| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MHFindSignificance
|
|---|
| 28 | //
|
|---|
| 29 | // determines the significance of a gamma signal in an |alpha| plot
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // Input : TH1 histogram of |alpha| : with 0 < |alpha| < 90 degrees
|
|---|
| 33 | // alphamin, alphamax : defining the background region
|
|---|
| 34 | // alphasig : defining the signal region for which
|
|---|
| 35 | // the significance is calculated
|
|---|
| 36 | // degree : the degree of the polynomial to be fitted to the background
|
|---|
| 37 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
|---|
| 38 | //
|
|---|
| 39 | // Output :
|
|---|
| 40 | //
|
|---|
| 41 | // - polynomial which describes the background in the background region
|
|---|
| 42 | // - the number of events in the signal region (Non)
|
|---|
| 43 | // the number of background events in the signal region (Nbg)
|
|---|
| 44 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
|---|
| 45 | // - thew effective number of background events (Noff), and gamma :
|
|---|
| 46 | // Nbg = gamma * Noff
|
|---|
| 47 | // - the significance of the gamma signal according to Li & Ma
|
|---|
| 48 | //
|
|---|
| 49 | //
|
|---|
| 50 | // call member function 'FindSigma'
|
|---|
| 51 | // to fit the background and to determine the significance
|
|---|
| 52 | //
|
|---|
| 53 | // call the member function 'SigmaVsAlpha'
|
|---|
| 54 | // to determine the significance as a function of alphasig
|
|---|
| 55 | //
|
|---|
| 56 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 57 | #include "MHFindSignificance.h"
|
|---|
| 58 |
|
|---|
| 59 | #include <fstream>
|
|---|
| 60 | #include <math.h>
|
|---|
| 61 |
|
|---|
| 62 | #include <TArrayD.h>
|
|---|
| 63 | #include <TArrayI.h>
|
|---|
| 64 | #include <TH1.h>
|
|---|
| 65 | #include <TF1.h>
|
|---|
| 66 | #include <TCanvas.h>
|
|---|
| 67 | #include <TFitter.h>
|
|---|
| 68 | #include <TMinuit.h>
|
|---|
| 69 | #include <TPaveText.h>
|
|---|
| 70 | #include <TStyle.h>
|
|---|
| 71 |
|
|---|
| 72 | #include "MLog.h"
|
|---|
| 73 | #include "MLogManip.h"
|
|---|
| 74 | #include "MMinuitInterface.h"
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 | ClassImp(MHFindSignificance);
|
|---|
| 78 |
|
|---|
| 79 | using namespace std;
|
|---|
| 80 |
|
|---|
| 81 | const TString MHFindSignificance::gsDefName = "MHFindSignificance";
|
|---|
| 82 | const TString MHFindSignificance::gsDefTitle = "Find Significance in alpha plot";
|
|---|
| 83 |
|
|---|
| 84 |
|
|---|
| 85 |
|
|---|
| 86 | // --------------------------------------------------------------------------
|
|---|
| 87 | //
|
|---|
| 88 | // fcnpoly
|
|---|
| 89 | //
|
|---|
| 90 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
|---|
| 91 | // to the histogram 'fhist'
|
|---|
| 92 | //
|
|---|
| 93 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
|---|
| 94 | //
|
|---|
| 95 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
|---|
| 96 | // (the huge errors were set in 'FitPolynomial()')
|
|---|
| 97 | //
|
|---|
| 98 |
|
|---|
| 99 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 100 | Double_t *par, Int_t iflag)
|
|---|
| 101 | {
|
|---|
| 102 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
|---|
| 103 | TF1 *fpoly = fhist->GetFunction("Poly");
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | //-------------------------------------------
|
|---|
| 107 |
|
|---|
| 108 | Double_t chi2 = 0.0;
|
|---|
| 109 |
|
|---|
| 110 | Int_t nbins = fhist->GetNbinsX();
|
|---|
| 111 | Int_t mbins = 0;
|
|---|
| 112 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 113 | {
|
|---|
| 114 | Double_t content = fhist->GetBinContent(i);
|
|---|
| 115 | Double_t error = fhist->GetBinError(i);
|
|---|
| 116 | Double_t center = fhist->GetBinCenter(i);
|
|---|
| 117 |
|
|---|
| 118 | //-----------------------------
|
|---|
| 119 | // ignore unwanted points
|
|---|
| 120 | if (error > 1.e19)
|
|---|
| 121 | continue;
|
|---|
| 122 |
|
|---|
| 123 | if (content <= 0.0)
|
|---|
| 124 | {
|
|---|
| 125 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
|---|
| 126 | << i << ", " << content << ", " << error << endl;
|
|---|
| 127 | continue;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | if (error <= 0.0)
|
|---|
| 131 | {
|
|---|
| 132 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
|---|
| 133 | << i << ", " << content << ", " << error << endl;
|
|---|
| 134 | continue;
|
|---|
| 135 | }
|
|---|
| 136 |
|
|---|
| 137 | //-----------------------------
|
|---|
| 138 | mbins++;
|
|---|
| 139 |
|
|---|
| 140 | Double_t fu;
|
|---|
| 141 | fu = fpoly->EvalPar(¢er, par);
|
|---|
| 142 |
|
|---|
| 143 | // the fitted function must not be negative
