/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 07/2001 ! ! Copyright: MAGIC Software Development, 2000-2002 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // // MH // // // // This is a base tasks for mars histograms. It defines a common interface // // for filling the histograms with events (MH::Fill) which is used by a // // common 'filler' And a SetupFill member function which may be used // // by MFillH. The idea is: // // 1) If your Histogram can become filled by one single container // // (like MHHillas) you overload MH::Fill and it gets called with // // a pointer to the container with which it should be filled. // // // // 2) You histogram needs several containers to get filled. Than you // // have to overload MH::SetupFill and get the necessary objects from // // the parameter list. Use this objects in Fill to fill your // // histogram. // // // // If you want to create your own histogram class the new class must be // // derived from MH (instead of the base MParContainer) and you must // // the fill function of MH. This is the function which is called to fill // // the histogram(s) by the data of a corresponding parameter container. // // // // Remark: the static member function (eg MakeDefCanvas) can be called // // from everywhere using: MH::MakeDefCanvas(...) // // // ////////////////////////////////////////////////////////////////////////////// #include "MH.h" #include #include #include #include // TStyle::GetScreenFactor #include #include #include #include #include #if ROOT_VERSION_CODE > ROOT_VERSION(3,04,01) #include #endif #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MParContainer.h" #include "MBinning.h" ClassImp(MH); using namespace std; // -------------------------------------------------------------------------- // // Default Constructor. It sets name and title only. Typically you won't // need to change this. // MH::MH(const char *name, const char *title) { // // set the name and title of this object // fName = name ? name : "MH"; fTitle = title ? title : "Base class for Mars histograms"; } // -------------------------------------------------------------------------- // // If you want to use the automatic filling of your derived class you // must overload this function. If it is not overloaded you cannot use // FillH with this class. The argument is a pointer to a container // in your paremeter list which is specified in the MFillH constructor. // If you are not going to use it you should at least add // Bool_t MH::Fill(const MParContainer *) { return kTRUE; } // to your class definition. // Bool_t MH::Fill(const MParContainer *par, const Stat_t w) { *fLog << warn << GetDescriptor() << ": Fill not overloaded! Can't be used!" << endl; return kFALSE; } // -------------------------------------------------------------------------- // // This virtual function is ment as a generalized interface to retrieve // a pointer to a root histogram from the MH-derived class. // TH1 *MH::GetHistByName(const TString name) { *fLog << warn << GetDescriptor() << ": GetHistByName not overloaded! Can't be used!" << endl; return NULL; } // -------------------------------------------------------------------------- // // This is a function which should replace the creation of default // canvases like root does. Because this is inconvinient in some aspects. // need to change this. // You can specify a name for the default canvas and a title. Also // width and height can be given. // MakeDefCanvas looks for a canvas with the given name. If now name is // given the DefCanvasName of root is used. If