| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 02/2005 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2005
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHPedestalPix
|
|---|
| 28 | //
|
|---|
| 29 | // A base class for events which are believed to follow a Gaussian distribution
|
|---|
| 30 | // with time, e.g. calibration events, observables containing white noise, ...
|
|---|
| 31 | //
|
|---|
| 32 | // MHPedestalPix derives from MHGausEvents, thus all features of
|
|---|
| 33 | // MHGausEvents can be used by a class deriving from MHPedestalPix
|
|---|
| 34 | //
|
|---|
| 35 | // As an additional feature to MHGausEvents, this class offers to skip the fitting
|
|---|
| 36 | // to set mean, sigma and its errors directly from the histograms with the function
|
|---|
| 37 | // BypassFit()
|
|---|
| 38 | //
|
|---|
| 39 | // See also: MHGausEvents
|
|---|
| 40 | //
|
|---|
| 41 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 42 | #include "MHPedestalPix.h"
|
|---|
| 43 |
|
|---|
| 44 | #include <TH1.h>
|
|---|
| 45 | #include <TF1.h>
|
|---|
| 46 | #include <TGraph.h>
|
|---|
| 47 |
|
|---|
| 48 | #include "MLog.h"
|
|---|
| 49 | #include "MLogManip.h"
|
|---|
| 50 |
|
|---|
| 51 | ClassImp(MHPedestalPix);
|
|---|
| 52 |
|
|---|
| 53 | using namespace std;
|
|---|
| 54 |
|
|---|
| 55 | // --------------------------------------------------------------------------
|
|---|
| 56 | //
|
|---|
| 57 | // Default Constructor.
|
|---|
| 58 | //
|
|---|
| 59 | MHPedestalPix::MHPedestalPix(const char *name, const char *title)
|
|---|
| 60 | {
|
|---|
| 61 |
|
|---|
| 62 | fName = name ? name : "MHPedestalPix";
|
|---|
| 63 | fTitle = title ? title : "Pedestal histogram events";
|
|---|
| 64 |
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | // -------------------------------------------------------------------------------
|
|---|
| 68 | //
|
|---|
| 69 | // Fits the histogram to a double Gauss.
|
|---|
| 70 | //
|
|---|
| 71 | //
|
|---|
| 72 | Bool_t MHPedestalPix::FitDoubleGaus(const Double_t xmin, const Double_t xmax, Option_t *option)
|
|---|
| 73 | {
|
|---|
| 74 |
|
|---|
| 75 | if (IsGausFitOK())
|
|---|
| 76 | return kTRUE;
|
|---|
| 77 |
|
|---|
| 78 | StripZeros(&fHGausHist,0);
|
|---|
| 79 |
|
|---|
| 80 | TAxis *axe = fHGausHist.GetXaxis();
|
|---|
| 81 | //
|
|---|
| 82 | // Get the fitting ranges
|
|---|
| 83 | //
|
|---|
| 84 | Axis_t rmin = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetFirst()) : xmin;
|
|---|
| 85 | Axis_t rmax = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetLast()) : xmax;
|
|---|
| 86 |
|
|---|
| 87 | //
|
|---|
| 88 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 89 | //
|
|---|
| 90 | const Stat_t entries = fHGausHist.Integral(axe->FindBin(rmin),axe->FindBin(rmax),"width");
|
|---|
| 91 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
|---|
| 92 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
|---|
| 93 |
|
|---|
| 94 | fFGausFit = new TF1("GausFit","gaus(0)+gaus(3)",rmin,rmax);