|
|---|
| 144 | if (fu <= 0.0)
|
|---|
| 145 | {
|
|---|
| 146 | chi2 = 1.e10;
|
|---|
| 147 | break;
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | Double_t temp = (content - fu) / error;
|
|---|
| 151 | chi2 += temp*temp;
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 | //-------------------------------------------
|
|---|
| 155 |
|
|---|
| 156 | f = chi2;
|
|---|
| 157 |
|
|---|
| 158 | //-------------------------------------------
|
|---|
| 159 | // final calculations
|
|---|
| 160 | //if (iflag == 3)
|
|---|
| 161 | //{
|
|---|
| 162 | //}
|
|---|
| 163 |
|
|---|
| 164 | //-------------------------------------------------------------
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 |
|
|---|
| 168 | // --------------------------------------------------------------------------
|
|---|
| 169 | //
|
|---|
| 170 | // fcnpolygauss
|
|---|
| 171 | //
|
|---|
| 172 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
|---|
| 173 | // 'PolyGauss' to the histogram 'fhist'
|
|---|
| 174 | //
|
|---|
| 175 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
|---|
| 176 | //
|
|---|
| 177 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
|---|
| 178 | // (the huge errors were set in 'FitGaussPoly()')
|
|---|
| 179 | //
|
|---|
| 180 |
|
|---|
| 181 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 182 | Double_t *par, Int_t iflag)
|
|---|
| 183 | {
|
|---|
| 184 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
|---|
| 185 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
|---|
| 186 |
|
|---|
| 187 |
|
|---|
| 188 | //-------------------------------------------
|
|---|
| 189 |
|
|---|
| 190 | Double_t chi2 = 0.0;
|
|---|
| 191 |
|
|---|
| 192 | Int_t nbins = fhist->GetNbinsX();
|
|---|
| 193 | Int_t mbins = 0;
|
|---|
| 194 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 195 | {
|
|---|
| 196 | Double_t content = fhist->GetBinContent(i);
|
|---|
| 197 | Double_t error = fhist->GetBinError(i);
|
|---|
| 198 | Double_t center = fhist->GetBinCenter(i);
|
|---|
| 199 |
|
|---|
| 200 | //-----------------------------
|
|---|
| 201 | // ignore unwanted points
|
|---|
| 202 | if (error > 1.e19)
|
|---|
| 203 | continue;
|
|---|
| 204 |
|
|---|
| 205 | if (content <= 0.0)
|
|---|
| 206 | {
|
|---|
| 207 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
|---|
| 208 | << i << ", " << content << ", " << error << endl;
|
|---|
| 209 | continue;
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | if (error <= 0.0)
|
|---|
| 213 | {
|
|---|
| 214 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
|---|
| 215 | << i << ", " << content << ", " << error << endl;
|
|---|
| 216 | continue;
|
|---|
| 217 | }
|
|---|
| 218 |
|
|---|
| 219 | //-----------------------------
|
|---|
| 220 | mbins++;
|
|---|
| 221 |
|
|---|
| 222 | Double_t fu;
|
|---|
| 223 | fu = fpolygauss->EvalPar(¢er, par);
|
|---|
| 224 |
|
|---|
| 225 | // the fitted function must not be negative
|
|---|
| 226 | if (fu <= 0.0)
|
|---|
| 227 | {
|
|---|
| 228 | chi2 = 1.e10;
|
|---|
| 229 | break;
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | Double_t temp = (content - fu) / error;
|
|---|
| 233 | chi2 += temp*temp;
|
|---|
| 234 | }
|
|---|
| 235 |
|
|---|
| 236 | //-------------------------------------------
|
|---|
| 237 |
|
|---|
| 238 | f = chi2;
|
|---|
| 239 |
|
|---|
| 240 | //-------------------------------------------
|
|---|
| 241 | // final calculations
|
|---|
| 242 | //if (iflag == 3)
|
|---|
| 243 | //{
|
|---|
| 244 | //}
|
|---|
| 245 |
|
|---|
| 246 | //-------------------------------------------------------------
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | // --------------------------------------------------------------------------
|
|---|
| 252 | //
|
|---|
| 253 | // Constructor
|
|---|
| 254 | //
|
|---|
| 255 | MHFindSignificance::MHFindSignificance(const char *name, const char *title)
|
|---|
| 256 | {
|
|---|
| 257 | fName = name ? name : gsDefName.Data();
|
|---|
| 258 | fTitle = title ? title : gsDefTitle.Data();
|
|---|
| 259 |
|
|---|
| 260 | fSigVsAlpha = NULL;
|
|---|
| 261 |
|
|---|
| 262 | fPoly = NULL;
|
|---|
| 263 | fGPoly = NULL;
|
|---|
| 264 | fGBackg = NULL;
|
|---|
| 265 |
|
|---|
| 266 | fHist = NULL;
|
|---|
| 267 | fHistOrig = NULL;
|
|---|
| 268 |
|
|---|
| 269 | // allow rebinning of the alpha plot
|
|---|
| 270 | fRebin = kTRUE;
|
|---|
| 271 |
|
|---|
| 272 | // allow reducing the degree of the polynomial
|
|---|
| 273 | fReduceDegree = kTRUE;
|
|---|
| 274 |
|
|---|
| 275 | fCanvas = NULL;
|
|---|
| 276 | }
|
|---|
| 277 |
|
|---|
| 278 | // --------------------------------------------------------------------------
|
|---|
| 279 | //
|
|---|
| 280 | // Destructor.
