1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MAlphaFitter
|
---|
28 | //
|
---|
29 | // Create a single Alpha-Plot. The alpha-plot is fitted online. You can
|
---|
30 | // check the result when it is filles in the MStatusDisplay
|
---|
31 | // For more information see MHFalseSource::FitSignificance
|
---|
32 | //
|
---|
33 | // For convinience (fit) the output significance is stored in a
|
---|
34 | // container in the parlisrt
|
---|
35 | //
|
---|
36 | // PRELIMINARY!
|
---|
37 | //
|
---|
38 | //////////////////////////////////////////////////////////////////////////////
|
---|
39 | #include "MAlphaFitter.h"
|
---|
40 |
|
---|
41 | #include <TF1.h>
|
---|
42 | #include <TH1.h>
|
---|
43 |
|
---|
44 | #include <TLatex.h>
|
---|
45 |
|
---|
46 | #include "MMath.h"
|
---|
47 |
|
---|
48 | #include "MLogManip.h"
|
---|
49 |
|
---|
50 | ClassImp(MAlphaFitter);
|
---|
51 |
|
---|
52 | using namespace std;
|
---|
53 |
|
---|
54 | // --------------------------------------------------------------------------
|
---|
55 | //
|
---|
56 | // This is a preliminary implementation of a alpha-fit procedure for
|
---|
57 | // all possible source positions. It will be moved into its own
|
---|
58 | // more powerfull class soon.
|
---|
59 | //
|
---|
60 | // The fit function is "gaus(0)+pol2(3)" which is equivalent to:
|
---|
61 | // [0]*exp(-0.5*((x-[1])/[2])^2) + [3] + [4]*x + [5]*x^2
|
---|
62 | // or
|
---|
63 | // A*exp(-0.5*((x-mu)/sigma)^2) + a + b*x + c*x^2
|
---|
64 | //
|
---|
65 | // Parameter [1] is fixed to 0 while the alpha peak should be
|
---|
66 | // symmetric around alpha=0.
|
---|
67 | //
|
---|
68 | // Parameter [4] is fixed to 0 because the first derivative at
|
---|
69 | // alpha=0 should be 0, too.
|
---|
70 | //
|
---|
71 | // In a first step the background is fitted between bgmin and bgmax,
|
---|
72 | // while the parameters [0]=0 and [2]=1 are fixed.
|
---|
73 | //
|
---|
74 | // In a second step the signal region (alpha<sigmax) is fittet using
|
---|
75 | // the whole function with parameters [1], [3], [4] and [5] fixed.
|
---|
76 | //
|
---|
77 | // The number of excess and background events are calculated as
|
---|
78 | // s = int(hist, 0, 1.25*sigint)
|
---|
79 | // b = int(pol2(3), 0, 1.25*sigint)
|
---|
80 | //
|
---|
81 | // The Significance is calculated using the Significance() member
|
---|
82 | // function.
|
---|
83 | //
|
---|
84 | Bool_t MAlphaFitter::Fit(TH1D &h, Bool_t paint)
|
---|
85 | {
|
---|
86 | Double_t sigmax=fSigMax;
|
---|
87 | Double_t bgmin =fBgMin;
|
---|
88 | Double_t bgmax =fBgMax;
|
---|
89 |
|
---|
90 | //*fLog << inf << "Fit: " << sigmax << " " << fSigInt << " " << bgmin << " " << bgmax << endl;
|
---|
91 |
|
---|
92 | //TF1 fFunc("", Form("gaus(0) + pol%d(3)", fPolynomOrder), 0, 90);
|
---|
93 |
|
---|
94 | //fFunc->SetParameters(fCoefficients.GetArray());
|
---|
95 |
|
---|
96 | fFunc->FixParameter(1, 0);
|
---|
97 | fFunc->FixParameter(4, 0);
|
---|
98 | fFunc->SetParLimits(2, 0, 90);
|
---|
99 | fFunc->SetParLimits(3, -1, 1);
|
---|
100 |
|
---|
101 | const Double_t alpha0 = h.GetBinContent(1);
|
---|
102 | const Double_t alphaw = h.GetXaxis()->GetBinWidth(1);
|
---|
103 |
|
---|
104 | // Check for the regios which is not filled...