no such canvas is existing // it is created and returned. If such a canvas already exists a new canvas // with a name plus anumber is created (the number is calculated by the // number of all existing canvases plus one) // // Normally the canvas size is scaled with gStyle->GetScreenFactor() so // that on all screens it looks like the same part of the screen. // To suppress this scaling use usescreenfactor=kFALSE. In this case // you specify directly the size of the embedded pad. // TCanvas *MH::MakeDefCanvas(TString name, const char *title, UInt_t w, UInt_t h, Bool_t usescreenfactor) { const TList *list = (TList*)gROOT->GetListOfCanvases(); if (name.IsNull()) name = gROOT->GetDefCanvasName(); if (list->FindObject(name)) name += Form(" <%d>", list->GetSize()+1); if (!usescreenfactor) { const Float_t cx = gStyle->GetScreenFactor(); w += 4; h += 28; w = (int)(w/cx+1); h = (int)(h/cx+1); } return new TCanvas(name, title, w, h); } // -------------------------------------------------------------------------- // // This function works like MakeDefCanvas(name, title, w, h) but name // and title are retrieved from the given TObject. // // Normally the canvas size is scaled with gStyle->GetScreenFactor() so // that on all screens it looks like the same part of the screen. // To suppress this scaling use usescreenfactor=kFALSE. In this case // you specify directly the size of the embedded pad. // TCanvas *MH::MakeDefCanvas(const TObject *obj, UInt_t w, UInt_t h, Bool_t usescreenfactor) { if (!usescreenfactor) { const Float_t cx = gStyle->GetScreenFactor(); w += 4; h += 28; h = (int)(h/cx+1); w = (int)(w/cx+1); } return MakeDefCanvas(obj->GetName(), obj->GetTitle(), w, h); } // -------------------------------------------------------------------------- // // Applies a given binning to a 1D-histogram // void MH::SetBinning(TH1 *h, const MBinning *binsx) { // // Another strange behaviour: TAxis::Set deletes the axis title! // TAxis &x = *h->GetXaxis(); #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) TString xtitle = x.GetTitle(); #endif // // This is a necessary workaround if one wants to set // non-equidistant bins after the initialization // TH1D::fNcells must be set correctly. // h->SetBins(binsx->GetNumBins(), 0, 1); // // Set the binning of the current histogram to the binning // in one of the two given histograms // x.Set(binsx->GetNumBins(), binsx->GetEdges()); #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) x.SetTitle(xtitle); #endif } // -------------------------------------------------------------------------- // // Applies given binnings to the two axis of a 2D-histogram // void MH::SetBinning(TH2 *h, const MBinning *binsx, const MBinning *binsy) { TAxis &x = *h->GetXaxis(); TAxis &y = *h->GetYaxis(); // // Another strange behaviour: TAxis::Set deletes the axis title! // #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) TString xtitle = x.GetTitle(); TString ytitle = y.GetTitle(); #endif // // This is a necessary workaround if one wants to set // non-equidistant bins after the initialization // TH1D::fNcells must be set correctly. // h->SetBins(binsx->GetNumBins(), 0, 1, binsy->GetNumBins(), 0, 1); // // Set the binning of the current histogram to the binning // in one of the two given histograms // x.Set(binsx->GetNumBins(), binsx->GetEdges()); y.Set(binsy->GetNumBins(), binsy->GetEdges()); #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) x.SetTitle(xtitle); y.SetTitle(ytitle); #endif } // -------------------------------------------------------------------------- // // Applies given