|
|---|
| 281 | //
|
|---|
| 282 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
|---|
| 283 | // when the destructor is active <=======================
|
|---|
| 284 | //
|
|---|
| 285 | // therefore the 'return'statement
|
|---|
| 286 | //
|
|---|
| 287 |
|
|---|
| 288 | MHFindSignificance::~MHFindSignificance()
|
|---|
| 289 | {
|
|---|
| 290 | return;
|
|---|
| 291 |
|
|---|
| 292 | *fLog << "destructor of MHFindSignificance is called" << endl;
|
|---|
| 293 |
|
|---|
| 294 | //delete fHist;
|
|---|
| 295 |
|
|---|
| 296 | delete fSigVsAlpha;
|
|---|
| 297 | delete fPoly;
|
|---|
| 298 | delete fGPoly;
|
|---|
| 299 | delete fGBackg;
|
|---|
| 300 | //delete fCanvas;
|
|---|
| 301 | }
|
|---|
| 302 |
|
|---|
| 303 | // --------------------------------------------------------------------------
|
|---|
| 304 | //
|
|---|
| 305 | // Set flag fRebin
|
|---|
| 306 | //
|
|---|
| 307 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
|---|
| 308 | //
|
|---|
| 309 | //
|
|---|
| 310 | void MHFindSignificance::SetRebin(Bool_t b)
|
|---|
| 311 | {
|
|---|
| 312 | fRebin = b;
|
|---|
| 313 |
|
|---|
| 314 | *fLog << "MHFindSignificance::SetRebin; flag fRebin set to "
|
|---|
| 315 | << (b? "kTRUE" : "kFALSE") << endl;
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | // --------------------------------------------------------------------------
|
|---|
| 319 | //
|
|---|
| 320 | // Set flag fReduceDegree
|
|---|
| 321 | //
|
|---|
| 322 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
|---|
| 323 | //
|
|---|
| 324 | //
|
|---|
| 325 | void MHFindSignificance::SetReduceDegree(Bool_t b)
|
|---|
| 326 | {
|
|---|
| 327 | fReduceDegree = b;
|
|---|
| 328 |
|
|---|
| 329 | *fLog << "MHFindSignificance::SetReduceDegree; flag fReduceDegree set to "
|
|---|
| 330 | << (b? "kTRUE" : "kFALSE") << endl;
|
|---|
| 331 | }
|
|---|
| 332 |
|
|---|
| 333 | // --------------------------------------------------------------------------
|
|---|
| 334 | //
|
|---|
| 335 | // FindSigma
|
|---|
| 336 | //
|
|---|
| 337 | // calls FitPolynomial to fit the background in the background region
|
|---|
| 338 | // calls DetExcess to determine the number of excess events
|
|---|
| 339 | // using an extrapolation of the polynomial
|
|---|
| 340 | // into the signal region
|
|---|
| 341 | // calls SigmaLiMa to determine the significance of the gamma signal
|
|---|
| 342 | // in the range |alpha| < alphasig
|
|---|
| 343 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
|---|
| 344 | // whole |alpha| region
|
|---|
| 345 | //
|
|---|
| 346 | //
|
|---|
| 347 | Bool_t MHFindSignificance::FindSigma(TH1 *fhist, Double_t alphamin,
|
|---|
| 348 | Double_t alphamax, Int_t degree, Double_t alphasig,
|
|---|
| 349 | Bool_t drawpoly, Bool_t fitgauss, Bool_t print)
|
|---|
| 350 | {
|
|---|
| 351 | //*fLog << "MHFindSignificance::FindSigma;" << endl;
|
|---|
| 352 |
|
|---|
| 353 | fHistOrig = fhist;
|
|---|
| 354 |
|
|---|
| 355 | fHist = (TH1*)fHistOrig->Clone();
|
|---|
| 356 | fHist->SetName(fhist->GetName());
|
|---|
| 357 | if ( !fHist )
|
|---|
| 358 | {
|
|---|
| 359 | *fLog << "MHFindSignificance::FindSigma; Clone of histogram could not be generated"
|
|---|
| 360 | << endl;
|
|---|
| 361 | return kFALSE;
|
|---|
| 362 | }
|
|---|
| 363 |
|
|---|
| 364 | fHist->Sumw2();
|
|---|
| 365 | //fHist->SetNameTitle("Alpha", "alpha plot");
|
|---|
| 366 | fHist->SetXTitle("|alpha| [\\circ]");
|
|---|
| 367 | fHist->SetYTitle("Counts");
|
|---|
| 368 | fHist->UseCurrentStyle();
|
|---|
| 369 |
|
|---|
| 370 | fAlphamin = alphamin;
|
|---|
| 371 | fAlphamax = alphamax;
|