|
|---|
| 95 |
|
|---|
| 96 | if (!fFGausFit)
|
|---|
| 97 | {
|
|---|
| 98 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
|
|---|
| 99 | << "in: " << fName << endl;
|
|---|
| 100 | return kFALSE;
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | //
|
|---|
| 104 | // For the fits, we have to take special care since ROOT
|
|---|
| 105 | // has stored the function pointer in a global list which
|
|---|
| 106 | // lead to removing the object twice. We have to take out
|
|---|
| 107 | // the following functions of the global list of functions
|
|---|
| 108 | // as well:
|
|---|
| 109 | //
|
|---|
| 110 | gROOT->GetListOfFunctions()->Remove(fFGausFit);
|
|---|
| 111 |
|
|---|
| 112 | fFGausFit->SetParameters(area_guess/2.,0.,sigma_guess/2.,area_guess/2.,25.,sigma_guess/2.);
|
|---|
| 113 | fFGausFit->SetParNames("Area_{0}","#mu_{0}","#sigma_{0}","Area_{1}","#mu_{1}","#sigma_{1}");
|
|---|
| 114 | fFGausFit->SetParLimits(0,0.,area_guess*5.);
|
|---|
| 115 | fFGausFit->SetParLimits(1,rmin,0.);
|
|---|
| 116 | fFGausFit->SetParLimits(2,0.,rmax-rmin);
|
|---|
| 117 | fFGausFit->SetParLimits(3,0.,area_guess*10.);
|
|---|
| 118 | fFGausFit->SetParLimits(4,0.,rmax/2.);
|
|---|
| 119 | fFGausFit->SetParLimits(5,0.,rmax-rmin);
|
|---|
| 120 | fFGausFit->SetRange(rmin,rmax);
|
|---|
| 121 |
|
|---|
| 122 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 123 |
|
|---|
| 124 | SetMean (fFGausFit->GetParameter(4)-fFGausFit->GetParameter(1));
|
|---|
| 125 | SetSigma (TMath::Sqrt(fFGausFit->GetParameter(5)*fFGausFit->GetParameter(5)
|
|---|
| 126 | +fFGausFit->GetParameter(2)*fFGausFit->GetParameter(2)));
|
|---|
| 127 | SetMeanErr (TMath::Sqrt(fFGausFit->GetParError(4)*fFGausFit->GetParError(4)
|
|---|
| 128 | +fFGausFit->GetParError(1)*fFGausFit->GetParError(1)));
|
|---|
| 129 | SetSigmaErr (TMath::Sqrt(fFGausFit->GetParError(5)*fFGausFit->GetParError(5)
|
|---|
| 130 | +fFGausFit->GetParError(2)*fFGausFit->GetParError(2)));
|
|---|
| 131 | SetProb (fFGausFit->GetProb());
|
|---|
| 132 | //
|
|---|
| 133 | // The fit result is accepted under condition:
|
|---|
| 134 | // 1) The results are not nan's
|
|---|
| 135 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
|---|
| 136 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
|---|
| 137 | //
|
|---|
| 138 | // !Finitite means either infinite or not-a-number
|
|---|
| 139 | if ( !TMath::Finite(GetMean())
|
|---|
| 140 | || !TMath::Finite(GetMeanErr())
|
|---|
| 141 | || !TMath::Finite(GetProb())
|
|---|
| 142 | || !TMath::Finite(GetSigma())
|
|---|
| 143 | || !TMath::Finite(GetSigmaErr())
|
|---|
| 144 | || fProb < GetProbLimit())
|
|---|
| 145 | return kFALSE;
|
|---|
| 146 |
|
|---|
| 147 | SetGausFitOK(kTRUE);
|
|---|
| 148 | return kTRUE;
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | // -------------------------------------------------------------------------------
|
|---|
| 153 | //
|
|---|
| 154 | // Fits the histogram to a triple Gauss.
