whether results are NaNs.
693//
694Bool_t MHGausEvents::FitGaus(Option_t *option, const Double_t xmin, const Double_t xmax)
695{
696
697 if (IsGausFitOK())
698 return kTRUE;
699
700 //
701 // First, strip the zeros from the edges which contain only zeros and rebin
702 // to fBinsAfterStripping bins. If fBinsAfterStripping is 0, reduce bins only by
703 // a factor 10.
704 //
705 // (ATTENTION: The Chisquare method is more sensitive,
706 // the _less_ bins, you have!)
707 //
708 StripZeros(&fHGausHist,
709 fBinsAfterStripping ? fBinsAfterStripping
710 : (fNbins > 1000 ? fNbins/10 : 0));
711
712 TAxis *axe = fHGausHist.GetXaxis();
713 //
714 // Get the fitting ranges
715 //
716 Axis_t rmin = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetFirst()) : xmin;
717 Axis_t rmax = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetLast()) : xmax;
718
719 //
720 // First guesses for the fit (should be as close to reality as possible,
721 //
722 const Stat_t entries = fHGausHist.Integral(axe->FindBin(rmin),axe->FindBin(rmax),"width");
723 const Double_t mu_guess = fHGausHist.GetBinCenter(fHGausHist.GetMaximumBin());
724 const Double_t sigma_guess = fHGausHist.GetRMS();
725 const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
726
727 fFGausFit = new TF1("GausFit","gaus",rmin,rmax);
728
729 if (!fFGausFit)
730 {
731 *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
732 << "in: " << fName << endl;
733 return kFALSE;
734 }
735
736 //
737 // For the fits, we have to take special care since ROOT
738 // has stored the function pointer in a global list which
739 // lead to removing the object twice. We have to take out
740 // the following functions of the global list of functions
741 // as well:
742 //
743 gROOT->GetListOfFunctions()->Remove(fFGausFit);
744
745 fFGausFit->SetParameters(area_guess,mu_guess,sigma_guess);
746 fFGausFit->SetParNames("Area","#mu","#sigma");
747 fFGausFit->SetParLimits(0,0.,area_guess*25.);
748 fFGausFit->SetParLimits(1,rmin,rmax);
749 fFGausFit->SetParLimits(2,0.,rmax-rmin);
750 fFGausFit->SetRange(rmin,rmax);
751
752 fHGausHist.Fit(fFGausFit,option);
753
754 fMean = fFGausFit->GetParameter(1);
755 fSigma = fFGausFit->GetParameter(2);
756 fMeanErr = fFGausFit->GetParError(1);
757 fSigmaErr = fFGausFit->GetParError(2);
758 fProb = fFGausFit->GetProb();
759 //
760 // The fit result is accepted under condition:
761 // 1) The results are not nan's
762 // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
763 // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
764 //
765 if ( TMath::IsNaN(fMean)
766 || TMath::IsNaN(fMeanErr)
767 || TMath::IsNaN(fProb)
768 || TMath::IsNaN(fSigma)
769 || TMath::IsNaN(fSigmaErr)
770 || fFGausFit->GetNDF() < fNDFLimit
771 || fProb < fProbLimit )
772 return kFALSE;
773
774 SetGausFitOK(kTRUE);
775 return kTRUE;
776}
777
778
779const Double_t MHGausEvents::GetChiSquare() const
780{
781 return ( fFGausFit ? fFGausFit->GetChisquare() : 0.);
782}
783
784
785const Double_t MHGausEvents::GetExpChiSquare() const
786{
787 return ( fFExpFit ? fFExpFit->GetChisquare() : 0.);
788}
789
790
791const Int_t MHGausEvents::GetExpNdf() const
792{
793 return ( fFExpFit ? fFExpFit->GetNDF() : 0);
794}
795
796
797const Double_t MHGausEvents::GetExpProb() const
798{
799 return ( fFExpFit ? fFExpFit->GetProb() : 0.);
800}
801
802
803const Int_t MHGausEvents::GetNdf() const
804{
805 return ( fFGausFit ? fFGausFit->GetNDF() : 0);
806}
807
808const Double_t MHGausEvents::GetOffset() const
809{
810 return ( fFExpFit ? fFExpFit->GetParameter(0) : 0.);
811}
812
813
814
815// --------------------------------------------------------------------------
816//
817// If fFExpFit exists, returns fit parameter 1 (Slope of Exponential fit),
818// otherwise 0.
819//
820const Double_t MHGausEvents::GetSlope() const
821{
822 return ( fFExpFit ? fFExpFit->GetParameter(1) : 0.);
823}
824
825// --------------------------------------------------------------------------
826//
827// Default InitBins, can be overloaded.
