| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 8/2002 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | ! Author(s): Wolfgang Wittek, 1/2002 <mailto:wittek@mppmu.mpg.de>
|
|---|
| 20 | !
|
|---|
| 21 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 22 | !
|
|---|
| 23 | !
|
|---|
| 24 | \* ======================================================================== */
|
|---|
| 25 |
|
|---|
| 26 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 27 | //
|
|---|
| 28 | // MHEffectiveOnTime
|
|---|
| 29 | //
|
|---|
| 30 | // Filling this you will get the effective on-time versus theta and
|
|---|
| 31 | // observation time.
|
|---|
| 32 | //
|
|---|
| 33 | // From this histogram the effective on-time is determined by a fit.
|
|---|
| 34 | // The result of the fit (see Fit()) and the fit-parameters (like chi^2)
|
|---|
| 35 | // are stored in corresponding histograms
|
|---|
| 36 | //
|
|---|
| 37 | // To determin the efective on time a poisson fit is done. For more details
|
|---|
| 38 | // please have a look into the source code of FitH() it should be simple
|
|---|
| 39 | // to understand. In this function a Delta-T distribution is fitted, while
|
|---|
| 40 | // Delta-T is the time between two consecutive events.
|
|---|
| 41 | //
|
|---|
| 42 | // The fit is done for projections of a 2D histogram in Theta and Delta T.
|
|---|
| 43 | // So you get the effective on time versus theta.
|
|---|
| 44 | //
|
|---|
| 45 | // To get the effective on-time versus time a histogram is filled with
|
|---|
| 46 | // the Delta-T distribution of a number of events set by SetNumEvents().
|
|---|
| 47 | // The default is 12000 (roughly 1min at 200Hz)
|
|---|
| 48 | //
|
|---|
| 49 | // For each "time-bin" the histogram is fitted and the resulting effective
|
|---|
| 50 | // on-time is stored in the fHTimeEffOn histogram. Each entry in this
|
|---|
| 51 | // histogram is the effective observation time between the upper and
|
|---|
| 52 | // lower edges of the bins.
|
|---|
| 53 | //
|
|---|
| 54 | // In addition the calculated effective on time is stored in a
|
|---|
| 55 | // "MEffectiveOnTime [MParameterDerr]" and the corresponding time-stamp
|
|---|
| 56 | // (the upper edge of the bin) "MTimeEffectiveOnTime [MTime]"
|
|---|
| 57 | //
|
|---|
| 58 | // The class takes two binnings from the Parameter list; if these binnings
|
|---|
| 59 | // are not available the defaultbinning is used:
|
|---|
| 60 | // MBinning("BinningDeltaT"); // Units of seconds
|
|---|
| 61 | // MBinning("BinningTheta"); // Units of degrees
|
|---|
| 62 | //
|
|---|
| 63 | //
|
|---|
| 64 | // Usage:
|
|---|
| 65 | // ------
|
|---|
| 66 | // MFillH fill("MHEffectiveOnTime", "MTime");
|
|---|
| 67 | // tlist.AddToList(&fill);
|
|---|
| 68 | //
|
|---|
| 69 | //
|
|---|
| 70 | // Input Container:
|
|---|
| 71 | // MPointingPos
|
|---|
| 72 | //
|
|---|
| 73 | // Output Container:
|
|---|
| 74 | // MEffectiveOnTime [MParameterDerr]
|
|---|
| 75 | // MTimeEffectiveOnTime [MTime]
|
|---|
| 76 | //
|
|---|
| 77 | //
|
|---|
| 78 | // Class version 2:
|
|---|
| 79 | // ----------------
|
|---|
| 80 | // + UInt_t fFirstBin;
|
|---|
| 81 | // + UInt_t fNumEvents;
|
|---|
| 82 | // - Int_t fNumEvents;
|
|---|
| 83 | //
|
|---|
| 84 | //
|
|---|
| 85 | // ==========================================================================
|
|---|
| 86 | // Dear Colleagues,
|
|---|
| 87 | //
|
|---|
| 88 | // for the case that we are taking calibration events interleaved with
|
|---|
| 89 | // cosmics events the calculation of the effective observation time has to
|
|---|
| 90 | // be modified. I have summarized the proposed procedures in the note at the
|
|---|
| 91 | // end of this message. The formulas have been checked by a simulation.
|
|---|
| 92 | //
|
|---|
| 93 | // Comments are welcome.
|
|---|
| 94 | //
|
|---|
| 95 | // Regards, Wolfgang
|
|---|
| 96 | // --------------------------------------------------------------------------
|
|---|
| 97 | // Wolfgang Wittek
|
|---|
| 98 | // 2 Dec. 2004
|
|---|
| 99 | //
|
|---|
| 100 | // Calculation of the effective observation time when cosmics and calibration
|
|---|
| 101 | // events are taken simultaneously.
|
|---|
| 102 | // --------------------------------
|
|---|
| 103 | //
|
|---|
| 104 | // I. Introduction
|
|---|
| 105 | // ---------------
|
|---|
| 106 | // It is planned to take light calibration events (at a certain fixed frequency
|
|---|
| 107 | // lambda_calib) interlaced with cosmics events. The advantages of this
|
|---|
| 108 | // procedure are :
|
|---|
| 109 | //
|
|---|
| 110 | // - the pedestals, which would be determined from the cosmics, could be
|
|---|
| 111 | // used for both the calibration and the cosmics events
|
|---|
| 112 | //
|
|---|
| 113 | // - because calibration and cosmics events are taken quasi simultaneously,
|
|---|
| 114 | // rapid variations (in the order of a few minutes) of base lines and of the
|
|---|
| 115 | // photon/ADC conversion factors could be recognized and taken into account
|
|---|
| 116 | //
|
|---|
| 117 | // The effective observation time T_eff is defined as that time range, within
|
|---|
| 118 | // which the recorded number of events N_cosmics would be obtained under ideal
|
|---|
| 119 | // conditions (only cosmics, no dead time, no calibration events, ...).
|
|---|
| 120 | //
|
|---|
| 121 | // In the absence of calibration events the effective observation time can
|
|---|
| 122 | // be determined from the distribution of time differences 'dt' between
|
|---|
| 123 | // successive cosmics events (see first figure in the attached ps file).
|
|---|
| 124 | // The exponential slope 'lambda' of this distribution is the ideal cosmics
|
|---|
| 125 | // event rate. If 'N_cosmics' is the total number of recorded cosmics events,
|
|---|
| 126 | // T_eff is obtained by
|
|---|
| 127 | //
|
|---|
| 128 | // T_eff = N_cosmics / lambda
|
|---|
| 129 | //
|
|---|
| 130 | // In the case of a finite dead time 'dead', the distribution (for dt > dead) is
|
|---|
| 131 | // still exponential with the same slope 'lambda'. 'lambda' should be determined
|
|---|
| 132 | // in a region of 'dt' which is not affected by the dead time, i.e. at not too
|
|---|
| 133 | // low 'dt'.
|
|---|
| 134 | //
|
|---|
| 135 | //
|
|---|
| 136 | //
|
|---|
| 137 | // II. Problems in the presence of calibration events
|
|---|
| 138 | // --------------------------------------------------
|
|---|
| 139 | // If calibration events are taken interlaced with cosmics, and if the dead time
|
|---|
| 140 | // is negligible, the distribution of time differences 'dt' between cosmics can
|
|---|
| 141 | // be used for calculating the effective observation time, as if the calibration
|
|---|
| 142 | // events were not present.