binnings to the three axis of a 3D-histogram // void MH::SetBinning(TH3 *h, const MBinning *binsx, const MBinning *binsy, const MBinning *binsz) { // // Another strange behaviour: TAxis::Set deletes the axis title! // TAxis &x = *h->GetXaxis(); TAxis &y = *h->GetYaxis(); TAxis &z = *h->GetZaxis(); #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) TString xtitle = x.GetTitle(); TString ytitle = y.GetTitle(); TString ztitle = z.GetTitle(); #endif // // This is a necessary workaround if one wants to set // non-equidistant bins after the initialization // TH1D::fNcells must be set correctly. // h->SetBins(binsx->GetNumBins(), 0, 1, binsy->GetNumBins(), 0, 1, binsz->GetNumBins(), 0, 1); // // Set the binning of the current histogram to the binning // in one of the two given histograms // x.Set(binsx->GetNumBins(), binsx->GetEdges()); y.Set(binsy->GetNumBins(), binsy->GetEdges()); z.Set(binsz->GetNumBins(), binsz->GetEdges()); #if ROOT_VERSION_CODE < ROOT_VERSION(3,03,03) x.SetTitle(xtitle); y.SetTitle(ytitle); z.SetTitle(ztitle); #endif } // -------------------------------------------------------------------------- // // Applies given binning (the n+1 edges) to the axis of a 1D-histogram // void MH::SetBinning(TH1 *h, const TArrayD &binsx) { MBinning bx; bx.SetEdges(binsx); SetBinning(h, &bx); } // -------------------------------------------------------------------------- // // Applies given binning (the n+1 edges) to the two axis of a // 2D-histogram // void MH::SetBinning(TH2 *h, const TArrayD &binsx, const TArrayD &binsy) { MBinning bx; MBinning by; bx.SetEdges(binsx); by.SetEdges(binsy); SetBinning(h, &bx, &by); } // -------------------------------------------------------------------------- // // Applies given binning (the n+1 edges) to the three axis of a // 3D-histogram // void MH::SetBinning(TH3 *h, const TArrayD &binsx, const TArrayD &binsy, const TArrayD &binsz) { MBinning bx; MBinning by; MBinning bz; bx.SetEdges(binsx); by.SetEdges(binsy); bz.SetEdges(binsz); SetBinning(h, &bx, &by, &bz); } // -------------------------------------------------------------------------- // // Applies the binning of a TAxis (eg from a root histogram) to the axis // of a 1D-histogram // void MH::SetBinning(TH1 *h, const TAxis *binsx) { const Int_t nx = binsx->GetNbins(); TArrayD bx(nx+1); for (int i=0; iGetBinLowEdge(i+1); bx[nx] = binsx->GetXmax(); SetBinning(h, bx); } // -------------------------------------------------------------------------- // // Applies the binnings of the TAxis' (eg from a root histogram) to the // two axis' of a 2D-histogram // void MH::SetBinning(TH2 *h, const TAxis *binsx, const TAxis *binsy) { const Int_t nx = binsx->GetNbins(); const Int_t ny = binsy->GetNbins(); TArrayD bx(nx+1); TArrayD by(ny+1); for (int i=0; iGetBinLowEdge(i+1); for (int i=0; iGetBinLowEdge(i+1); bx[nx] = binsx->GetXmax(); by[ny] = binsy->GetXmax(); SetBinning(h, bx, by); } // -------------------------------------------------------------------------- // // Applies the binnings of the TAxis' (eg from a root histogram) to the // three axis' of a 3D-histogram // void MH::SetBinning(TH3 *h, const TAxis *binsx, const TAxis *binsy, const TAxis *binsz) { const Int_t nx = binsx->GetNbins(); const Int_t ny = binsy->GetNbins(); const Int_t nz = binsz->GetNbins(); TArrayD bx(nx+1); TArrayD by(ny+1); TArrayD bz(nz+1); for (int i=0; iGetBinLowEdge(i+1); for (int i=0; iGetBinLowEdge(i+1); for (int i=0; iGetBinLowEdge(i+1); bx[nx] = binsx->GetXmax(); by[ny] = binsy->GetXmax(); bz[nz] = binsz->GetXmax(); SetBinning(h, bx, by, bz); } // -------------------------------------------------------------------------- // // Applies