|---|
| 372 | fAlphammm = (alphamin+alphamax)/2.0;
|
|---|
| 373 | fDegree = degree;
|
|---|
| 374 | fAlphasig = alphasig;
|
|---|
| 375 |
|
|---|
| 376 | fDraw = drawpoly;
|
|---|
| 377 | fFitGauss = fitgauss;
|
|---|
| 378 |
|
|---|
| 379 |
|
|---|
| 380 | //--------------------------------------------
|
|---|
| 381 | // fit a polynomial in the background region
|
|---|
| 382 |
|
|---|
| 383 | //*fLog << "MHFindSignificance::FindSigma; calling FitPolynomial()" << endl;
|
|---|
| 384 | if ( !FitPolynomial() )
|
|---|
| 385 | {
|
|---|
| 386 | *fLog << "MHFindSignificance::FindSigma; FitPolynomial failed"
|
|---|
| 387 | << endl;
|
|---|
| 388 | return kFALSE;
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 |
|
|---|
| 392 | //--------------------------------------------
|
|---|
| 393 | // calculate the number of excess events in the signal region
|
|---|
| 394 |
|
|---|
| 395 | //*fLog << "MHFindSignificance::FindSigma; calling DetExcess()" << endl;
|
|---|
| 396 | if ( !DetExcess() )
|
|---|
| 397 | {
|
|---|
| 398 | *fLog << "MHFindSignificance::FindSigma; DetExcess failed"
|
|---|
| 399 | << endl;
|
|---|
| 400 | return kFALSE;
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 |
|
|---|
| 404 | //--------------------------------------------
|
|---|
| 405 | // calculate the significance of the excess
|
|---|
| 406 |
|
|---|
| 407 | //*fLog << "MHFindSignificance::FindSigma; calling SigmaLiMa()" << endl;
|
|---|
| 408 | Double_t siglima = 0.0;
|
|---|
| 409 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
|---|
| 410 | {
|
|---|
| 411 | *fLog << "MHFindSignificance::FindSigma; SigmaLiMa failed"
|
|---|
| 412 | << endl;
|
|---|
| 413 | return kFALSE;
|
|---|
| 414 | }
|
|---|
| 415 | fSigLiMa = siglima;
|
|---|
| 416 |
|
|---|
| 417 | //--------------------------------------------
|
|---|
| 418 | // calculate the error of the number of excess events
|
|---|
| 419 |
|
|---|
| 420 | fdNex = fNex / fSigLiMa;
|
|---|
| 421 |
|
|---|
| 422 |
|
|---|
| 423 | //--------------------------------------------
|
|---|
| 424 |
|
|---|
| 425 | //*fLog << "MHFindSignificance::FindSigma; calling PrintPoly()" << endl;
|
|---|
| 426 | if (print)
|
|---|
| 427 | PrintPoly();
|
|---|
| 428 |
|
|---|
| 429 |
|
|---|
| 430 | //--------------------------------------------
|
|---|
| 431 | // fit a (polynomial + Gauss) function
|
|---|
| 432 |
|
|---|
| 433 | if (fFitGauss)
|
|---|
| 434 | {
|
|---|
| 435 | //--------------------------------------------------
|
|---|
| 436 | // delete objects from this fit
|
|---|
| 437 | // in order to have independent starting conditions for the next fit
|
|---|
| 438 |
|
|---|
| 439 | delete gMinuit;
|
|---|
| 440 | gMinuit = NULL;
|
|---|
| 441 | //--------------------------------------------------
|
|---|
| 442 |
|
|---|
| 443 | //*fLog << "MHFindSignificance::FindSigma; calling FitGaussPoly()"
|
|---|
| 444 | // << endl;
|
|---|
| 445 | if ( !FitGaussPoly() )
|
|---|
| 446 | {
|
|---|
| 447 | *fLog << "MHFindSignificance::FindSigma; FitGaussPoly failed"
|
|---|
| 448 | << endl;
|
|---|
| 449 | return kFALSE;
|
|---|
| 450 | }
|
|---|
| 451 |
|
|---|
| 452 | if (print)
|
|---|
| 453 | {
|
|---|
| 454 | //*fLog << "MHFindSignificance::FindSigma; calling PrintPolyGauss()"
|
|---|
| 455 | // << endl;
|
|---|
| 456 | PrintPolyGauss();
|
|---|
| 457 | }
|
|---|
| 458 | }
|
|---|
| 459 |
|
|---|
| 460 | //--------------------------------------------------
|
|---|
| 461 | // draw the histogram if requested
|
|---|
| 462 |
|
|---|
| 463 | if (fDraw)
|
|---|
| 464 | {
|
|---|
| 465 | //*fLog << "MHFindSignificance::FindSigma; calling DrawFit()" << endl;