|
|---|
| 143 | //
|
|---|
| 144 | // In the case of a non-negligible dead time 'dead', however, the distribution of
|
|---|
| 145 | // time differences between cosmics is distorted, because a cosmics event may be
|
|---|
| 146 | // lost due to the dead time after a calibration event. Even if the time
|
|---|
| 147 | // intervals are ignored which contain a calibration event,
|
|---|
| 148 | //
|
|---|
| 149 | //
|
|---|
| 150 | // ---|---------o--------|---------> t
|
|---|
| 151 | //
|
|---|
| 152 | // cosmics calib cosmics
|
|---|
| 153 | //
|
|---|
| 154 | // <----------------> <==== time interval to be ignored
|
|---|
| 155 | //
|
|---|
| 156 | //
|
|---|
| 157 | // the distribution of 'dt' is still distorted, because there would be no
|
|---|
| 158 | // 'dt' with dt > tau_calib = 1/lambda_calib. The distribution would also be
|
|---|
| 159 | // distorted in the region dt < tau_calib, due to calibration events occuring
|
|---|
| 160 | // shortly after cosmics events. As a result, the slope of the distribution of
|
|---|
| 161 | // 'dt' would not reflect the ideal cosmics event rate (see second figure; the
|
|---|
| 162 | // values assumed in the simulation are lambda = 200 Hz, lambda_calib = 50
|
|---|
| 163 | // Hz, dead = 0.001 sec, total time = 500 sec, number of generated cosmics
|
|---|
| 164 | // events = 100 000).
|
|---|
| 165 | //
|
|---|
| 166 | //
|
|---|
| 167 | // Note also that some calibration events will not be recorded due to the dead
|
|---|
| 168 | // time after a cosmics event.
|
|---|
| 169 | //
|
|---|
| 170 | //
|
|---|
| 171 | // III. Proposed procedures
|
|---|
| 172 | // ------------------------
|
|---|
| 173 | //
|
|---|
| 174 | // A) The ideal event rate 'lambda' may be calculated from the distribution of
|
|---|
| 175 | // the time difference 'dt_first' between a calibration event and the first
|
|---|
| 176 | // recorded cosmics event after the calibration event. In the region
|
|---|
| 177 | //
|
|---|
| 178 | // dead < dt_first < tau_calib
|
|---|
| 179 | //
|
|---|
| 180 | // the probability distribution of dt_first is given by
|
|---|
| 181 | //
|
|---|
| 182 | // p(dt_first) = c * exp(-lambda*dt_first)
|
|---|
| 183 | //
|
|---|
| 184 | // where c is a normalization constant. 'lambda' can be obtained by a simple
|
|---|
| 185 | // exponential fit to the experimental distribution of dt_first (see third
|
|---|
| 186 | // figure). The fit range should start well above the average value of the dead
|
|---|
| 187 | // time 'dead'.
|
|---|
| 188 | //
|
|---|
| 189 | //
|
|---|
| 190 | // B) One may consider those time intervals between recorded cosmics events, which
|
|---|
| 191 | // are completely contained in the region
|
|---|
| 192 | //
|
|---|
| 193 | // t_calib < t < t_calib + tau_calib
|
|---|
| 194 | //
|
|---|
| 195 | // where t_calib is the time of a recorded calibration event.
|
|---|
| 196 | //
|
|---|
| 197 | //
|
|---|
| 198 | // <--------------- tau_calib ----------->
|
|---|
| 199 | //
|
|---|
| 200 | //
|
|---|
| 201 | // 0 1 2 3 4 5 6 7 8 9 10
|
|---|
| 202 | // --|-o---|-|---|--|-|----|--|---|---|-|----o-|---|-|---------> t
|
|---|
| 203 | // ^ ^
|
|---|
| 204 | // | |
|
|---|
| 205 | // t_calib t_calib + tau_calib
|
|---|
| 206 | //
|
|---|
| 207 | //
|
|---|
| 208 | // In this example, of the time intervals 0 to 10 only the intervals 1 to 9
|
|---|
| 209 | // should be retained and plotted. The distribution of the length 'dt' of these
|
|---|
| 210 | // intervals in the region
|
|---|
| 211 | //
|
|---|
| 212 | // dead < dt < tau_calib
|
|---|
| 213 | //
|
|---|
| 214 | // is given by
|
|---|
| 215 | //
|
|---|
| 216 | // p(dt) = c * (tau_calib-dt-dead) * exp(-lambda*dt)
|
|---|
| 217 | //
|
|---|
| 218 | // A fit of this expression to the experimental distribution of 'dt' yields
|
|---|
| 219 | // 'lambda' (see fourth figure). For 'dead' an average value of the dead time
|
|---|
| 220 | // should be chosen, and the fit range should end well before dt = tau_calib-dead.
|
|---|
| 221 | //
|
|---|
| 222 | //
|
|---|
| 223 | // Method A has the advantage that the p(dt_first) does not depend on 'dead'.
|
|---|
| 224 | // 'dead' has to be considered when defining the fit range, both in method A and
|
|---|
| 225 | // in method B. In method B the event statistics is larger leading to a smaller
|
|---|
| 226 | // fitted error of 'lambda' than method A (see the figures).
|
|---|
| 227 | //
|
|---|
| 228 | //
|
|---|
| 229 | // The effective observation time is again obtained by
|
|---|
| 230 | //
|
|---|
| 231 | // T_eff = N_cosmics / lambda
|
|---|
| 232 | //
|
|---|
| 233 | // where N_cosmics is the total number of recorded cosmics events. Note that
|
|---|
| 234 | // N_cosmics is equal to
|
|---|
| 235 | //
|
|---|
| 236 | // N_cosmics = N_tot - N_calib
|
|---|
| 237 | //
|
|---|
| 238 | // where N_tot is the total number of recorded events (including the calibration
|
|---|
| 239 | // events) and N_calib is the number of recorded calibration events.
|
|---|
| 240 | //
|
|---|
| 241 | // Note that if time intervals are discarded for the determination of lambda,
|
|---|
| 242 | // the corresponding cosmics events need not and should not be discarded.
|
|---|
| 243 | //
|
|---|
| 244 | //
|
|---|
| 245 | // IV. Procedure if the calibration events are taken in bunches
|
|---|
| 246 | // ------------------------------------------------------------
|
|---|
| 247 | // In November 2004 the rate of calibration events is not constant. The events
|
|---|
| 248 | // are taken in 200 Hz bunches every second, such that the rate is 200 Hz for
|
|---|
| 249 | // 0.25 sec, followed by a gap of 0.75 sec. Then follows the next 200 Hz bunch.
|
|---|
| 250 | //
|
|---|
| 251 | // In this case it is proposed to consider for the calculation of 'lambda' only
|
|---|
| 252 | // the cosmics events within the gaps of 0.75 sec. For these cosmics events one
|
|---|
| 253 | // of the methods described in III. can be applied.
|
|---|
| 254 | //
|
|---|
| 255 | //
|
|---|
| 256 | // V. Alternative pocedure
|
|---|
| 257 | // -----------------------
|
|---|
| 258 | // The effective observation time can also be determined from the total
|
|---|
| 259 | // observation time and the total dead time. The latter is written out by the DAQ.
|
|---|
| 260 | // In this case it has to be made sure that the dead time is available in Mars
|
|---|
| 261 | // when the effective observation time is calculated.