the binnings of one root-histogram x to another one h // Both histograms must be of the same type: TH1, TH2 or TH3 // void MH::SetBinning(TH1 *h, const TH1 *x) { if (h->InheritsFrom(TH3::Class()) && x->InheritsFrom(TH3::Class())) { SetBinning((TH3*)h, ((TH1*)x)->GetXaxis(), ((TH1*)x)->GetYaxis(), ((TH1*)x)->GetZaxis()); return; } if (h->InheritsFrom(TH3::Class()) || x->InheritsFrom(TH3::Class())) return; if (h->InheritsFrom(TH2::Class()) && x->InheritsFrom(TH2::Class())) { SetBinning((TH2*)h, ((TH1*)x)->GetXaxis(), ((TH1*)x)->GetYaxis()); return; } if (h->InheritsFrom(TH2::Class()) || x->InheritsFrom(TH2::Class())) return; if (h->InheritsFrom(TH1::Class()) && x->InheritsFrom(TH1::Class())) { SetBinning(h, ((TH1*)x)->GetXaxis()); return; } } // -------------------------------------------------------------------------- // // Multiplies all entries in a TArrayD by a float f // void MH::ScaleArray(TArrayD &bins, Double_t f) { for (int i=0; iInheritsFrom(TH3::Class())) { SetBinning((TH3*)h, ScaleAxis(*h->GetXaxis(), fx), ScaleAxis(*h->GetYaxis(), fy), ScaleAxis(*h->GetZaxis(), fz)); return; } if (h->InheritsFrom(TH2::Class())) { SetBinning((TH2*)h, ScaleAxis(*h->GetXaxis(), fx), ScaleAxis(*h->GetYaxis(), fy)); return; } if (h->InheritsFrom(TH1::Class())) SetBinning(h, ScaleAxis(*h->GetXaxis(), fx)); } // -------------------------------------------------------------------------- // // Tries to find a MBinning container with the name "Binning"+name // in the given parameter list. If it was found it is applied to the // given histogram. This is only valid for 1D-histograms // Bool_t MH::ApplyBinning(const MParList &plist, TString name, TH1 *h) { if (h->InheritsFrom(TH2::Class()) || h->InheritsFrom(TH3::Class())) { gLog << warn << "MH::ApplyBinning: '" << h->GetName() << "' is not a basic TH1 object... no binning applied." << endl; return kFALSE; } const MBinning *bins = (MBinning*)plist.FindObject("Binning"+name); if (!bins) { gLog << warn << "Object 'Binning" << name << "' [MBinning] not found... no binning applied." << endl; return kFALSE; } SetBinning(h, bins); return kTRUE; } void MH::FindGoodLimits(Int_t nbins, Int_t &newbins, Double_t &xmin, Double_t &xmax, Bool_t isInteger) { #if ROOT_VERSION_CODE > ROOT_VERSION(3,04,01) THLimitsFinder::OptimizeLimits(nbins, newbins, xmin, xmax, isInteger); #else //*-*-*-*-*-*-*-*-*Find reasonable bin values*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== Double_t dx = 0.1*(xmax-xmin); Double_t umin = xmin - dx; Double_t umax = xmax + dx; if (umin < 0 && xmin >= 0) umin = 0; if (umax > 0 && xmax <= 0) umax = 0; Double_t binlow =0; Double_t binhigh =0; Double_t binwidth=0; TGaxis::Optimize(umin, umax, nbins, binlow, binhigh, nbins, binwidth, ""); if (binwidth <= 0 || binwidth > 1.e+39) { xmin = -1; xmax = 1; } else { xmin = binlow; xmax = binhigh; } if (isInteger) { Int_t ixmin = (Int_t)xmin; Int_t ixmax = (Int_t)xmax; Double_t dxmin = (Double_t)ixmin; Double_t dxmax = (Double_t)ixmax; xmin = xmin<0 && xmin!=dxmin ? dxmin - 1 : dxmin; xmax = xmax>0 && xmax!