|
|---|
| 466 | if ( !DrawFit() )
|
|---|
| 467 | {
|
|---|
| 468 | *fLog << "MHFindSignificance::FindSigma; DrawFit failed"
|
|---|
| 469 | << endl;
|
|---|
| 470 | return kFALSE;
|
|---|
| 471 | }
|
|---|
| 472 | }
|
|---|
| 473 |
|
|---|
| 474 |
|
|---|
| 475 | //--------------------------------------------------
|
|---|
| 476 | // delete objects from this fit
|
|---|
| 477 | // in order to have independent starting conditions for the next fit
|
|---|
| 478 |
|
|---|
| 479 | delete gMinuit;
|
|---|
| 480 | gMinuit = NULL;
|
|---|
| 481 | //--------------------------------------------------
|
|---|
| 482 |
|
|---|
| 483 | return kTRUE;
|
|---|
| 484 | }
|
|---|
| 485 |
|
|---|
| 486 | // --------------------------------------------------------------------------
|
|---|
| 487 | //
|
|---|
| 488 | // SigmaVsAlpha (like FindSigma. However, alphasig is scanned and
|
|---|
| 489 | // the significance is plotted versus alphasig)
|
|---|
| 490 | //
|
|---|
| 491 | // calls FitPolynomial to fit the background in the background region
|
|---|
| 492 | //
|
|---|
| 493 | // scan alphasig; for a given alphasig :
|
|---|
| 494 | // calls DetExcess to determine the number of excess events
|
|---|
| 495 | // calls SigmaLiMa to determine the significance of the gamma signal
|
|---|
| 496 | // in the range fAlphalow < |alpha| < alphasig
|
|---|
| 497 | //
|
|---|
| 498 |
|
|---|
| 499 | Bool_t MHFindSignificance::SigmaVsAlpha(TH1 *fhist, Double_t alphamin,
|
|---|
| 500 | Double_t alphamax, Int_t degree, Bool_t print)
|
|---|
| 501 | {
|
|---|
| 502 | //*fLog << "MHFindSignificance::SigmaVsAlpha;" << endl;
|
|---|
| 503 |
|
|---|
| 504 | fHistOrig = fhist;
|
|---|
| 505 |
|
|---|
| 506 | fHist = (TH1*)fHistOrig->Clone();
|
|---|
| 507 | fHist->SetName(fhist->GetName());
|
|---|
| 508 | fHist->Sumw2();
|
|---|
| 509 | //fHist->SetNameTitle("alpha", "alpha plot");
|
|---|
| 510 | fHist->SetXTitle("|alpha| [\\circ]");
|
|---|
| 511 | fHist->SetYTitle("Counts");
|
|---|
| 512 | fHist->UseCurrentStyle();
|
|---|
| 513 |
|
|---|
| 514 | fAlphamin = alphamin;
|
|---|
| 515 | fAlphamax = alphamax;
|
|---|
| 516 | fAlphammm = (alphamin+alphamax)/2.0;
|
|---|
| 517 | fDegree = degree;
|
|---|
| 518 |
|
|---|
| 519 |
|
|---|
| 520 | //--------------------------------------------
|
|---|
| 521 | // fit a polynomial in the background region
|
|---|
| 522 |
|
|---|
| 523 | //*fLog << "MHFindSignificance::SigmaVsAlpha calling FitPolynomial()"
|
|---|
| 524 | // << endl;
|
|---|
| 525 | if ( !FitPolynomial() )
|
|---|
| 526 | {
|
|---|
| 527 | *fLog << "MHFindSignificance::SigmaVsAlpha; FitPolynomial() failed"
|
|---|
| 528 | << endl;
|
|---|
| 529 | return kFALSE;
|
|---|
| 530 | }
|
|---|
| 531 |
|
|---|
| 532 |
|
|---|
| 533 | //--------------------------------------------
|
|---|
| 534 | // loop over different signal regions
|
|---|
| 535 |
|
|---|
| 536 | Int_t nsteps = 15;
|
|---|
| 537 |
|
|---|
| 538 | fSigVsAlpha = new TH1D("SigVsAlpha","Sigma vs Alpha", nsteps, 0.0, alphamin);
|
|---|
| 539 | fSigVsAlpha->SetXTitle("upper edge of signal region in |alpha| [\\circ]");
|
|---|
| 540 | fSigVsAlpha->SetYTitle("Significance of gamma signal");
|
|---|
| 541 |
|
|---|
| 542 | for (Int_t i=1; i<=nsteps; i++)
|
|---|
| 543 | {
|
|---|
| 544 | fAlphasig = fSigVsAlpha->GetBinCenter(i);
|
|---|
| 545 |
|
|---|
| 546 | if ( !DetExcess() )
|
|---|
| 547 | {
|
|---|
| 548 | *fLog << "MHFindSignificance::SigmaVsAlpha; DetExcess() failed" << endl;
|
|---|
| 549 | continue;
|
|---|
| 550 | }
|
|---|
| 551 |
|
|---|
| 552 | Double_t siglima = 0.0;
|
|---|
