| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Christoph Kolodziejski, 11/2004  <mailto:> | 
|---|
| 19 | !   Author(s): Thomas Bretz, 11/2004  <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 20 | ! | 
|---|
| 21 | !   Copyright: MAGIC Software Development, 2004-2005 | 
|---|
| 22 | ! | 
|---|
| 23 | ! | 
|---|
| 24 | \* ======================================================================== */ | 
|---|
| 25 |  | 
|---|
| 26 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 27 | // | 
|---|
| 28 | // MHexagonalFT | 
|---|
| 29 | // | 
|---|
| 30 | // This is a class representating a (fast) fourier transformation explicitly | 
|---|
| 31 | // for hexagonal geometries as described in astro-ph/0409388. | 
|---|
| 32 | // | 
|---|
| 33 | // | 
|---|
| 34 | // WARNING: | 
|---|
| 35 | // ======== | 
|---|
| 36 | // Be carefull using the fast transformation (Prepare())! The precalculation | 
|---|
| 37 | // consumes a lot of memory. fPsi has the size of 2*n^4 (while n is the | 
|---|
| 38 | // number of rows in fourier space). For the enhanced MAGIC camery fPsi has | 
|---|
| 39 | // the size 27691682*sizeof(float) = 105.6MB (Std MAGIC: ~12MB) | 
|---|
| 40 | // | 
|---|
| 41 | // The runtime is more or less determined by the speed of accessing a | 
|---|
| 42 | // huge amount of memory (see above) sequentially. | 
|---|
| 43 | // | 
|---|
| 44 | // | 
|---|
| 45 | // Coordinate systems: | 
|---|
| 46 | // =================== | 
|---|
| 47 | // | 
|---|
| 48 | //  original hexagonal structure     enhanced hexagonal structure | 
|---|
| 49 | //  ----------------------------     ---------------------------- | 
|---|
| 50 | // | 
|---|
| 51 | //                            structure | 
|---|
| 52 | //                            --------- | 
|---|
| 53 | // | 
|---|
| 54 | //                h h h                  f f h h h f f | 
|---|
| 55 | //               h h h h                  f h h h h f | 
|---|
| 56 | //              h h h h h       ----->     h h h h h | 
|---|
| 57 | //               h h h h                    h h h h | 
|---|
| 58 | //                h h h                      h h h | 
|---|
| 59 | //                                            f f | 
|---|
| 60 | //                                             f | 
|---|
| 61 | // | 
|---|
| 62 | //                            numbering | 
|---|
| 63 | //                            --------- | 
|---|
| 64 | //                d c b                  m n o p q r s | 
|---|
| 65 | //               e 4 3 a                  g h i j k l | 
|---|
| 66 | //              f 5 1 2 9       ----->     b c d e f | 
|---|
| 67 | //               g 6 7 8                    7 8 9 a | 
|---|
| 68 | //                h i j                      4 5 6 | 
|---|
| 69 | //                                            2 3 | 
|---|
| 70 | //                                             1 | 
|---|
| 71 | // | 
|---|
| 72 | // In reality the fourier space looks like because of symmetries: | 
|---|
| 73 | // | 
|---|
| 74 | //            real part                 imaginary part | 
|---|
| 75 | //            ---------                 -------------- | 
|---|
| 76 | //          m n o p o n m          m   n   o   0  -o  -n  -m | 
|---|
| 77 | //           g h i i h g             g   h   i  -i  -h  -g | 
|---|