=dxmax ? dxmax + 1 : dxmax; if (xmin>=xmax) xmax = xmin+1; Int_t bw = 1 + (Int_t)((xmax-xmin)/nbins); nbins = (Int_t)((xmax-xmin)/bw); if (xmin+nbins*bw < xmax) { nbins++; xmax = xmin +nbins*bw; } } newbins = nbins; #endif } // -------------------------------------------------------------------------- // // Returns the lowest entry in a histogram which is greater than gt (eg >0) // Double_t MH::GetMinimumGT(const TH1 &h, Double_t gt) { Double_t min = FLT_MAX; const TAxis &axe = *((TH1&)h).GetXaxis(); for (int i=1; i<=axe.GetNbins(); i++) { Double_t x = h.GetBinContent(i); if (gtaxe.GetNbins()) nbin = axe.GetNbins(); if (nbin<1) nbin = 1; const Double_t lo = axe.GetBinLowEdge(nbin); const Double_t hi = axe.GetBinUpEdge(nbin); const Double_t val = log10(lo) + log10(hi); return pow(10, val/2); } // -------------------------------------------------------------------------- // // Draws a copy of the two given histograms. Uses title as the pad title. // Also layout the two statistic boxes and a legend. // void MH::DrawSameCopy(const TH1 &hist1, const TH1 &hist2, const TString title) { // // Draw first histogram // TH1 *h1 = ((TH1&)hist1).DrawCopy(); gPad->SetBorderMode(0); gPad->Update(); // FIXME: Also align max/min with set Maximum/Minimum const Double_t maxbin1 = hist1.GetBinContent(hist1.GetMaximumBin()); const Double_t maxbin2 = hist2.GetBinContent(hist2.GetMaximumBin()); const Double_t minbin1 = hist1.GetBinContent(hist1.GetMinimumBin()); const Double_t minbin2 = hist2.GetBinContent(hist2.GetMinimumBin()); const Double_t max = TMath::Max(maxbin1, maxbin2); const Double_t min = TMath::Min(minbin1, minbin2); h1->SetMaximum(max>0?max*1.05:max*0.95); h1->SetMinimum(max>0?min*0.95:min*1.05); TPaveText *t = (TPaveText*)gPad->FindObject("title"); if (t) { t->SetName((TString)"MHTitle"); // rename object t->Clear(); // clear old lines t->AddText((TString)" "+title+" "); // add the new title t->SetBit(kCanDelete); // make sure object is deleted // // FIXME: This is a stupid workaround to hide the redrawn // (see THistPainter::PaintTitle) title // gPad->Modified(); // indicates a change gPad->Update(); // recreates the original title t->Pop(); // bring our title on top } // // Rename first statistics box // TPaveStats *s1 = (TPaveStats*)gPad->FindObject("stats"); if (!s1) s1 = (TPaveStats*)hist1.GetListOfFunctions()->FindObject("stats"); else s1->SetName((TString)"Stat"+hist1.GetTitle()); if (s1 && s1->GetX2NDC()>0.95) { const Double_t x1 = s1->GetX1NDC()-0.01; s1->SetX1NDC(x1-(s1->GetX2NDC()-s1->GetX1NDC())); s1->SetX2NDC(x1); } // // Draw second histogram // TH1 *h2 = ((TH1&)hist2).DrawCopy("sames"); gPad->Update(); // // Draw Legend // TPaveStats *s2 = (TPaveStats*)gPad->FindObject("stats"); if (!s2) s2 = (TPaveStats*)hist2.GetListOfFunctions()->FindObject("stats"); if (s2) { TLegend &l = *new TLegend(s2->GetX1NDC(), s2->GetY1NDC()-0.015-(s2->GetY2NDC()-s2->GetY1NDC())/2, s2->GetX2NDC(), s2->GetY1NDC()-0.01 ); l.AddEntry(h1, h1->GetTitle()); l.AddEntry(h2, h2->GetTitle()); l.SetTextSize(s2->GetTextSize()); l.SetTextFont(s2->GetTextFont()); l.SetBorderSize(s2->GetBorderSize()); l.SetBit(kCanDelete); l.Draw(); } } // -------------------------------------------------------------------------- // // Draws the two given histograms. Uses title as the pad title. // Also layout the two statistic boxes and a legend. // void MH::DrawSame(TH1 &hist1, TH1 &hist2, const TString title) { // // Draw first histogram // hist1.Draw(); gPad->SetBorderMode(0); gPad->Update(); if (hist1.GetEntries()>0 && hist2.GetEntries()>0) { const Double_t maxbin1 = hist1.GetBinContent(hist1.GetMaximumBin()); const Double_t maxbin2 = hist2.GetBinContent(hist2.GetMaximumBin()); const Double_t minbin1 = hist1.GetBinContent(hist1.GetMinimumBin()); const Double_t minbin2 = hist2.GetBinContent(hist2.GetMinimumBin()); const Double_t max = TMath::Max(maxbin1, maxbin2); const Double_t min = TMath::Min(minbin1, minbin2); if (max!