|
|---|
| 262 | //
|
|---|
| 263 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 264 | #include "MHEffectiveOnTime.h"
|
|---|
| 265 |
|
|---|
| 266 | #include <TF1.h>
|
|---|
| 267 | #include <TMinuit.h>
|
|---|
| 268 | #include <TRandom.h>
|
|---|
| 269 |
|
|---|
| 270 | #include <TLatex.h>
|
|---|
| 271 | #include <TGaxis.h>
|
|---|
| 272 | #include <TCanvas.h>
|
|---|
| 273 | #include <TPaveStats.h>
|
|---|
| 274 |
|
|---|
| 275 | #include "MTime.h"
|
|---|
| 276 | #include "MParameters.h"
|
|---|
| 277 | #include "MPointingPos.h"
|
|---|
| 278 |
|
|---|
| 279 | #include "MBinning.h"
|
|---|
| 280 | #include "MParList.h"
|
|---|
| 281 |
|
|---|
| 282 | #include "MLog.h"
|
|---|
| 283 | #include "MLogManip.h"
|
|---|
| 284 |
|
|---|
| 285 | ClassImp(MHEffectiveOnTime);
|
|---|
| 286 |
|
|---|
| 287 | using namespace std;
|
|---|
| 288 |
|
|---|
| 289 | // --------------------------------------------------------------------------
|
|---|
| 290 | //
|
|---|
| 291 | // Default Constructor. It initializes all histograms.
|
|---|
| 292 | //
|
|---|
| 293 | MHEffectiveOnTime::MHEffectiveOnTime(const char *name, const char *title)
|
|---|
| 294 | : fPointPos(0), fTime(0), fParam(0), fIsFinalized(kFALSE),
|
|---|
| 295 | fNumEvents(200*60), fFirstBin(3)
|
|---|
| 296 | //fNumEvents(2*60), fFirstBin(1)
|
|---|
| 297 | {
|
|---|
| 298 | //
|
|---|
| 299 | // set the name and title of this object
|
|---|
| 300 | //
|
|---|
| 301 | fName = name ? name : "MHEffectiveOnTime";
|
|---|
| 302 | fTitle = title ? title : "Histogram to determin effective On-Time vs Time and Zenith Angle";
|
|---|
| 303 |
|
|---|
| 304 | // Main histogram
|
|---|
| 305 | fH2DeltaT.SetName("DeltaT");
|
|---|
| 306 | fH2DeltaT.SetXTitle("\\Delta t [s]");
|
|---|
| 307 | fH2DeltaT.SetYTitle("\\Theta [\\circ]");
|
|---|
| 308 | fH2DeltaT.SetZTitle("Count");
|
|---|
| 309 | fH2DeltaT.UseCurrentStyle();
|
|---|
| 310 | fH2DeltaT.SetDirectory(NULL);
|
|---|
| 311 |
|
|---|
| 312 | // Main histogram
|
|---|
| 313 | fH1DeltaT.SetName("DeltaT");
|
|---|
| 314 | fH1DeltaT.SetXTitle("\\Delta t [s]");
|
|---|
| 315 | fH1DeltaT.SetYTitle("Counts");
|
|---|
| 316 | fH1DeltaT.UseCurrentStyle();
|
|---|
| 317 | fH1DeltaT.SetDirectory(NULL);
|
|---|
| 318 |
|
|---|
| 319 | // effective on time versus theta
|
|---|
| 320 | fHThetaEffOn.SetName("EffOnTheta");
|
|---|
| 321 | fHThetaEffOn.SetTitle("Effective On Time T_{eff}");
|
|---|
| 322 | fHThetaEffOn.SetXTitle("\\Theta [\\circ]");
|
|---|
| 323 | fHThetaEffOn.SetYTitle("T_{eff} [s]");
|
|---|
| 324 | fHThetaEffOn.UseCurrentStyle();
|
|---|
| 325 | fHThetaEffOn.SetDirectory(NULL);
|
|---|
| 326 | fHThetaEffOn.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 327 | fHThetaEffOn.GetYaxis()->SetTitleColor(kBlue);
|
|---|
| 328 | fHThetaEffOn.SetLineColor(kBlue);
|
|---|
| 329 | //fHEffOn.Sumw2();
|
|---|
| 330 |
|
|---|
| 331 | // effective on time versus time
|
|---|
| 332 | fHTimeEffOn.SetName("EffOnTime");
|
|---|
| 333 | fHTimeEffOn.SetTitle("Effective On Time T_{eff}");
|
|---|
| 334 | fHTimeEffOn.SetXTitle("Time");
|
|---|
| 335 | fHTimeEffOn.SetYTitle("T_{eff} [s]");
|
|---|
| 336 | fHTimeEffOn.UseCurrentStyle();
|
|---|
| 337 | fHTimeEffOn.SetDirectory(NULL);
|
|---|
| 338 | fHTimeEffOn.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 339 | fHTimeEffOn.GetXaxis()->SetLabelSize(0.033);
|
|---|
| 340 | fHTimeEffOn.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT");
|
|---|
| 341 | fHTimeEffOn.GetXaxis()->SetTimeDisplay(1);
|
|---|
| 342 | fHTimeEffOn.GetYaxis()->SetTitleColor(kBlue);
|
|---|
| 343 | fHTimeEffOn.SetLineColor(kBlue);
|
|---|
| 344 |
|
|---|
| 345 | // chi2 probability
|
|---|
| 346 | fHThetaProb.SetName("ProbTheta");
|
|---|
| 347 | fHThetaProb.SetTitle("\\chi^{2} Probability of Fit");
|
|---|
| 348 | fHThetaProb.SetXTitle("\\Theta [\\circ]");
|
|---|
| 349 | fHThetaProb.SetYTitle("p [%]");
|
|---|
| 350 | fHThetaProb.UseCurrentStyle();
|
|---|
| 351 | fHThetaProb.SetDirectory(NULL);
|
|---|
| 352 | fHThetaProb.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 353 | fHThetaProb.SetMaximum(101);
|
|---|
| 354 | fHThetaProb.GetYaxis()->SetTitleColor(kBlue);
|
|---|
| 355 | fHThetaProb.SetLineColor(kBlue);
|
|---|
| 356 |
|
|---|
| 357 | // chi2 probability
|
|---|
| 358 | fHTimeProb.SetName("ProbTime");
|
|---|
| 359 | fHTimeProb.SetTitle("\\chi^{2} Probability of Fit");
|
|---|
| 360 | fHTimeProb.SetXTitle("Time");
|
|---|
| 361 | fHTimeProb.SetYTitle("p [%]");
|
|---|
| 362 | fHTimeProb.UseCurrentStyle();
|
|---|
| 363 | fHTimeProb.SetDirectory(NULL);
|
|---|
| 364 | fHTimeProb.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 365 | fHTimeProb.GetXaxis()->SetLabelSize(0.033);
|
|---|
| 366 | fHTimeProb.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT");
|
|---|
| 367 | fHTimeProb.GetXaxis()->SetTimeDisplay(1);
|
|---|
| 368 | fHTimeProb.SetMaximum(101);
|
|---|
| 369 | fHTimeProb.GetYaxis()->SetTitleColor(kBlue);
|
|---|
| 370 | fHTimeProb.SetLineColor(kBlue);
|
|---|
| 371 |
|
|---|
| 372 | // lambda versus theta
|
|---|
| 373 | fHThetaLambda.SetName("LambdaTheta");
|
|---|
| 374 | fHThetaLambda.SetTitle("Slope (Rate) vs Theta");
|
|---|
| 375 | fHThetaLambda.SetXTitle("\\Theta [\\circ]");
|
|---|
| 376 | fHThetaLambda.SetYTitle("\\lambda [s^{-1}]");
|
|---|
| 377 | fHThetaLambda.UseCurrentStyle();
|
|---|
| 378 | fHThetaLambda.SetDirectory(NULL);
|
|---|
| 379 | fHThetaLambda.SetLineColor(kGreen);
|
|---|
| 380 |
|
|---|
| 381 | // lambda versus time
|
|---|
| 382 | fHTimeLambda.SetName("LambdaTime");
|
|---|
| 383 | fHTimeLambda.SetTitle("Slope (Rate) vs Time");
|
|---|
| 384 | fHTimeLambda.SetXTitle("\\Time [\\circ]");
|
|---|
| 385 | fHTimeLambda.SetYTitle("\\lambda [s^{-1}]");
|
|---|
| 386 | fHTimeLambda.UseCurrentStyle();
|
|---|
| 387 | fHTimeLambda.SetDirectory(NULL);
|
|---|
| 388 | fHTimeLambda.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 389 | fHTimeLambda.GetXaxis()->SetLabelSize(0.033);
|
|---|
| 390 | fHTimeLambda.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT");
|
|---|
| 391 | fHTimeLambda.GetXaxis()->SetTimeDisplay(1);
|
|---|
| 392 | fHTimeLambda.SetLineColor(kGreen);
|
|---|
| 393 |
|
|---|
| 394 | // NDoF versus theta
|
|---|
| 395 | fHThetaNDF.SetName("NDofTheta");
|
|---|
| 396 | fHThetaNDF.SetTitle("Number of Degrees of freedom vs Theta");
|
|---|
| 397 | fHThetaNDF.SetXTitle("\\Theta [\\circ]");