| 78 | //            b c d c b                b   c   0  -c  -b | 
|---|
| 79 | //             7 8 8 7                   7   8  -8  -7 | 
|---|
| 80 | //              4 5 4                      4   0  -4 | 
|---|
| 81 | //               2 2                         2  -2 | 
|---|
| 82 | //                1                            0 | 
|---|
| 83 | // | 
|---|
| 84 | //         column: GetK()                  row: GetM() | 
|---|
| 85 | //         --------------                  ----------- | 
|---|
| 86 | //          6 5 4 3 2 1 0                 0 1 2 3 4 5 6 | 
|---|
| 87 | //           5 4 3 2 1 0                   0 1 2 3 4 5 | 
|---|
| 88 | //            4 3 2 1 0                     0 1 2 3 4 | 
|---|
| 89 | //             3 2 1 0                       0 1 2 3 | 
|---|
| 90 | //              2 1 0                         0 1 2 | 
|---|
| 91 | //               1 0                           0 1 | 
|---|
| 92 | //                0                             0 | 
|---|
| 93 | // | 
|---|
| 94 | //       row: GetRow() (m+k)        column: GetCol() (m-k) | 
|---|
| 95 | //       -------------------        ---------------------- | 
|---|
| 96 | //          6 6 6 6 6 6 6         -6  -4  -2   0   2   4   6 | 
|---|
| 97 | //           5 5 5 5 5 5            -5  -3  -1   1   3   5 | 
|---|
| 98 | //            4 4 4 4 4               -4  -2   0   2   4 | 
|---|
| 99 | //             3 3 3 3                  -3  -1   1   3 | 
|---|
| 100 | //              2 2 2                     -2   0   2 | 
|---|
| 101 | //               1 1                        -1   1 | 
|---|
| 102 | //                0                            0 | 
|---|
| 103 | // | 
|---|
| 104 | // | 
|---|
| 105 | // The coordinates of the pixels in the triangle are: | 
|---|
| 106 | // | 
|---|
| 107 | //    Double_t dx; // Distance of too pixels in x | 
|---|
| 108 | //    Double_t dy; // Distance of to pixel rows in y | 
|---|
| 109 | //    Int_t idx;   // Index of pixel in triangle (see above) | 
|---|
| 110 | // | 
|---|
| 111 | //    const Float_t x = dx*GetCol(idx); | 
|---|
| 112 | //    const Float_t y = dy*Int_t(GetRow(idx)-2*GetNumRows()/3); | 
|---|
| 113 | // | 
|---|
| 114 | // You can use MGeomCam::GetPixelIdxXY(x, y) to get the corresponding index | 
|---|
| 115 | // in space space. | 
|---|
| 116 | // | 
|---|
| 117 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 118 | #include "MHexagonalFT.h" | 
|---|
| 119 |  | 
|---|
| 120 | #include <TMath.h> | 
|---|
| 121 |  | 
|---|
| 122 | #include "MLog.h" | 
|---|
| 123 | #include "MLogManip.h" | 
|---|
| 124 |  | 
|---|
| 125 | #include "MArrayD.h" | 
|---|
| 126 |  | 
|---|
| 127 | ClassImp(MHexagonalFT); | 
|---|
| 128 |  | 
|---|
| 129 | using namespace std; | 
|---|
| 130 |  | 
|---|
| 131 | // --------------------------------------------------------------------------- | 
|---|
| 132 | // | 
|---|
| 133 | //  Default Constructor - empty | 
|---|
| 134 | // | 
|---|
| 135 | MHexagonalFT::MHexagonalFT() | 
|---|
| 136 | { | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | // --------------------------------------------------------------------------- | 
|---|
| 140 | // | 
|---|
| 141 | //  Default Constructor - num is the number of lines the fourier space has. | 
|---|
| 142 | //  It calls Prepare to fill the arrays with the necessary coefficients. | 