| 553 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
|---|
| 554 | {
|
|---|
| 555 | *fLog << "MHFindSignificance::SigmaVsAlpha; SigmaLiMa() failed" << endl;
|
|---|
| 556 | continue;
|
|---|
| 557 | }
|
|---|
| 558 |
|
|---|
| 559 | fdNex = fNex / siglima;
|
|---|
| 560 | fSigVsAlpha->SetBinContent(i, siglima);
|
|---|
| 561 |
|
|---|
| 562 | if (print)
|
|---|
| 563 | PrintPoly();
|
|---|
| 564 | }
|
|---|
| 565 |
|
|---|
| 566 | //--------------------------------------------
|
|---|
| 567 | // plot significance versus alphasig
|
|---|
| 568 |
|
|---|
| 569 | TCanvas *ccc = new TCanvas("SigVsAlpha", "Sigma vs Alpha", 600, 600);
|
|---|
| 570 |
|
|---|
| 571 | gROOT->SetSelectedPad(NULL);
|
|---|
| 572 | gStyle->SetPadLeftMargin(0.05);
|
|---|
| 573 |
|
|---|
| 574 | ccc->cd();
|
|---|
| 575 | fSigVsAlpha->DrawCopy();
|
|---|
| 576 |
|
|---|
| 577 | ccc->Modified();
|
|---|
| 578 | ccc->Update();
|
|---|
| 579 |
|
|---|
| 580 | return kTRUE;
|
|---|
| 581 | }
|
|---|
| 582 |
|
|---|
| 583 | // --------------------------------------------------------------------------
|
|---|
| 584 | //
|
|---|
| 585 | // FitPolynomial
|
|---|
| 586 | //
|
|---|
| 587 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
|---|
| 588 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
|---|
| 589 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
|---|
| 590 | //
|
|---|
| 591 | // in pathological cases the histogram is rebinned before fitting
|
|---|
| 592 | // (this is done only if fRebin is kTRUE)
|
|---|
| 593 | //
|
|---|
| 594 | // if the highest coefficient of the polynomial is compatible with zero
|
|---|
| 595 | // the fit is repeated with a polynomial of lower degree
|
|---|
| 596 | // (this is done only if fReduceDegree is kTRUE)
|
|---|
| 597 | //
|
|---|
| 598 | //
|
|---|
| 599 | Bool_t MHFindSignificance::FitPolynomial()
|
|---|
| 600 | {
|
|---|
| 601 | //--------------------------------------------------
|
|---|
| 602 | // check the histogram :
|
|---|
| 603 | // - calculate initial values of the parameters
|
|---|
| 604 | // - check for bins with zero entries
|
|---|
| 605 | // - set minimum errors
|
|---|
| 606 | // - save the original errors
|
|---|
| 607 | // - set errors huge outside the fit range
|
|---|
| 608 | // (in 'fcnpoly' points with huge errors will be ignored)
|
|---|
| 609 |
|
|---|
| 610 |
|
|---|
| 611 | Double_t dummy = 1.e20;
|
|---|
| 612 |
|
|---|
| 613 | Double_t mean;
|
|---|
| 614 | Double_t rms;
|
|---|
| 615 | Double_t nclose;
|
|---|
| 616 | Double_t nfar;
|
|---|
| 617 | Double_t a2init = 0.0;
|
|---|
| 618 | TArrayD saveError;
|
|---|
| 619 |
|
|---|
| 620 | Int_t nbins;
|
|---|
| 621 | Int_t nrebin = 1;
|
|---|
| 622 |
|
|---|
| 623 | //---------------- start while loop for rebinning -----------------
|
|---|
| 624 | while(1)
|
|---|
| 625 | {
|
|---|
| 626 |
|
|---|
| 627 | fNzero = 0;
|
|---|
| 628 | fMbins = 0;
|
|---|
| 629 | fMlow = 0;
|
|---|
| 630 | fNbgtot = 0.0;
|
|---|
| 631 |
|
|---|
| 632 | fAlphami = 10000.0;
|
|---|
| 633 | fAlphamm = 10000.0;
|
|---|
| 634 | fAlphama = -10000.0;
|
|---|
| 635 |
|
|---|
| 636 | mean = 0.0;
|
|---|
| 637 | rms = 0.0;
|
|---|
| 638 | nclose = 0.0;
|
|---|
| 639 | nfar = 0.0;
|
|---|
| 640 |
|
|---|
| 641 | nbins = fHist->GetNbinsX();
|
|---|
| 642 | saveError.Set(nbins);
|
|---|
| 643 |
|
|---|
| 644 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 645 | {
|
|---|
| 646 | saveError[i-1] = fHist->GetBinError(i);
|
|---|
| 647 |
|
|---|
| 648 | // bin should be completely contained in the fit range
|
|---|
| 649 | // (fAlphamin, fAlphamax)
|
|---|