|
|---|
| 398 | fHThetaNDF.SetYTitle("NDoF [#]");
|
|---|
| 399 | fHThetaNDF.UseCurrentStyle();
|
|---|
| 400 | fHThetaNDF.SetDirectory(NULL);
|
|---|
| 401 | fHThetaNDF.SetLineColor(kGreen);
|
|---|
| 402 |
|
|---|
| 403 | // NDoF versus time
|
|---|
| 404 | /*
|
|---|
| 405 | fHTimeNDF.SetName("NDofTime");
|
|---|
| 406 | fHTimeNDF.SetTitle("Number of Degrees of freedom vs Time");
|
|---|
| 407 | fHTimeNDF.SetXTitle("Time");
|
|---|
| 408 | fHTimeNDF.SetYTitle("NDoF [#]");
|
|---|
| 409 | fHTimeNDF.UseCurrentStyle();
|
|---|
| 410 | fHTimeNDF.SetDirectory(NULL);
|
|---|
| 411 | fHTimeNDF.GetYaxis()->SetTitleOffset(1.2);
|
|---|
| 412 | fHTimeNDF.GetXaxis()->SetLabelSize(0.033);
|
|---|
| 413 | fHTimeNDF.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT");
|
|---|
| 414 | fHTimeNDF.GetXaxis()->SetTimeDisplay(1);
|
|---|
| 415 | fHTimeNDF.SetLineColor(kBlue);
|
|---|
| 416 | */
|
|---|
| 417 | // setup binning
|
|---|
| 418 | MBinning btheta("BinningTheta");
|
|---|
| 419 | btheta.SetEdgesASin(67, -0.005, 0.665);
|
|---|
| 420 |
|
|---|
| 421 | MBinning btime("BinningDeltaT");
|
|---|
| 422 | btime.SetEdges(50, 0, 0.1);
|
|---|
| 423 |
|
|---|
| 424 | MH::SetBinning(&fH2DeltaT, &btime, &btheta);
|
|---|
| 425 |
|
|---|
| 426 | btime.Apply(fH1DeltaT);
|
|---|
| 427 |
|
|---|
| 428 | btheta.Apply(fHThetaEffOn);
|
|---|
| 429 | btheta.Apply(fHThetaLambda);
|
|---|
| 430 | btheta.Apply(fHThetaNDF);
|
|---|
| 431 | btheta.Apply(fHThetaProb);
|
|---|
| 432 | //btheta.Apply(fHChi2);
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | // --------------------------------------------------------------------------
|
|---|
| 436 | //
|
|---|
| 437 | // Set the binnings and prepare the filling of the histogram
|
|---|
| 438 | //
|
|---|
| 439 | Bool_t MHEffectiveOnTime::SetupFill(const MParList *plist)
|
|---|
| 440 | {
|
|---|
| 441 | fPointPos = (MPointingPos*)plist->FindObject("MPointingPos");
|
|---|
| 442 | if (!fPointPos)
|
|---|
| 443 | {
|
|---|
| 444 | *fLog << err << dbginf << "MPointingPos not found... aborting." << endl;
|
|---|
| 445 | return kFALSE;
|
|---|
| 446 | }
|
|---|
| 447 |
|
|---|
| 448 | // FIXME: Remove const-qualifier from base-class!
|
|---|
| 449 | fTime = (MTime*)const_cast<MParList*>(plist)->FindCreateObj("MTime", "MTimeEffectiveOnTime");
|
|---|
| 450 | if (!fTime)
|
|---|
| 451 | return kFALSE;
|
|---|
| 452 | fParam = (MParameterDerr*)const_cast<MParList*>(plist)->FindCreateObj("MParameterDerr", "MEffectiveOnTime");
|
|---|
| 453 | if (!fParam)
|
|---|
| 454 | return kFALSE;
|
|---|
| 455 |
|
|---|
| 456 | const MBinning* binsdtime = (MBinning*)plist->FindObject("BinningDeltaT");
|
|---|
| 457 | const MBinning* binstheta = (MBinning*)plist->FindObject("BinningTheta");
|
|---|
| 458 | if (binsdtime)
|
|---|
| 459 | binsdtime->Apply(fH1DeltaT);
|
|---|
| 460 | if (binstheta)
|
|---|
| 461 | {
|
|---|
| 462 | binstheta->Apply(fHThetaEffOn);
|
|---|
| 463 | binstheta->Apply(fHThetaLambda);
|
|---|
| 464 | binstheta->Apply(fHThetaNDF);
|
|---|
| 465 | binstheta->Apply(fHThetaProb);
|
|---|
| 466 | //binstheta->Apply(fHChi2);
|
|---|
| 467 | }
|
|---|
| 468 | if (binstheta && binsdtime)
|
|---|
| 469 | SetBinning(&fH2DeltaT, binsdtime, binstheta);
|
|---|
| 470 |
|
|---|
| 471 | return kTRUE;
|
|---|
| 472 | }
|
|---|
| 473 |
|
|---|
| 474 | // --------------------------------------------------------------------------
|
|---|
| 475 | //
|
|---|
| 476 | // Fit a single Delta-T distribution. See source code for more details
|
|---|
| 477 | //
|
|---|
| 478 | Bool_t MHEffectiveOnTime::FitH(TH1D *h, Double_t *res, Bool_t paint) const
|
|---|
| 479 | {
|
|---|
| 480 | const Double_t Nm = h->Integral();
|
|---|
| 481 |
|
|---|
| 482 | // FIXME: Do fit only if contents of bin has changed
|
|---|
| 483 | if (Nm<=0 || h->GetBinContent(1)<=0)
|
|---|
| 484 | return kFALSE;
|
|---|
| 485 |
|
|---|
| 486 | // determine range (yq[0], yq[1]) of time differences
|
|---|
| 487 | // where fit should be performed;
|
|---|
| 488 | // require a fraction >=xq[0] of all entries to lie below yq[0]
|
|---|
| 489 | // and a fraction <=xq[1] of all entries to lie below yq[1];
|
|---|
| 490 | // within the range (yq[0], yq[1]) there must be no empty bin;
|
|---|
| 491 | // choose pedestrian approach as long as GetQuantiles is not available
|
|---|
| 492 | Double_t xq[2] = { 0.6, 0.95 }; // previously 0.99
|
|---|
| 493 | Double_t yq[2];
|
|---|
| 494 | h->GetQuantiles(2, yq, xq);
|
|---|
| 495 |
|
|---|
| 496 | //
|
|---|
| 497 | // Determine a good starting value for the slope
|
|---|
| 498 | //
|
|---|
| 499 | const TAxis &axe = *h->GetXaxis();
|
|---|
| 500 | const UInt_t ibin = axe.FindFixBin(yq[1]);
|
|---|
| 501 | const Double_t x1 = axe.GetBinCenter(ibin<=fFirstBin?fFirstBin+1:ibin);
|
|---|
| 502 | const Double_t x0 = axe.GetBinCenter(fFirstBin);
|
|---|
| 503 | const Double_t y1 = h->GetBinContent(ibin)>1 ? TMath::Log(h->GetBinContent(ibin)) : 0;
|
|---|
| 504 | const Double_t y0 = TMath::Log(h->GetBinContent(fFirstBin));
|
|---|
| 505 |
|
|---|
| 506 | // Estimated slope
|
|---|
| 507 | const Float_t m = -(y1-y0)/(x1-x0);
|
|---|
| 508 |
|
|---|
| 509 | //
|
|---|
| 510 | // Setup exponential function for the fit:
|
|---|
| 511 | //
|
|---|
| 512 | // parameter 0 = rate [Hz]
|
|---|
| 513 | // parameter 1 = normalization
|
|---|
| 514 | //
|
|---|
| 515 | TF1 func("Exp", " exp([1]-[0]*x)");
|
|---|
| 516 |
|
|---|
| 517 | func.SetParameter(0, m); // Hz
|
|---|
| 518 | func.SetParameter(1, log(h->GetBinContent(1))); // Hz
|
|---|
| 519 |
|
|---|
| 520 | // We set a limit to make sure that almost empty histograms which
|
|---|
| 521 | // are fitted dont't produce hang ups or crashes
|
|---|
| 522 | func.SetParLimits(0, 0, 15000); // Hz
|
|---|
| 523 |
|
|---|
| 524 | // options : N do not store the function, do not draw
|
|---|
| 525 | // I use integral of function in bin rather than value at bin center
|
|---|
| 526 | // R use the range specified in the function range
|
|---|
| 527 | // Q quiet mode
|
|---|
| 528 | // L Use log-likelihood (better for low statistics)
|
|---|
| 529 | h->Fit(&func, "NIQEL", "", h->GetBinLowEdge(fFirstBin)/*yq[0]*/, yq[1]);
|
|---|
| 530 |
|
|---|
| 531 | const Double_t chi2 = func.GetChisquare();
|
|---|
| 532 | const Double_t prob = func.GetProb();
|
|---|
| 533 | const Int_t NDF = func.GetNDF();
|
|---|
| 534 |
|
|---|
| 535 | // was fit successful ?