|
---|
105 | if (alpha0==0)
|
---|
106 | return kFALSE; //*fLog << warn << "Histogram empty." << endl;
|
---|
107 |
|
---|
108 | // First fit a polynom in the off region
|
---|
109 | fFunc->FixParameter(0, 0);
|
---|
110 | fFunc->FixParameter(2, 1);
|
---|
111 | fFunc->ReleaseParameter(3);
|
---|
112 |
|
---|
113 | for (int i=5; i<fFunc->GetNpar(); i++)
|
---|
114 | fFunc->ReleaseParameter(i);
|
---|
115 |
|
---|
116 | // options : N do not store the function, do not draw
|
---|
117 | // I use integral of function in bin rather than value at bin center
|
---|
118 | // R use the range specified in the function range
|
---|
119 | // Q quiet mode
|
---|
120 | h.Fit(fFunc, "NQI", "", bgmin, bgmax);
|
---|
121 |
|
---|
122 | fChiSqBg = fFunc->GetChisquare()/fFunc->GetNDF();
|
---|
123 |
|
---|
124 | // ------------------------------------
|
---|
125 | if (paint)
|
---|
126 | {
|
---|
127 | fFunc->SetRange(0, 90);
|
---|
128 | fFunc->SetLineColor(kRed);
|
---|
129 | fFunc->SetLineWidth(2);
|
---|
130 | fFunc->Paint("same");
|
---|
131 | }
|
---|
132 | // ------------------------------------
|
---|
133 |
|
---|
134 | fFunc->ReleaseParameter(0);
|
---|
135 | //func.ReleaseParameter(1);
|
---|
136 | fFunc->ReleaseParameter(2);
|
---|
137 | fFunc->FixParameter(3, fFunc->GetParameter(3));
|
---|
138 | for (int i=5; i<fFunc->GetNpar(); i++)
|
---|
139 | fFunc->FixParameter(i, fFunc->GetParameter(i));
|
---|
140 |
|
---|
141 | // Do not allow signals smaller than the background
|
---|
142 | const Double_t A = alpha0-fFunc->GetParameter(3);
|
---|
143 | const Double_t dA = TMath::Abs(A);
|
---|
144 | fFunc->SetParLimits(0, -dA*4, dA*4);
|
---|
145 | fFunc->SetParLimits(2, 0, 90);
|
---|
146 |
|
---|
147 | // Now fit a gaus in the on region on top of the polynom
|
---|
148 | fFunc->SetParameter(0, A);
|
---|
149 | fFunc->SetParameter(2, sigmax*0.75);
|
---|
150 |
|
---|
151 | // options : N do not store the function, do not draw
|
---|
152 | // I use integral of function in bin rather than value at bin center
|
---|
153 | // R use the range specified in the function range
|
---|
154 | // Q quiet mode
|
---|
155 | h.Fit(fFunc, "NQI", "", 0, sigmax);
|
---|
156 |
|
---|
157 | fChiSqSignal = fFunc->GetChisquare()/fFunc->GetNDF();
|
---|
158 | fCoefficients.Set(fFunc->GetNpar(), fFunc->GetParameters());
|
---|
159 |
|
---|
160 | //const Bool_t ok = NDF>0 && chi2<2.5*NDF;
|
---|
161 |
|
---|
162 | // ------------------------------------
|
---|
163 | if (paint)
|
---|
164 | {
|
---|
165 | fFunc->SetLineColor(kGreen);
|
---|
166 | fFunc->SetLineWidth(2);
|
---|
167 | fFunc->Paint("same");
|
---|
168 | }
|
---|
169 | // ------------------------------------
|
---|
170 |
|
---|
171 | //const Double_t s = fFunc->Integral(0, fSigInt)/alphaw;
|
---|
172 | fFunc->SetParameter(0, 0);
|
---|
173 | fFunc->SetParameter(2, 1);
|
---|
174 | //const Double_t b = fFunc->Integral(0, fSigInt)/alphaw;
|
---|
175 | //fSignificance = MMath::SignificanceLiMaSigned(s, b);
|
---|
176 |
|
---|
177 |
|
---|
178 | const Int_t bin = h.GetXaxis()->FindFixBin(fSigInt*0.999);
|
---|
179 |
|
---|
180 | fIntegralMax = h.GetBinLowEdge(bin+1);
|
---|
181 | fEventsBackground = fFunc->Integral(0, fIntegralMax)/alphaw;
|
---|
182 | fEventsSignal = h.Integral(0, bin);
|
---|
183 | fEventsExcess = fEventsSignal-fEventsBackground;
|
---|
184 | fSignificance = MMath::SignificanceLiMaSigned(fEventsSignal, fEventsBackground);
|
---|
185 |
|
---|
186 | if (fEventsExcess<0)
|
---|
187 | fEventsExcess=0;
|
---|
188 |
|
---|
189 | return kTRUE;
|
---|
190 | }
|
---|
191 |
|
---|
192 | void MAlphaFitter::PaintResult(Float_t x, Float_t y, Float_t size) const
|
---|
193 | {
|
---|
194 | TLatex text(x, y, Form("\\sigma_{Li/Ma}=%.1f \\omega=%.1f\\circ E=%d (\\alpha<%.1f\\circ) (\\chi_{b}^{2}=%.1f \\chi_{s}^{2}=%.1f)",
|
---|
195 | fSignificance, GetGausSigma(),
|
---|
196 | (int)fEventsExcess, fIntegralMax,
|
---|
197 | fChiSqBg, fChiSqSignal));
|
---|
198 |
|
---|
199 | text.SetBit(TLatex::kTextNDC);
|
---|
200 | text.SetTextSize(size);
|
---|
201 | text.Paint();
|
---|
202 | }
|
---|
203 |
|
---|
204 | void MAlphaFitter::Copy(TObject &o) const
|
---|
205 | {
|
---|
206 | MAlphaFitter &f = static_cast<MAlphaFitter&>(o);
|
---|
207 |
|
---|
208 | f.fSigInt = fSigInt;
|
---|
209 | f.fSigMax = fSigMax;
|
---|
210 | f.fBgMin = fBgMin;
|
---|
211 | f.fBgMax = fBgMax;
|
---|
212 | f.fPolynomOrder = fPolynomOrder;
|
---|
213 | f.fCoefficients.Set(fCoefficients.GetSize());
|
---|
214 | f.fCoefficients.Reset();
|
---|
215 |
|
---|
216 | TF1 *fcn = f.fFunc;
|
---|
217 | f.fFunc = new TF1(*fFunc);
|
---|
218 | gROOT->GetListOfFunctions()->Remove(f.fFunc);
|
---|
219 | f.fFunc->SetName("Dummy");
|
---|
220 | delete fcn;
|
---|
221 | }
|
---|
222 |
|
---|
223 | void MAlphaFitter::Print(Option_t *o) const
|
---|
224 | {
|
---|
225 | *fLog << inf << GetDescriptor() << ": Fitting..." << endl;
|
---|
226 | *fLog << " ...background from " << fBgMin << " to " << fBgMax << endl;
|
---|
227 | *fLog << " ...signal to " << fSigMax << " (integrate into bin at " << fSigInt << ")" << endl;
|
---|
228 | *fLog << " ...polynom order " << fPolynomOrder << endl;
|
---|
229 | }
|
---|