828//
829// Executes:
830// - fHGausHist.SetBins(fNbins,fFirst,fLast)
831//
832void MHGausEvents::InitBins()
833{
834 // const TAttAxis att(fHGausHist.GetXaxis());
835 fHGausHist.SetBins(fNbins,fFirst,fLast);
836 // att.Copy(fHGausHist.GetXaxis());
837}
838
839// --------------------------------------------------------------------------
840//
841// Return kFALSE if number of entries is 0
842//
843const Bool_t MHGausEvents::IsEmpty() const
844{
845 return !(fHGausHist.GetEntries());
846}
847
848// --------------------------------------------------------------------------
849//
850// Return kTRUE if number of entries is bin content of fNbins+1
851//
852const Bool_t MHGausEvents::IsOnlyOverflow() const
853{
854 return fHGausHist.GetEntries() == fHGausHist.GetBinContent(fNbins+1);
855}
856
857// --------------------------------------------------------------------------
858//
859// Return kTRUE if number of entries is bin content of 0
860//
861const Bool_t MHGausEvents::IsOnlyUnderflow() const
862{
863 return fHGausHist.GetEntries() == fHGausHist.GetBinContent(0);
864}
865
866
867const Bool_t MHGausEvents::IsExcluded() const
868{
869 return TESTBIT(fFlags,kExcluded);
870}
871
872
873const Bool_t MHGausEvents::IsExpFitOK() const
874{
875 return TESTBIT(fFlags,kExpFitOK);
876}
877
878const Bool_t MHGausEvents::IsFourierSpectrumOK() const
879{
880 return TESTBIT(fFlags,kFourierSpectrumOK);
881}
882
883
884const Bool_t MHGausEvents::IsGausFitOK() const
885{
886 return TESTBIT(fFlags,kGausFitOK);
887}
888
889
890// -----------------------------------------------------------------------------------
891//
892// A default print
893//
894void MHGausEvents::Print(const Option_t *o) const
895{
896
897 *fLog << all << endl;
898 *fLog << all << "Results of the Gauss Fit in: " << fName << endl;
899 *fLog << all << "Mean: " << GetMean() << endl;
900 *fLog << all << "Sigma: " << GetSigma() << endl;
901 *fLog << all << "Chisquare: " << GetChiSquare() << endl;
902 *fLog << all << "DoF: " << GetNdf() << endl;
903 *fLog << all << "Probability: " << GetProb() << endl;
904 *fLog << all << endl;
905
906}
907
908
909// --------------------------------------------------------------------------
910//
911// Default Reset(), can be overloaded.
912//
913// Executes:
914// - Clear()
915// - fHGausHist.Reset()
916// - fEvents.Set(0)
917// - InitBins()
918//
919void MHGausEvents::Reset()
920{
921
922 Clear();
923 fHGausHist.Reset();
924 fEvents.Set(0);
925 InitBins();
926}
927
928// --------------------------------------------------------------------------
929//
930// Set Excluded bit from outside
931//
932void MHGausEvents::SetExcluded(const Bool_t b)
933{
934 b ? SETBIT(fFlags,kExcluded) : CLRBIT(fFlags,kExcluded);
935}
936
937
938// -------------------------------------------------------------------
939//
940// The flag setters are to be used ONLY for Monte-Carlo!!
941//
942void MHGausEvents::SetExpFitOK(const Bool_t b)
943{
944
945 b ? SETBIT(fFlags,kExpFitOK) : CLRBIT(fFlags,kExpFitOK);
946}
947
948// -------------------------------------------------------------------
949//
950// The flag setters are to be used ONLY for Monte-Carlo!!
951//
952void MHGausEvents::SetFourierSpectrumOK(const Bool_t b)
953{
954
955 b ? SETBIT(fFlags,kFourierSpectrumOK) : CLRBIT(fFlags,kFourierSpectrumOK);
956}
957
958
959// -------------------------------------------------------------------
960//
961// The flag setters are to be used ONLY for Monte-Carlo!!
962//
963void MHGausEvents::SetGausFitOK(const Bool_t b)
964{
965 b ? SETBIT(fFlags,kGausFitOK) : CLRBIT(fFlags,kGausFitOK);
966
967}
968
969// ----------------------------------------------------------------------------
970//
971// Simulates Gaussian events and fills them into the histogram and the array
972// In order to do a fourier analysis, call CreateFourierSpectrum()
973//
974void MHGausEvents::SimulateGausEvents(const Float_t mean, const Float_t sigma, const Int_t nevts)
975{
976
977 if (!IsEmpty())
978 *fLog << warn << "The histogram is already filled, will superimpose simulated events on it..." << endl;
979
980 for (Int_t i=0;i<nevts;i++) {
981 const Double_t ran = gRandom->Gaus(mean,sigma);
982 FillHistAndArray(ran);
983 }
984
985}
Note: See TracBrowser for help on using the repository browser.