|
|---|
| 536 | const Bool_t ok = prob>0.001; //NDF>0 && chi2<3*NDF;
|
|---|
| 537 |
|
|---|
| 538 | if (paint)
|
|---|
| 539 | {
|
|---|
| 540 | func.SetLineWidth(2);
|
|---|
| 541 | func.SetLineColor(ok ? kGreen : kRed);
|
|---|
| 542 | func.Paint("same");
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | // The effective on time is the "real rate" (slope of the exponential)
|
|---|
| 546 | // divided by the total number of events (histogram integral including
|
|---|
| 547 | // under- and overflows)
|
|---|
| 548 | const Double_t lambda = func.GetParameter(0);
|
|---|
| 549 | const Double_t dldl = func.GetParError(0)*func.GetParError(0);
|
|---|
| 550 | const Double_t teff = lambda==0 ? 0 : Nm / lambda;
|
|---|
| 551 | const Double_t dteff = lambda==0 ? 0 : teff * TMath::Sqrt(dldl/(lambda*lambda) + 1.0/Nm);
|
|---|
| 552 | const Double_t dl = TMath::Sqrt(dldl);
|
|---|
| 553 |
|
|---|
| 554 | // the effective on time is Nm/lambda
|
|---|
| 555 | res[0] = teff;
|
|---|
| 556 | res[1] = dteff;
|
|---|
| 557 |
|
|---|
| 558 | // plot chi2-probability of fit
|
|---|
| 559 | res[2] = prob*100;
|
|---|
| 560 |
|
|---|
| 561 | // lambda of fit
|
|---|
| 562 | res[3] = lambda;
|
|---|
| 563 | res[4] = dl;
|
|---|
| 564 |
|
|---|
| 565 | // NDoF of fit
|
|---|
| 566 | res[5] = NDF;
|
|---|
| 567 |
|
|---|
| 568 | // Chi2
|
|---|
| 569 | res[6] = chi2;
|
|---|
| 570 |
|
|---|
| 571 | return ok;
|
|---|
| 572 | }
|
|---|
| 573 |
|
|---|
| 574 | // --------------------------------------------------------------------------
|
|---|
| 575 | //
|
|---|
| 576 | // Fit a all bins of the distribution in theta. Store the result in the
|
|---|
| 577 | // Theta-Histograms
|
|---|
| 578 | //
|
|---|
| 579 | void MHEffectiveOnTime::FitThetaBins()
|
|---|
| 580 | {
|
|---|
| 581 | fHThetaEffOn.Reset();
|
|---|
| 582 | fHThetaProb.Reset();
|
|---|
| 583 | fHThetaLambda.Reset();
|
|---|
| 584 | fHThetaNDF.Reset();
|
|---|
| 585 |
|
|---|
| 586 | // Use a random name to make sure the object is unique
|
|---|
| 587 | const TString name = Form("CalcTheta%d", (UInt_t)gRandom->Uniform(999999999));
|
|---|
| 588 |
|
|---|
| 589 | // nbins = number of Theta bins
|
|---|
| 590 | const Int_t nbins = fH2DeltaT.GetNbinsY();
|
|---|
| 591 |
|
|---|
| 592 | TH1D *h=0;
|
|---|
| 593 | for (int i=1; i<=nbins; i++)
|
|---|
| 594 | {
|
|---|
| 595 | // TH1D &h = *hist->ProjectionX("Calc-theta", i, i);
|
|---|
| 596 | h = fH2DeltaT.ProjectionX(name, i, i, "E");
|
|---|
| 597 |
|
|---|
| 598 | Double_t res[7] = {0, 0, 0, 0, 0, 0, 0};
|
|---|
| 599 | //if (!FitH(h, res))
|
|---|
| 600 | // continue;
|
|---|
| 601 | FitH(h, res);
|
|---|
| 602 |
|
|---|
| 603 | if (res[0]==0)
|
|---|
| 604 | continue;
|
|---|
| 605 |
|
|---|
| 606 | // the effective on time is Nm/lambda
|
|---|
| 607 | fHThetaEffOn.SetBinContent(i, res[0]);
|
|---|
| 608 | fHThetaEffOn.SetBinError (i, res[1]);
|
|---|
| 609 |
|
|---|
| 610 | // plot chi2-probability of fit
|
|---|
| 611 | fHThetaProb.SetBinContent(i, res[2]);
|
|---|
| 612 |
|
|---|
| 613 | // plot chi2/NDF of fit
|
|---|
| 614 | //fHChi2.SetBinContent(i, res[3]);
|
|---|
| 615 |
|
|---|
| 616 | // lambda of fit
|
|---|
| 617 | fHThetaLambda.SetBinContent(i, res[3]);
|
|---|
| 618 | fHThetaLambda.SetBinError (i, res[4]);
|
|---|
| 619 |
|
|---|
| 620 | // NDoF of fit
|
|---|
| 621 | fHThetaNDF.SetBinContent(i, res[5]);
|
|---|
| 622 |
|
|---|
| 623 | // Rdead (from fit) is the fraction from real time lost by the dead time
|
|---|
| 624 | //fHRdead.SetBinContent(i, Rdead);
|
|---|
| 625 | //fHRdead.SetBinError (i,dRdead);
|
|---|
| 626 | }
|
|---|
| 627 |
|
|---|
| 628 | // Histogram is reused via gROOT->FindObject()
|
|---|
| 629 | // Need to be deleted only once
|
|---|
| 630 | if (h)
|
|---|
| 631 | delete h;
|
|---|
| 632 | }
|
|---|
| 633 |
|
|---|
| 634 | // --------------------------------------------------------------------------
|
|---|
| 635 | //
|
|---|
| 636 | // Fit the single-time-bin histogram. Store the result in the
|
|---|
| 637 | // Time-Histograms
|
|---|
| 638 | //
|
|---|
| 639 | void MHEffectiveOnTime::FitTimeBin()
|
|---|
| 640 | {
|
|---|
| 641 | //
|
|---|
| 642 | // Fit histogram
|
|---|
| 643 | //
|
|---|
| 644 | Double_t res[7];
|
|---|
| 645 | if (!FitH(&fH1DeltaT, res))
|
|---|
| 646 | return;
|
|---|
| 647 |
|
|---|
| 648 | // Reset Histogram
|
|---|
| 649 | fH1DeltaT.Reset();
|
|---|
| 650 |
|
|---|
| 651 | //
|
|---|
| 652 | // Prepare Histogram
|
|---|
| 653 | //
|
|---|
| 654 |
|
|---|
| 655 | // Get number of bins
|
|---|
| 656 | const Int_t n = fHTimeEffOn.GetNbinsX();