| 650 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 651 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 652 |
|
|---|
| 653 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
|---|
| 654 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
|---|
| 655 | {
|
|---|
| 656 | fMbins++;
|
|---|
| 657 |
|
|---|
| 658 | if ( xlo < fAlphami )
|
|---|
| 659 | fAlphami = xlo;
|
|---|
| 660 |
|
|---|
| 661 | if ( xup > fAlphama )
|
|---|
| 662 | fAlphama = xup;
|
|---|
| 663 |
|
|---|
| 664 | Double_t content = fHist->GetBinContent(i);
|
|---|
| 665 | fNbgtot += content;
|
|---|
| 666 |
|
|---|
| 667 | mean += content;
|
|---|
| 668 | rms += content*content;
|
|---|
| 669 |
|
|---|
| 670 | // count events in low-alpha and high-alpha region
|
|---|
| 671 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
|---|
| 672 | {
|
|---|
| 673 | nfar += content;
|
|---|
| 674 | if ( xlo < fAlphamm )
|
|---|
| 675 | fAlphamm = xlo;
|
|---|
| 676 | if ( xup < fAlphamm )
|
|---|
| 677 | fAlphamm = xup;
|
|---|
| 678 | }
|
|---|
| 679 | else
|
|---|
| 680 | {
|
|---|
| 681 | nclose += content;
|
|---|
| 682 | if ( xlo > fAlphamm )
|
|---|
| 683 | fAlphamm = xlo;
|
|---|
| 684 | if ( xup > fAlphamm )
|
|---|
| 685 | fAlphamm = xup;
|
|---|
| 686 | }
|
|---|
| 687 |
|
|---|
| 688 | // count bins with zero entry
|
|---|
| 689 | if (content <= 0.0)
|
|---|
| 690 | fNzero++;
|
|---|
| 691 |
|
|---|
| 692 | // set minimum error
|
|---|
| 693 | if (content < 9.0)
|
|---|
| 694 | {
|
|---|
| 695 | fMlow += 1;
|
|---|
| 696 | fHist->SetBinError(i, 3.0);
|
|---|
| 697 | }
|
|---|
| 698 |
|
|---|
| 699 | //*fLog << "Take : i, content, error = " << i << ", "
|
|---|
| 700 | // << fHist->GetBinContent(i) << ", "
|
|---|
| 701 | // << fHist->GetBinError(i) << endl;
|
|---|
| 702 |
|
|---|
| 703 | continue;
|
|---|
| 704 | }
|
|---|
| 705 | // bin is not completely contained in the fit range : set error huge
|
|---|
| 706 |
|
|---|
| 707 | fHist->SetBinError(i, dummy);
|
|---|
| 708 |
|
|---|
| 709 | //*fLog << "Omit : i, content, error = " << i << ", "
|
|---|
| 710 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
|---|
| 711 | // << endl;
|
|---|
| 712 |
|
|---|
| 713 | }
|
|---|
| 714 |
|
|---|
| 715 | // mean of entries/bin in the fit range
|
|---|
| 716 | if (fMbins > 0)
|
|---|
| 717 | {
|
|---|
| 718 | mean /= ((Double_t) fMbins);
|
|---|
| 719 | rms /= ((Double_t) fMbins);
|
|---|
| 720 | }
|
|---|
| 721 |
|
|---|
| 722 | rms = sqrt( rms - mean*mean );
|
|---|
| 723 |
|
|---|
| 724 | // if there are no events in the background region
|
|---|
| 725 | // there is no reason for rebinning
|
|---|
| 726 | // and this is the condition for assuming a constant background (= 0)
|
|---|
| 727 | if (mean <= 0.0)
|
|---|
| 728 | break;
|
|---|
| 729 |
|
|---|
| 730 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
|---|
| 731 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
|---|
| 732 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
|---|
| 733 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
|---|
| 734 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
|---|
| 735 | if (help != 0.0)
|
|---|
| 736 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
|---|
| 737 | * 1.5 * fHist->GetBinWidth(1) / help;
|
|---|
| 738 | else
|
|---|
| 739 | a2init = 0.0;
|
|---|
| 740 |
|
|---|
| 741 |
|
|---|
| 742 | //--------------------------------------------
|
|---|
| 743 | // rebin the histogram
|
|---|
| 744 | // - if a bin has no entries
|
|---|
| 745 | // - or if there are too many bins with too few entries
|
|---|
| 746 | // - or if the new bin width would exceed half the size of the