=min) { hist1.SetMaximum(max>0?max*1.05:max*0.95); hist1.SetMinimum(max>0?min*0.95:min*1.05); } } TPaveText *t = (TPaveText*)gPad->FindObject("title"); if (t) { t->SetName((TString)"MHTitle"); // rename object t->Clear(); // clear old lines t->AddText((TString)" "+title+" "); // add the new title t->SetBit(kCanDelete); // make sure object is deleted // // FIXME: This is a stupid workaround to hide the redrawn // (see THistPainter::PaintTitle) title // gPad->Modified(); // indicates a change gPad->Update(); // recreates the original title t->Pop(); // bring our title on top } // // Rename first statistics box // // Where to get the TPaveStats depends on the root version TPaveStats *s1 = (TPaveStats*)gPad->FindObject("stats"); if (!s1) s1 = (TPaveStats*)hist1.GetListOfFunctions()->FindObject("stats"); else s1->SetName((TString)"Stat"+hist1.GetTitle()); if (s1 && s1->GetX2NDC()>0.95) { const Double_t x1 = s1->GetX1NDC()-0.01; s1->SetX1NDC(x1-(s1->GetX2NDC()-s1->GetX1NDC())); s1->SetX2NDC(x1); } // // Draw second histogram // hist2.Draw("sames"); gPad->Update(); // // Draw Legend // // Where to get the TPaveStats depends on the root version TPaveStats *s2 = (TPaveStats*)gPad->FindObject("stats"); if (!s2) s2 = (TPaveStats*)hist2.GetListOfFunctions()->FindObject("stats"); if (s2) { TLegend &l = *new TLegend(s2->GetX1NDC(), s2->GetY1NDC()-0.015-(s2->GetY2NDC()-s2->GetY1NDC())/2, s2->GetX2NDC(), s2->GetY1NDC()-0.01 ); l.AddEntry(&hist1, hist1.GetTitle()); l.AddEntry(&hist2, hist2.GetTitle()); l.SetTextSize(s2->GetTextSize()); l.SetTextFont(s2->GetTextFont()); l.SetBorderSize(s2->GetBorderSize()); l.SetBit(kCanDelete); l.Draw(); } } // -------------------------------------------------------------------------- // // If the opt string contains 'nonew' or gPad is not given NULL is returned. // Otherwise the present gPad is returned. // TVirtualPad *MH::GetNewPad(TString &opt) { opt.ToLower(); if (!opt.Contains("nonew")) return NULL; opt.ReplaceAll("nonew", ""); return gPad; } // -------------------------------------------------------------------------- // // Encapsulate the TObject::Clone such, that a cloned TH1 (or derived) // object is not added to the current directory, when cloned. // TObject *MH::Clone(const char *name) const { const Bool_t store = TH1::AddDirectoryStatus(); TH1::AddDirectory(kFALSE); TObject *o = MParContainer::Clone(name); TH1::AddDirectory(store); return o; } // -------------------------------------------------------------------------- // // If the opt string contains 'nonew' or gPad is not given a new canvas // with size w/h is created. Otherwise the object is cloned and drawn // to the present pad. The kCanDelete bit is set for the clone. // TObject *MH::DrawClone(Option_t *opt, Int_t w, Int_t h) const { TString option(opt); TVirtualPad *p = GetNewPad(option); if (!p) p = MakeDefCanvas(this, w, h); else p->Clear(); gROOT->SetSelectedPad(NULL); TObject *o = MParContainer::DrawClone(option); o->SetBit(kCanDelete); return o; } // -------------------------------------------------------------------------- // // Check whether a class inheriting from MH overwrites the Draw function // Bool_t MH::OverwritesDraw(TClass *cls) const { if (!cls) cls = IsA(); // // Check whether we reached the base class MTask // if (TString(cls->GetName())=="MH") return kFALSE; // // Check whether the class cls overwrites Draw // if (cls->GetMethodAny("Draw")) return kTRUE; // // If the class itself doesn't overload it check all it's base classes // TBaseClass *base=NULL; TIter NextBase(cls->GetListOfBases()); while ((base=(TBaseClass*)NextBase())) { if (OverwritesDraw(base->GetClassPointer())) return