|
|---|
| 657 |
|
|---|
| 658 | // Enhance binning
|
|---|
| 659 | MBinning bins;
|
|---|
| 660 | bins.SetEdges(fHTimeEffOn, 'x');
|
|---|
| 661 | bins.AddEdge(fLastTime.GetAxisTime());
|
|---|
| 662 | bins.Apply(fHTimeEffOn);
|
|---|
| 663 | bins.Apply(fHTimeProb);
|
|---|
| 664 | bins.Apply(fHTimeLambda);
|
|---|
| 665 | //bins.Apply(fHTimeNDF);
|
|---|
| 666 |
|
|---|
| 667 | //
|
|---|
| 668 | // Fill histogram
|
|---|
| 669 | //
|
|---|
| 670 | fHTimeEffOn.SetBinContent(n, res[0]);
|
|---|
| 671 | fHTimeEffOn.SetBinError(n, res[1]);
|
|---|
| 672 |
|
|---|
| 673 | fHTimeProb.SetBinContent(n, res[2]);
|
|---|
| 674 |
|
|---|
| 675 | fHTimeLambda.SetBinContent(n, res[3]);
|
|---|
| 676 | fHTimeLambda.SetBinError(n, res[4]);
|
|---|
| 677 |
|
|---|
| 678 | //fHTimeNDF.SetBinContent(n, res[5]);
|
|---|
| 679 |
|
|---|
| 680 | //
|
|---|
| 681 | // Now prepare output
|
|---|
| 682 | //
|
|---|
| 683 | fParam->SetVal(res[0], res[1]);
|
|---|
| 684 | fParam->SetReadyToSave();
|
|---|
| 685 |
|
|---|
| 686 | *fTime = fLastTime;
|
|---|
| 687 |
|
|---|
| 688 | // Include the current event
|
|---|
| 689 | fTime->Plus1ns();
|
|---|
| 690 |
|
|---|
| 691 | *fLog << fLastTime << ": Val=" << res[0] << " Err=" << res[1] << endl;
|
|---|
| 692 | }
|
|---|
| 693 |
|
|---|
| 694 | // --------------------------------------------------------------------------
|
|---|
| 695 | //
|
|---|
| 696 | // Fill the histogram
|
|---|
| 697 | //
|
|---|
| 698 | Bool_t MHEffectiveOnTime::Fill(const MParContainer *par, const Stat_t w)
|
|---|
| 699 | {
|
|---|
| 700 | const MTime *time = dynamic_cast<const MTime*>(par);
|
|---|
| 701 | if (!time)
|
|---|
| 702 | {
|
|---|
| 703 | *fLog << err << "ERROR - MHEffectiveOnTime::Fill without argument or container doesn't inherit from MTime... abort." << endl;
|
|---|
| 704 | return kFALSE;
|
|---|
| 705 | }
|
|---|
| 706 |
|
|---|
| 707 | //
|
|---|
| 708 | // If this is the first call we have to initialize the time-histogram
|
|---|
| 709 | //
|
|---|
| 710 | if (fLastTime==MTime())
|
|---|
| 711 | {
|
|---|
| 712 | MBinning bins;
|
|---|
| 713 | bins.SetEdges(1, time->GetAxisTime()-fNumEvents/200, time->GetAxisTime());
|
|---|
| 714 | bins.Apply(fHTimeEffOn);
|
|---|
| 715 | bins.Apply(fHTimeProb);
|
|---|
| 716 | bins.Apply(fHTimeLambda);
|
|---|
| 717 | //bins.Apply(fHTimeNDF);
|
|---|
| 718 |
|
|---|
| 719 | fParam->SetVal(0, 0);
|
|---|
| 720 | fParam->SetReadyToSave();
|
|---|
| 721 |
|
|---|
| 722 | *fTime = *time;
|
|---|
| 723 |
|
|---|
| 724 | // Make this 1ns before the first event!
|
|---|
| 725 | fTime->Minus1ns();
|
|---|
| 726 | }
|
|---|
| 727 |
|
|---|
| 728 | //
|
|---|
| 729 | // Fill time difference into the histograms
|
|---|
| 730 | //
|
|---|
| 731 | const Double_t dt = *time-fLastTime;
|
|---|
| 732 | fLastTime = *time;
|
|---|
| 733 |
|
|---|
| 734 | fH2DeltaT.Fill(dt, fPointPos->GetZd(), w);
|
|---|
| 735 | fH1DeltaT.Fill(dt, w);
|
|---|
| 736 |
|
|---|
| 737 | //
|
|---|
| 738 | // If we reached the event number limit for the time-bins fit the
|
|---|
| 739 | // histogram - if it fails try again when 1.6% more events available
|
|---|
| 740 | //
|
|---|
| 741 | const UInt_t n = (UInt_t)fH1DeltaT.GetEntries();
|
|---|
| 742 | if (n>=fNumEvents && n%(fNumEvents/60)==0)
|
|---|
| 743 | FitTimeBin();
|
|---|
| 744 |
|
|---|
| 745 | return kTRUE;
|
|---|
| 746 | }
|
|---|
| 747 |
|
|---|
| 748 | // --------------------------------------------------------------------------
|
|---|
| 749 | //
|
|---|
| 750 | // Fit the theta projections of the 2D histogram and the 1D Delta-T
|
|---|
| 751 | // distribution
|
|---|
| 752 | //
|
|---|
| 753 | Bool_t MHEffectiveOnTime::Finalize()
|
|---|
| 754 | {
|
|---|
| 755 | FitThetaBins();
|
|---|
| 756 | FitTimeBin();
|
|---|
| 757 |
|
|---|
| 758 | fIsFinalized = kTRUE;
|
|---|
| 759 |
|
|---|
| 760 | return kTRUE;
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 | // --------------------------------------------------------------------------
|
|---|
| 764 | //
|
|---|
| 765 | // Paint the integral and the error on top of the histogram
|
|---|
| 766 | //
|
|---|
| 767 | void MHEffectiveOnTime::PaintText(Double_t val, Double_t error, Double_t range) const
|
|---|
| 768 | {
|
|---|
| 769 | TLatex text;
|
|---|
| 770 | text.SetBit(TLatex::kTextNDC);
|
|---|
| 771 | text.SetTextSize(0.04);
|
|---|
| 772 |
|
|---|
| 773 | text.SetText(0.45, 0.94, Form("T_{eff} = %.1fs \\pm %.1fs", val, error));
|
|---|
| 774 | text.Paint();
|
|---|
| 775 |
|
|---|
| 776 | if (range<0)
|
|---|