|---|
| 143 | // | 
|---|
| 144 | //  Here are some simple rules to calculate parameters in a hexagonal space: | 
|---|
| 145 | // | 
|---|
| 146 | // Number of Rings (r) ---> Number of Pixels (p) | 
|---|
| 147 | // p = 3*r*(r-1)+1 | 
|---|
| 148 | // | 
|---|
| 149 | // Number of Pixels (p) ---> Number of Rings (r) | 
|---|
| 150 | // p = (sqrt(9+12*(p-1))+3)/6 | 
|---|
| 151 | // | 
|---|
| 152 | // Number of pixels at one border == number of rings (r) | 
|---|
| 153 | // Row of border                  == number of rings (r) | 
|---|
| 154 | // | 
|---|
| 155 | // Number of rows to get a triangle: 3r-2 | 
|---|
| 156 | // | 
|---|
| 157 | MHexagonalFT::MHexagonalFT(Int_t num) | 
|---|
| 158 | { | 
|---|
| 159 | Prepare(num); | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | // --------------------------------------------------------------------------- | 
|---|
| 163 | // | 
|---|
| 164 | // Calculate the contents of: fM, fK, fP, fIdx and fPsi. | 
|---|
| 165 | // | 
|---|
| 166 | // While fPsi are the fourier coefficients, fM and fK are the hexagonal x and | 
|---|
| 167 | // y coordinates of the pixel corresponding to the index i which is the | 
|---|
| 168 | // common index of all arrays. fP is P(i,j) for all pixels. | 
|---|
| 169 | // | 
|---|
| 170 | // fIdx is also filled and used for reverse mapping. Due to the geometry | 
|---|
| 171 | // the right and left side of the fourier space triangle has identical | 
|---|
| 172 | // values. fIdx 'maps' the indices from the right to the left side. | 
|---|
| 173 | // | 
|---|
| 174 | void MHexagonalFT::Prepare(Int_t num) | 
|---|
| 175 | { | 
|---|
| 176 | fNumRows = num; | 
|---|
| 177 |  | 
|---|
| 178 | fPsi.Set(num*num*num*num*2); | 
|---|
| 179 |  | 
|---|
| 180 | Int_t lim = num*(num+1)/2; | 
|---|
| 181 |  | 
|---|
| 182 | fM.Set(lim); | 
|---|
| 183 | fK.Set(lim); | 
|---|
| 184 | fP.Set(lim); | 
|---|
| 185 | fIdx.Set(lim); | 
|---|
| 186 |  | 
|---|
| 187 | for(int j=0; j<num; j++) | 
|---|
| 188 | { | 
|---|
| 189 | for(int n=0; n+j<num; n++) | 
|---|
| 190 | { | 
|---|
| 191 | int idx1 = (j+n)*(j+n+1)/2 + j; | 
|---|
| 192 |  | 
|---|
| 193 | fM[idx1]=n; | 
|---|
| 194 | fK[idx1]=j; | 
|---|
| 195 |  | 
|---|
| 196 | fP[idx1]=P(j,n); | 
|---|
| 197 |  | 
|---|
| 198 | for(int k=0; k<num; k++) | 
|---|
| 199 | { | 
|---|
| 200 | for(int m=0; m+k<num; m++) | 
|---|
| 201 | { | 
|---|
| 202 | const Double_t dx = TMath::Pi()*(m-k)/(num-1)/3; | 
|---|
| 203 | const Double_t dy = TMath::Pi()*(m+k)/(num-1); | 
|---|
| 204 |  | 
|---|
| 205 | const Double_t cos1 = TMath::Cos(dy*(j+n)); | 
|---|
| 206 | const Double_t cos2 = TMath::Cos(dy*j); | 
|---|
| 207 | const Double_t cos3 = TMath::Cos(dy*n); | 
|---|
| 208 |  | 
|---|
| 209 | const Double_t psire = 2*( | 
|---|
| 210 | +cos1*TMath::Cos(dx*(j-n)) | 
|---|
| 211 | +cos2*TMath::Cos(dx*(j+2*n)) | 
|---|
| 212 | +cos3*TMath::Cos(dx*(2*j+n))); | 
|---|
| 213 |  | 
|---|
| 214 | const Double_t psiim = 2*( | 
|---|
| 215 | +cos1*TMath::Sin(dx*(j-n)) | 
|---|
| 216 | +cos2*TMath::Sin(dx*(j+2*n)) | 
|---|
| 217 | -cos3*TMath::Sin(dx*(2*j+n))); | 
|---|
| 218 |  | 
|---|
| 219 | const Int_t idx3 = (k+m)*(k+m+1)/2 + k; | 
|---|
| 220 | const Int_t id1  = idx1*lim + idx3; | 
|---|
| 221 |  | 
|---|
| 222 | fPsi[id1*2]   = psire; | 