|
|---|
| 155 | //
|
|---|
| 156 | Bool_t MHPedestalPix::FitTripleGaus(const Double_t xmin, const Double_t xmax, Option_t *option)
|
|---|
| 157 | {
|
|---|
| 158 |
|
|---|
| 159 | if (IsGausFitOK())
|
|---|
| 160 | return kTRUE;
|
|---|
| 161 |
|
|---|
| 162 | StripZeros(&fHGausHist,0);
|
|---|
| 163 |
|
|---|
| 164 | TAxis *axe = fHGausHist.GetXaxis();
|
|---|
| 165 | //
|
|---|
| 166 | // Get the fitting ranges
|
|---|
| 167 | //
|
|---|
| 168 | Axis_t rmin = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetFirst()) : xmin;
|
|---|
| 169 | Axis_t rmax = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetLast()) : xmax;
|
|---|
| 170 |
|
|---|
| 171 | //
|
|---|
| 172 | // First guesses for the fit (should be as close to reality as possible,
|
|---|
| 173 | //
|
|---|
| 174 | const Stat_t entries = fHGausHist.Integral(axe->FindBin(rmin),axe->FindBin(rmax),"width");
|
|---|
| 175 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
|---|
| 176 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
|---|
| 177 |
|
|---|
| 178 | fFGausFit = new TF1("GausFit","gaus(0)+gaus(3)+gaus(6)",rmin,rmax);
|
|---|
| 179 |
|
|---|
| 180 | if (!fFGausFit)
|
|---|
| 181 | {
|
|---|
| 182 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
|
|---|
| 183 | << "in: " << fName << endl;
|
|---|
| 184 | return kFALSE;
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | //
|
|---|
| 188 | // For the fits, we have to take special care since ROOT
|
|---|
| 189 | // has stored the function pointer in a global list which
|
|---|
| 190 | // lead to removing the object twice. We have to take out
|
|---|
| 191 | // the following functions of the global list of functions
|
|---|
| 192 | // as well:
|
|---|
| 193 | //
|
|---|
| 194 | gROOT->GetListOfFunctions()->Remove(fFGausFit);
|
|---|
| 195 |
|
|---|
| 196 | fFGausFit->SetParameters(10.,-4.0,1.5,70.,1.5,6.,5.,7.,7.);
|
|---|
| 197 | fFGausFit->SetParNames("Area_{0}","#mu_{0}","#sigma_{0}","Area_{1}","#mu_{1}","#sigma_{1}","Area_{2}","#mu_{2}","#sigma_{2}");
|
|---|
| 198 | fFGausFit->SetParLimits(0,0.,area_guess*2.5);
|
|---|
| 199 | fFGausFit->SetParLimits(1,-9.0,-2.2);
|
|---|
| 200 | fFGausFit->SetParLimits(2,-1.0,15.);
|
|---|
| 201 | fFGausFit->SetParLimits(3,0.,area_guess*10.);
|
|---|
| 202 | fFGausFit->SetParLimits(4,-4.5,2.);
|
|---|
| 203 | fFGausFit->SetParLimits(5,0.,(rmax-rmin)/3.);
|
|---|
| 204 | fFGausFit->SetParLimits(6,0.,area_guess*5.);
|
|---|
| 205 | fFGausFit->SetParLimits(7,6.,20.);
|
|---|
| 206 | fFGausFit->SetParLimits(8,5.,40.);
|
|---|
| 207 | fFGausFit->SetRange(rmin,rmax);
|
|---|
| 208 |
|
|---|
| 209 | fHGausHist.Fit(fFGausFit,option);
|
|---|
| 210 |
|
|---|
| 211 | SetMean (fFGausFit->GetParameter(4)-fFGausFit->GetParameter(1));
|
|---|
| 212 | SetSigma (TMath::Sqrt(fFGausFit->GetParameter(5)*fFGausFit->GetParameter(5)
|
|---|
| 213 | +fFGausFit->GetParameter(2)*fFGausFit->GetParameter(2)));
|
|---|
| 214 | SetMeanErr (TMath::Sqrt(fFGausFit->GetParError(4)*fFGausFit->GetParError(4)
|
|---|
| 215 | +fFGausFit->GetParError(1)*fFGausFit->GetParError(1)));
|
|---|
| 216 | SetSigmaErr (TMath::Sqrt(fFGausFit->GetParError(5)*fFGausFit->GetParError(5)
|
|---|
| 217 | +fFGausFit->GetParError(2)*fFGausFit->GetParError(2)));
|
|---|
| 218 | SetProb (fFGausFit->GetProb());
|
|---|
| 219 | //
|
|---|
| 220 | // The fit result is accepted under condition:
|
|---|
| 221 | // 1) The results are not nan's
|
|---|
| 222 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
|---|
| 223 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
|---|
| 224 | //
|
|---|
| 225 | // !Finitite means either infinite or not-a-number
|
|---|
| 226 | if ( !TMath::Finite(GetMean())
|
|---|
| 227 | || !TMath::Finite(GetMeanErr())
|
|---|
| 228 | || !TMath::Finite(GetProb())
|
|---|
| 229 | || !TMath::Finite(GetSigma())
|
|---|
| 230 | || !TMath::Finite(GetSigmaErr())
|
|---|
| 231 | || fProb < GetProbLimit() )
|
|---|
| 232 | return kFALSE;
|
|---|
| 233 |
|
|---|
| 234 | SetGausFitOK(kTRUE);
|
|---|
| 235 | return kTRUE;
|
|---|
| 236 | }
|
|---|
| 237 |
|
|---|
| 238 |
|
|---|