| 777 | return;
|
|---|
| 778 |
|
|---|
| 779 | text.SetText(0.66, 0.94, Form("T_{axe} = %.1fs", range));
|
|---|
| 780 | text.Paint();
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 | void MHEffectiveOnTime::PaintText(Double_t *res) const
|
|---|
| 784 | {
|
|---|
| 785 | TLatex text(0.27, 0.94, Form("T_{eff}=%.1fs\\pm%.1fs \\lambda=%.1f\\pm%.1fHz p=%.1f%% \\chi^{2}/%d=%.1f",
|
|---|
| 786 | res[0], res[1], res[3], res[4], res[2], (int)res[5], res[6]/res[5]));
|
|---|
| 787 | text.SetBit(TLatex::kTextNDC);
|
|---|
| 788 | text.SetTextSize(0.04);
|
|---|
| 789 | text.Paint();
|
|---|
| 790 | }
|
|---|
| 791 |
|
|---|
| 792 | void MHEffectiveOnTime::PaintProb(TH1 &h) const
|
|---|
| 793 | {
|
|---|
| 794 | Double_t sum = 0;
|
|---|
| 795 | Int_t n = 0;
|
|---|
| 796 | for (int i=0; i<h.GetNbinsX(); i++)
|
|---|
| 797 | if (h.GetBinContent(i+1)>0)
|
|---|
| 798 | {
|
|---|
| 799 | sum += h.GetBinContent(i+1);
|
|---|
| 800 | n++;
|
|---|
| 801 | }
|
|---|
| 802 |
|
|---|
| 803 | if (n==0)
|
|---|
| 804 | return;
|
|---|
| 805 |
|
|---|
| 806 | TLatex text(0.47, 0.94, Form("\\bar{p} = %.1f%%", sum/n));
|
|---|
| 807 | text.SetBit(TLatex::kTextNDC);
|
|---|
| 808 | text.SetTextSize(0.04);
|
|---|
| 809 | text.Paint();
|
|---|
| 810 | }
|
|---|
| 811 |
|
|---|
| 812 | void MHEffectiveOnTime::UpdateRightAxis(TH1 &h)
|
|---|
| 813 | {
|
|---|
| 814 | const Double_t max = h.GetMaximum()*1.1;
|
|---|
| 815 | if (max==0)
|
|---|
| 816 | return;
|
|---|
| 817 |
|
|---|
| 818 | h.SetNormFactor(h.Integral()*gPad->GetUymax()/max);
|
|---|
| 819 |
|
|---|
| 820 | TGaxis *axis = (TGaxis*)gPad->FindObject("RightAxis");
|
|---|
| 821 | if (!axis)
|
|---|
| 822 | return;
|
|---|
| 823 |
|
|---|
| 824 | axis->SetX1(gPad->GetUxmax());
|
|---|
| 825 | axis->SetX2(gPad->GetUxmax());
|
|---|
| 826 | axis->SetY1(gPad->GetUymin());
|
|---|
| 827 | axis->SetY2(gPad->GetUymax());
|
|---|
| 828 | axis->SetWmax(max);
|
|---|
| 829 | }
|
|---|
| 830 |
|
|---|
| 831 | // --------------------------------------------------------------------------
|
|---|
| 832 | //
|
|---|
| 833 | // Prepare painting the histograms
|
|---|
| 834 | //
|
|---|
| 835 | void MHEffectiveOnTime::Paint(Option_t *opt)
|
|---|
| 836 | {
|
|---|
| 837 | TH1D *h=0;
|
|---|
| 838 | TPaveStats *st=0;
|
|---|
| 839 |
|
|---|
| 840 | TString o(opt);
|
|---|
| 841 | if (o==(TString)"fit")
|
|---|
| 842 | {
|
|---|
| 843 | TVirtualPad *pad = gPad;
|
|---|
| 844 |
|
|---|
| 845 | for (int x=0; x<2; x++)
|
|---|
| 846 | for (int y=0; y<3; y++)
|
|---|
| 847 | {
|
|---|
| 848 | TVirtualPad *p=gPad->GetPad(x+1)->GetPad(y+1);
|
|---|
| 849 | if (!(st = dynamic_cast<TPaveStats*>(p->GetPrimitive("stats"))))
|
|---|
| 850 | continue;
|
|---|
| 851 |
|
|---|
| 852 | if (st->GetOptStat()==11)
|
|---|
| 853 | continue;
|
|---|
| 854 |
|
|---|
| 855 | const Double_t y1 = st->GetY1NDC();
|
|---|
| 856 | const Double_t y2 = st->GetY2NDC();
|
|---|
| 857 | const Double_t x1 = st->GetX1NDC();
|
|---|
| 858 | const Double_t x2 = st->GetX2NDC();
|
|---|
| 859 |
|
|---|
| 860 | st->SetY1NDC((y2-y1)/3+y1);
|
|---|
| 861 | st->SetX1NDC((x2-x1)/3+x1);
|
|---|
| 862 | st->SetOptStat(11);
|
|---|
| 863 | }
|
|---|
| 864 |
|
|---|
| 865 | pad->GetPad(1)->cd(1);
|
|---|
| 866 | if ((h = (TH1D*)gPad->FindObject("ProjDeltaT"/*fNameProjDeltaT*/)))
|
|---|
| 867 | {
|
|---|
| 868 | h = fH2DeltaT.ProjectionX("ProjDeltaT"/*fNameProjDeltaT*/, -1, 9999, "E");
|
|---|
| 869 | if (h->GetEntries()>0)
|
|---|
| 870 | gPad->SetLogy();
|
|---|
| 871 | }
|
|---|
| 872 |
|
|---|
| 873 | pad->GetPad(2)->cd(1);
|
|---|
| 874 | if ((h = (TH1D*)gPad->FindObject("ProjTheta"/*fNameProjTheta*/)))
|
|---|
| 875 | fH2DeltaT.ProjectionY("ProjTheta"/*fNameProjTheta*/, -1, 9999, "E");
|
|---|
| 876 |
|
|---|
| 877 | if (!fIsFinalized)
|
|---|
| 878 | FitThetaBins();
|
|---|
| 879 | return;
|
|---|
| 880 | }
|
|---|
| 881 | if (o==(TString)"paint")
|
|---|
| 882 | {
|
|---|
| 883 | if ((h = (TH1D*)gPad->FindObject("ProjDeltaT"/*fNameProjDeltaT*/)))
|
|---|
| 884 | {
|
|---|
| 885 | Double_t res[7];
|
|---|
| 886 | FitH(h, res, kTRUE);
|
|---|
| 887 | PaintText(res);
|
|---|
| 888 | }
|
|---|
| 889 | return;
|
|---|
| 890 | }
|
|---|
| 891 |
|
|---|
| 892 | if (o==(TString)"timendf")
|
|---|
| 893 | {
|
|---|
| 894 | // UpdateRightAxis(fHTimeNDF);
|
|---|
| 895 | // FIXME: first bin?
|
|---|
| 896 | PaintProb(fHTimeProb);
|
|---|
| 897 | }
|
|---|
| 898 |
|
|---|
| 899 | if (o==(TString)"thetandf")
|
|---|
| 900 | {
|
|---|
| 901 | UpdateRightAxis(fHThetaNDF);
|
|---|
| 902 | // FIXME: first bin?