|---|
| 223 | fPsi[id1*2+1] = psiim; | 
|---|
| 224 | } | 
|---|
| 225 | } | 
|---|
| 226 | } | 
|---|
| 227 | } | 
|---|
| 228 |  | 
|---|
| 229 | for (int idx1=0; idx1<lim; idx1++) | 
|---|
| 230 | { | 
|---|
| 231 | int n = fM[idx1]; | 
|---|
| 232 | int j = fK[idx1]; | 
|---|
| 233 |  | 
|---|
| 234 | int idx0; | 
|---|
| 235 | for (idx0=0; idx0<lim; idx0++) | 
|---|
| 236 | if (fM[idx0]==j && fK[idx0]==n) | 
|---|
| 237 | break; | 
|---|
| 238 |  | 
|---|
| 239 | fIdx[idx1]=idx0; | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | // --------------------------------------------------------------------------- | 
|---|
| 245 | // | 
|---|
| 246 | // Do a fast forward tranformation. Because all coefficients are | 
|---|
| 247 | // precalculated, the tranformation is reduced to a simple pointer based | 
|---|
| 248 | // loop over the coeffiecients multiplied with the corresponding input | 
|---|
| 249 | // values. | 
|---|
| 250 | // | 
|---|
| 251 | // Parameters: | 
|---|
| 252 | //  inre: array storing the real part of the input (eg. pixel contents) | 
|---|
| 253 | // outre: array storing the real part of the output | 
|---|
| 254 | // outim: array storing the imaginary part of the output | 
|---|
| 255 | // | 
|---|
| 256 | // inre must be of the size of the fourier space triangle. The pixel | 
|---|
| 257 | // contents must have been mapped into this new space with the proper | 
|---|
| 258 | // pixel indices. The size of outre and outim is set accordingly. | 
|---|
| 259 | // | 
|---|
| 260 | // After initialization (Prepare()) you can get the size of the arrays with | 
|---|
| 261 | // GetNumKnots() | 
|---|
| 262 | // | 
|---|
| 263 | // For the definition of the coordinate system see class description | 
|---|
| 264 | // | 
|---|
| 265 | void MHexagonalFT::TransformFastFWD(const MArrayD &inre, MArrayD &outre, | 
|---|
| 266 | MArrayD &outim) const | 
|---|
| 267 | { | 
|---|
| 268 | const UInt_t num = fP.GetSize(); | 
|---|
| 269 |  | 
|---|
| 270 | if (inre.GetSize()!=num) | 
|---|
| 271 | { | 
|---|
| 272 | cout << "ERROR - MHexagonalFT prepared for different size." << endl; | 
|---|
| 273 | return; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | outre.Set(num); | 
|---|
| 277 | outim.Set(num); | 
|---|
| 278 |  | 
|---|
| 279 | const Int_t cnt = 108*(fNumRows-1)*(fNumRows-1); | 
|---|
| 280 |  | 
|---|
| 281 | const Float_t *endp = fP.GetArray()+num; | 
|---|
| 282 |  | 
|---|
| 283 | for (UInt_t idx1=0; idx1<num; idx1++) | 
|---|
| 284 | { | 
|---|
| 285 | if (fK[idx1]>fM[idx1]) | 
|---|
| 286 | continue; | 
|---|
| 287 |  | 
|---|
| 288 | Double_t sumre=0; | 
|---|
| 289 | Double_t sumim=0; | 
|---|
| 290 |  | 
|---|
| 291 | Float_t  *psi = fPsi.GetArray() + idx1*num*2; | 
|---|
| 292 | Float_t  *p   = fP.GetArray(); | 
|---|
| 293 | Double_t *re  = inre.GetArray(); | 
|---|
| 294 |  | 
|---|
| 295 | // 1st access to psi: const Float_t psire = *psi++; | 
|---|
| 296 | // 2nd access to psi: const Float_t psiim = *psi++; | 
|---|
| 297 | // sumre += f * *psire; | 
|---|
| 298 | // sumim += f * *psiim; | 
|---|
| 299 | while (p<endp) | 
|---|
| 300 | { | 
|---|
| 301 | const Double_t f = *p++ * *re++; | 
|---|
| 302 |  | 
|---|
| 303 | sumre += f * *psi++; | 
|---|
| 304 | sumim += f * *psi++; | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | const Double_t factor2 = fP[idx1]/cnt; | 