kTRUE; } return kFALSE; } void MH::ProjectionX(TH1D &dest, const TH2 &src, Int_t firstybin, Int_t lastybin) { //*-*-*-*-*Project a 2-D histogram into a 1-D histogram along X*-*-*-*-*-*-* //*-* ==================================================== // // The projection dest is always of the type TH1D. // The projection is made from the channels along the Y axis // ranging from firstybin to lastybin included. // By default, bins 1 to ny are included // When all bins are included, the number of entries in the projection // is set to the number of entries of the 2-D histogram, otherwise // the number of entries is incremented by 1 for all non empty cells. // // if Sumw2() was called for dest, the errors are computed. // TAxis &axex = *((TH2&)src).GetXaxis(); TAxis &axey = *((TH2&)src).GetYaxis(); const Int_t nx = axex.GetNbins(); const Int_t ny = axey.GetNbins(); if (firstybin < 0) firstybin = 1; if (lastybin > ny) lastybin = ny; dest.Reset(); SetBinning(&dest, &axex); // Create the projection histogram const Bool_t computeErrors = dest.GetSumw2N() ? 1 : 0; // Fill the projected histogram for (Int_t binx=0; binx<=nx+1; binx++) { Double_t err2 = 0; for (Int_t biny=firstybin; biny<=lastybin; biny++) { const Double_t cont = src.GetCellContent(binx,biny); const Double_t err1 = src.GetCellError(binx,biny); err2 += err1*err1; if (cont) dest.Fill(axex.GetBinCenter(binx), cont); } if (computeErrors) dest.SetBinError(binx, TMath::Sqrt(err2)); } if (firstybin <=1 && lastybin >= ny) dest.SetEntries(src.GetEntries()); } void MH::ProjectionY(TH1D &dest, const TH2 &src, Int_t firstxbin, Int_t lastxbin) { //*-*-*-*-*Project a 2-D histogram into a 1-D histogram along X*-*-*-*-*-*-* //*-* ==================================================== // // The projection dest is always of the type TH1D. // The projection is made from the channels along the Y axis // ranging from firstybin to lastybin included. // By default, bins 1 to ny are included // When all bins are included, the number of entries in the projection // is set to the number of entries of the 2-D histogram, otherwise // the number of entries is incremented by 1 for all non empty cells. // // if Sumw2() was called for dest, the errors are computed. // TAxis &axex = *((TH2&)src).GetXaxis(); TAxis &axey = *((TH2&)src).GetYaxis(); const Int_t nx = axex.GetNbins(); const Int_t ny = axey.GetNbins(); if (firstxbin < 0) firstxbin = 1; if (lastxbin > nx) lastxbin = nx; dest.Reset(); SetBinning(&dest, &axey); // Create the projection histogram const Bool_t computeErrors = dest.GetSumw2N() ? 1 : 0; // Fill the projected histogram for (Int_t biny=0; biny<=ny+1; biny++) { Double_t err2 = 0; for (Int_t binx=firstxbin; binx<=lastxbin; binx++) { const Double_t cont = src.GetCellContent(binx,biny); const Double_t err1 = src.GetCellError(binx,biny); err2 += err1*err1; if (cont) dest.Fill(axey.GetBinCenter(biny), cont); } if (computeErrors) dest.SetBinError(biny, TMath::Sqrt(err2)); } if (firstxbin <=1 && lastxbin >= nx) dest.SetEntries(src.GetEntries()); } // -------------------------------------------------------------------------- // // In contradiction to TPad::FindObject this function searches recursively // in a pad for an object. gPad is the default. // TObject *MH::FindObjectInPad(const char *name, TVirtualPad *pad) { if (!pad) pad = gPad; if (!pad) return NULL; TObject *o; TIter Next(pad->GetListOfPrimitives()); while ((o=Next())) { if (!strcmp(o->GetName(), name)) return o; if (o->InheritsFrom("TPad")) if ((o = FindObjectInPad(name, (TVirtualPad*)o))) return o; } return NULL; }