|
|---|
| 903 | PaintProb(fHThetaProb);
|
|---|
| 904 | }
|
|---|
| 905 |
|
|---|
| 906 | h=0;
|
|---|
| 907 |
|
|---|
| 908 | Double_t range=-1;
|
|---|
| 909 | if (o==(TString)"theta")
|
|---|
| 910 | {
|
|---|
| 911 | h = &fHThetaEffOn;
|
|---|
| 912 | UpdateRightAxis(fHThetaLambda);
|
|---|
| 913 | }
|
|---|
| 914 | if (o==(TString)"time")
|
|---|
| 915 | {
|
|---|
| 916 | h = &fHTimeEffOn;
|
|---|
| 917 | UpdateRightAxis(fHTimeLambda);
|
|---|
| 918 | range = h->GetXaxis()->GetXmax() - h->GetXaxis()->GetXmin();
|
|---|
| 919 | }
|
|---|
| 920 |
|
|---|
| 921 | if (!h)
|
|---|
| 922 | return;
|
|---|
| 923 |
|
|---|
| 924 | Double_t error = 0;
|
|---|
| 925 | for (int i=0; i<h->GetXaxis()->GetNbins(); i++)
|
|---|
| 926 | error += h->GetBinError(i);
|
|---|
| 927 |
|
|---|
| 928 | PaintText(h->Integral(), error, range);
|
|---|
| 929 | }
|
|---|
| 930 |
|
|---|
| 931 | void MHEffectiveOnTime::DrawRightAxis(const char *title)
|
|---|
| 932 | {
|
|---|
| 933 | TGaxis *axis = new TGaxis(gPad->GetUxmax(), gPad->GetUymin(),
|
|---|
| 934 | gPad->GetUxmax(), gPad->GetUymax(),
|
|---|
| 935 | 0, 1, 510, "+L");
|
|---|
| 936 | axis->SetName("RightAxis");
|
|---|
| 937 | axis->SetTitle(title);
|
|---|
| 938 | axis->SetTitleOffset(0.9);
|
|---|
| 939 | axis->SetTextColor(kGreen);
|
|---|
| 940 | axis->CenterTitle();
|
|---|
| 941 | axis->SetBit(kCanDelete);
|
|---|
| 942 | axis->Draw();
|
|---|
| 943 | }
|
|---|
| 944 |
|
|---|
| 945 | // --------------------------------------------------------------------------
|
|---|
| 946 | //
|
|---|
| 947 | // Draw the histogram
|
|---|
| 948 | //
|
|---|
| 949 | void MHEffectiveOnTime::Draw(Option_t *opt)
|
|---|
| 950 | {
|
|---|
| 951 | TVirtualPad *pad = gPad ? gPad : MakeDefCanvas(this);
|
|---|
| 952 | pad->SetBorderMode(0);
|
|---|
| 953 |
|
|---|
| 954 | AppendPad("fit");
|
|---|
| 955 |
|
|---|
| 956 | pad->Divide(2, 1, 1e-10, 1e-10);
|
|---|
| 957 |
|
|---|
| 958 | TH1 *h;
|
|---|
| 959 |
|
|---|
| 960 | pad->cd(1);
|
|---|
| 961 | gPad->SetBorderMode(0);
|
|---|
| 962 | gPad->Divide(1, 3, 1e-10, 1e-10);
|
|---|
| 963 | pad->GetPad(1)->cd(1);
|
|---|
| 964 | gPad->SetBorderMode(0);
|
|---|
| 965 | h = fH2DeltaT.ProjectionX("ProjDeltaT"/*fNameProjDeltaT*/, -1, 9999, "E");
|
|---|
| 966 | h->SetTitle("Distribution of \\Delta t [s]");
|
|---|
| 967 | h->SetXTitle("\\Delta t [s]");
|
|---|
| 968 | h->SetYTitle("Counts");
|
|---|
| 969 | h->SetDirectory(NULL);
|
|---|
| 970 | h->SetMarkerStyle(kFullDotMedium);
|
|---|
| 971 | h->SetBit(kCanDelete);
|
|---|
| 972 | h->Draw();
|
|---|
| 973 | AppendPad("paint");
|
|---|
| 974 |
|
|---|
| 975 | pad->GetPad(1)->cd(2);
|
|---|
| 976 | gPad->SetBorderMode(0);
|
|---|
| 977 | fHTimeProb.Draw();
|
|---|
| 978 | AppendPad("timendf");
|
|---|
| 979 | //fHTimeNDF.Draw("same");
|
|---|
| 980 | //DrawRightAxis("NDF");
|
|---|
| 981 |
|
|---|
| 982 | pad->GetPad(1)->cd(3);
|
|---|
| 983 | gPad->SetBorderMode(0);
|
|---|
| 984 | fHTimeEffOn.Draw();
|
|---|
| 985 | AppendPad("time");
|
|---|
| 986 | fHTimeLambda.Draw("same");
|
|---|
| 987 | DrawRightAxis("\\lambda [s^{-1}]");
|
|---|
| 988 |
|
|---|
| 989 | pad->cd(2);
|
|---|
| 990 | gPad->SetBorderMode(0);
|
|---|
| 991 | gPad->Divide(1, 3, 1e-10, 1e-10);
|
|---|
| 992 |
|
|---|
| 993 | pad->GetPad(2)->cd(1);
|
|---|
| 994 | gPad->SetBorderMode(0);
|
|---|
| 995 | h = fH2DeltaT.ProjectionY("ProjTheta"/*fNameProjTheta*/, -1, 9999, "E");
|
|---|
| 996 | h->SetTitle("Distribution of \\Theta [\\circ]");
|
|---|
| 997 | h->SetXTitle("\\Theta [\\circ]");
|
|---|
| 998 | h->SetYTitle("Counts");
|
|---|
| 999 | h->SetDirectory(NULL);
|
|---|
| 1000 | h->SetMarkerStyle(kFullDotMedium);
|
|---|
| 1001 | h->SetBit(kCanDelete);
|
|---|
| 1002 | h->GetYaxis()->SetTitleOffset(1.1);
|
|---|
| 1003 | h->Draw();
|
|---|
| 1004 |
|
|---|
| 1005 | pad->GetPad(2)->cd(2);
|
|---|
| 1006 | gPad->SetBorderMode(0);
|
|---|
| 1007 | fHThetaProb.Draw();
|
|---|
| 1008 | AppendPad("thetandf");
|
|---|
| 1009 | fHThetaNDF.Draw("same");
|
|---|
| 1010 | DrawRightAxis("NDF");
|
|---|
| 1011 |
|
|---|
| 1012 | pad->GetPad(2)->cd(3);
|
|---|
| 1013 | gPad->SetBorderMode(0);
|
|---|
| 1014 | fHThetaEffOn.Draw();
|
|---|
| 1015 | AppendPad("theta");
|
|---|
| 1016 | fHThetaLambda.Draw("same");
|
|---|
| 1017 | DrawRightAxis("\\lambda [s^{-1}]");
|
|---|
| 1018 | }
|
|---|
| 1019 |
|
|---|
| 1020 | // --------------------------------------------------------------------------
|
|---|
| 1021 | //
|
|---|
| 1022 | // The following resources are available:
|
|---|
| 1023 | //
|
|---|
| 1024 | // MHEffectiveOnTime.FistBin: 3
|
|---|
| 1025 | // MHEffectiveOnTime.NumEvents: 12000
|
|---|
| 1026 | //
|
|---|
| 1027 | Int_t MHEffectiveOnTime::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 1028 | {
|
|---|
| 1029 | Bool_t rc = kFALSE;
|
|---|
| 1030 | if (IsEnvDefined(env, prefix, "FirstBin", print))
|
|---|
| 1031 | {
|
|---|
| 1032 | rc = kTRUE;
|
|---|
| 1033 | SetFirstBin(GetEnvValue(env, prefix, "FirstBin", (Int_t)fFirstBin));
|
|---|
| 1034 | }
|
|---|
| 1035 | if (IsEnvDefined(env, prefix, "NumEvents", print))
|
|---|
| 1036 | {
|
|---|
| 1037 | rc = kTRUE;
|
|---|
| 1038 | SetNumEvents(GetEnvValue(env, prefix, "NumEvents", (Int_t)fNumEvents));
|
|---|
| 1039 | }
|
|---|
| 1040 | return rc;
|
|---|
| 1041 | }
|
|---|