|---|
| 308 |  | 
|---|
| 309 | outre[fIdx[idx1]] =  (outre[idx1] =  factor2 * sumre); | 
|---|
| 310 | outim[fIdx[idx1]] = -(outim[idx1] = -factor2 * sumim); | 
|---|
| 311 | } | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | // --------------------------------------------------------------------------- | 
|---|
| 315 | // | 
|---|
| 316 | // Do a fast backward tranformation. Because all coefficients are | 
|---|
| 317 | // precalculated, the tranformation is reduced to a simple pointer based | 
|---|
| 318 | // loop over the coeffiecients multiplied with the corresponding input | 
|---|
| 319 | // values. | 
|---|
| 320 | // | 
|---|
| 321 | // Parameters: | 
|---|
| 322 | //  inre: outre of TransformFastBwd | 
|---|
| 323 | //  inim: outim of TransformFastBwd | 
|---|
| 324 | // outre: backward tranformed real part of the resulting | 
|---|
| 325 | // | 
|---|
| 326 | // inre and inim must be of the size of the fourier space triangle. The | 
|---|
| 327 | // pixel contents must have been mapped into this new space with the proper | 
|---|
| 328 | // pixel indices. The size of outre is set accordingly. | 
|---|
| 329 | // | 
|---|
| 330 | // After initialization (Prepare()) you can get the size of the arrays with | 
|---|
| 331 | // GetNumKnots() | 
|---|
| 332 | // | 
|---|
| 333 | // For the definition of the coordinate system see class description | 
|---|
| 334 | // | 
|---|
| 335 | void MHexagonalFT::TransformFastBWD(const MArrayD &inre, const MArrayD &inim, | 
|---|
| 336 | MArrayD &outre) const | 
|---|
| 337 | { | 
|---|
| 338 | const UInt_t num = fP.GetSize(); | 
|---|
| 339 |  | 
|---|
| 340 | // Sanity check: check size of arrays | 
|---|
| 341 | if (inre.GetSize()!=num) | 
|---|
| 342 | { | 
|---|
| 343 | cout << "ERROR - MHexagonalFT prepared for different size." << endl; | 
|---|
| 344 | return; | 
|---|
| 345 | } | 
|---|
| 346 | if (inim.GetSize()!=num) | 
|---|
| 347 | { | 
|---|
| 348 | cout << "ERROR - MHexagonalFT prepared for different size." << endl; | 
|---|
| 349 | return; | 
|---|
| 350 | } | 
|---|
| 351 | outre.Set(num); | 
|---|
| 352 |  | 
|---|
| 353 | const Double_t *endre = inre.GetArray()+num; | 
|---|
| 354 |  | 
|---|
| 355 | for (UInt_t idx1=0; idx1<num; idx1++) | 
|---|
| 356 | { | 
|---|
| 357 | Float_t  *psi = fPsi.GetArray() + idx1*num*2; | 
|---|
| 358 | Double_t *im  = inim.GetArray(); | 
|---|
| 359 | Double_t *re  = inre.GetArray(); | 
|---|
| 360 |  | 
|---|
| 361 | Double_t sumre=0; | 
|---|
| 362 | while (re<endre) | 
|---|
| 363 | { | 
|---|
| 364 | const Float_t psire = *psi++; | 
|---|
| 365 | const Float_t psiim = *psi++; | 
|---|
| 366 |  | 
|---|
| 367 | sumre += *re++ * psire - *im++ * psiim; | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | outre[idx1] = sumre; | 
|---|
| 371 | } | 
|---|
| 372 | } | 
|---|
| 373 |  | 
|---|
| 374 | // --------------------------------------------------------------------------- | 
|---|
| 375 | // | 
|---|
| 376 | // This is a slow (direct) version of the tranformation. It is identical | 
|---|
| 377 | // for forward and backward tranformation. | 
|---|
| 378 | // | 
|---|
| 379 | // The whole calculation is done straight forward without any precalculation. | 
|---|
| 380 | // | 
|---|
| 381 | // Parameters: | 
|---|
| 382 | //  inre:  real part of input | 
|---|
| 383 | //  inim:  imaginary part of input | 
|---|
| 384 | //  outre: real part of output | 
|---|
| 385 | //  outim: imaginary part of output | 
|---|
| 386 | //  fwd:   kTRUE for forward, kFALSE for backward transformations | 
|---|
| 387 | // | 
|---|
| 388 | // After initialization (Prepare()) you can get the size of the arrays with | 
|---|
| 389 | // GetNumKnots() | 
|---|
| 390 | // | 
|---|
| 391 | // For the definition of the coordinate system see class description | 
|---|
| 392 | // | 
|---|
| 393 | // It is currently not tested! | 
|---|
| 394 | // | 
|---|
| 395 | void MHexagonalFT::TransformSlow(const MArrayD &inre, const MArrayD &inim, | 
|---|
| 396 | MArrayD &outre,      MArrayD &outim, | 
|---|
| 397 | Bool_t fwd) | 
|---|
| 398 | { | 
|---|
| 399 | static const Double_t fgSqrt3 = TMath::Sqrt(3.); | 
|---|
| 400 | static const Double_t fgTan30 = TMath::Tan(30*TMath::DegToRad())*3; | 
|---|
| 401 |  | 
|---|
| 402 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize()); | 
|---|
| 403 | Int_t cnt = 108*(num-1)*(num-1); | 
|---|
| 404 | Int_t inv = fwd?-1:1; | 
|---|
| 405 |  | 
|---|
| 406 | // FIXME: For p(j,n) | 
|---|
| 407 | fNumRows = num; | 
|---|
| 408 |  | 
|---|
| 409 | for(int j=0; j<num; j++) | 
|---|
| 410 | { | 
|---|
| 411 | for(int n=0; n+j<num; n++) | 
|---|
| 412 | { | 
|---|
| 413 | if (j-n>0 && fwd) | 
|---|
| 414 | continue; | 
|---|
| 415 |  | 
|---|
| 416 | Double_t sumre=0; | 
|---|
| 417 | Double_t sumim=0; | 
|---|
| 418 |  | 
|---|
| 419 | for(int k=0; k<num; k++) | 
|---|
| 420 | { | 
|---|
| 421 | for(int m=0; m+k<num; m++) | 
|---|
| 422 | { | 
|---|
| 423 | Double_t dx = 0.5*(m-k)/num; | 
|---|
| 424 | Double_t dy = 0.5*(m+k)/num*fgTan30; | 
|---|
| 425 |  | 
|---|
| 426 | dx *= TMath::TwoPi()/3; | 
|---|
| 427 | dy *= TMath::TwoPi()/fgSqrt3; | 
|---|
| 428 |  | 
|---|
| 429 | const Double_t cos1 = TMath::Cos(dy*(j+n)); | 
|---|
| 430 | const Double_t cos2 = TMath::Cos(dy*j); | 
|---|
| 431 | const Double_t cos3 = TMath::Cos(dy*n); | 
|---|
| 432 |  | 
|---|
| 433 | //Alternatie nach Paper: | 
|---|
| 434 | const Double_t psire = 2*( | 
|---|
| 435 | +cos1*TMath::Cos(dx*(j-n)) | 
|---|
| 436 | +cos2*TMath::Cos(dx*(j+2*n)) | 
|---|
| 437 | +cos3*TMath::Cos(dx*(2*j+n))); | 
|---|
| 438 |  | 
|---|
| 439 | const Double_t psiim = 2*inv*( | 
|---|
| 440 | +cos1*TMath::Sin(dx*(j-n)) | 
|---|
| 441 | +cos2*TMath::Sin(dx*(j+2*n)) | 
|---|
| 442 | -cos3*TMath::Sin(dx*(2*j+n))); | 
|---|
| 443 |  | 
|---|
| 444 | const Double_t factor = (fwd==1?P(k,m):1.); | 
|---|
| 445 |  | 
|---|
| 446 | sumre += factor * (inre[k*num+m]*psire - inim[k*num+m]*psiim); | 
|---|
| 447 | sumim += factor * (inre[k*num+m]*psiim + inim[k*num+m]*psire); | 
|---|
| 448 | } | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | const Double_t factor = (fwd==1?P(j,n)/cnt:1.); | 
|---|
| 452 |  | 
|---|
| 453 | outre[j*num+n] = factor * sumre; | 
|---|
| 454 | outim[j*num+n] = factor * sumim; | 
|---|
| 455 |  | 
|---|
| 456 | if (fwd) | 
|---|
| 457 | { | 
|---|
| 458 | outre[n*num+j] =  factor * sumre; | 
|---|
| 459 | outim[n*num+j] = -factor * sumim; | 
|---|
| 460 | } | 
|---|
| 461 | } | 
|---|
| 462 | } | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 |  | 
|---|