|
|---|
| 747 | // signal region
|
|---|
| 748 |
|
|---|
| 749 | if ( !fRebin ||
|
|---|
| 750 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
|---|
| 751 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
|---|
| 752 | > fAlphasig/2.0 )
|
|---|
| 753 | {
|
|---|
| 754 | //*fLog << "before break" << endl;
|
|---|
| 755 | break;
|
|---|
| 756 | }
|
|---|
| 757 |
|
|---|
| 758 | nrebin += 1;
|
|---|
| 759 | TString histname = fHist->GetName();
|
|---|
| 760 | delete fHist;
|
|---|
| 761 | fHist = NULL;
|
|---|
| 762 |
|
|---|
| 763 | *fLog << "MHFindSignificance::FitPolynomial; rebin the |alpha| plot, grouping "
|
|---|
| 764 | << nrebin << " bins together" << endl;
|
|---|
| 765 |
|
|---|
| 766 | // TH1::Rebin doesn't work properly
|
|---|
| 767 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
|---|
| 768 | // use private routine RebinHistogram()
|
|---|
| 769 | fHist = new TH1F;
|
|---|
| 770 | fHist->Sumw2();
|
|---|
| 771 | fHist->SetNameTitle(histname, histname);
|
|---|
| 772 | fHist->UseCurrentStyle();
|
|---|
| 773 |
|
|---|
| 774 | // do rebinning such that x0 remains a lower bin edge
|
|---|
| 775 | Double_t x0 = 0.0;
|
|---|
| 776 | if ( !RebinHistogram(x0, nrebin) )
|
|---|
| 777 | {
|
|---|
| 778 | *fLog << "MHFindSignificance::FitPolynomial; RebinHistgram() failed"
|
|---|
| 779 | << endl;
|
|---|
| 780 | return kFALSE;
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 | fHist->SetXTitle("|alpha| [\\circ]");
|
|---|
| 784 | fHist->SetYTitle("Counts");
|
|---|
| 785 |
|
|---|
| 786 | }
|
|---|
| 787 | //---------------- end of while loop for rebinning -----------------
|
|---|
| 788 |
|
|---|
| 789 |
|
|---|
| 790 | // if there are still too many bins with too few entries don't fit
|
|---|
| 791 | // and assume a constant background
|
|---|
| 792 |
|
|---|
| 793 | fConstantBackg = kFALSE;
|
|---|
| 794 | if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
|---|
| 795 | {
|
|---|
| 796 | *fLog << "MHFindSignificance::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
|---|
| 797 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
|---|
| 798 | *fLog << " assume a constant background" << endl;
|
|---|
| 799 |
|
|---|
| 800 | fConstantBackg = kTRUE;
|
|---|
| 801 | fDegree = 0;
|
|---|
| 802 |
|
|---|
| 803 | TString funcname = "Poly";
|
|---|
| 804 | Double_t xmin = 0.0;
|
|---|
| 805 | Double_t xmax = 90.0;
|
|---|
| 806 |
|
|---|
| 807 | TString formula = "[0]";
|
|---|
| 808 |
|
|---|
| 809 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 810 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 811 | funclist->Add(fPoly);
|
|---|
| 812 |
|
|---|
| 813 | //--------------------
|
|---|
| 814 | Int_t nparfree = 1;
|
|---|
| 815 | fChisq = 0.0;
|
|---|
| 816 | fNdf = fMbins - nparfree;
|
|---|
| 817 | fProb = 0.0;
|
|---|
| 818 | fIstat = 0;
|
|---|
| 819 |
|
|---|
| 820 | fValues.Set(1);
|
|---|
| 821 | fErrors.Set(1);
|
|---|
| 822 |
|
|---|
| 823 | Double_t val, err;
|
|---|
| 824 | val = mean;
|
|---|
| 825 | err = sqrt( mean / (Double_t)fMbins );
|
|---|
| 826 |
|
|---|
| 827 | fPoly->SetParameter(0, val);
|
|---|
| 828 | fPoly->SetParError (0, err);
|
|---|
| 829 |
|
|---|
| 830 | fValues[0] = val;
|
|---|
| 831 | fErrors[0] = err;
|
|---|
| 832 |
|
|---|
| 833 | fEma[0][0] = err*err;
|
|---|
| 834 | fCorr[0][0] = 1.0;
|
|---|
| 835 | //--------------------
|
|---|
| 836 |
|
|---|
| 837 | //--------------------------------------------------
|
|---|
| 838 | // reset the errors of the points in the histogram
|
|---|
| 839 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 840 | {
|
|---|
| 841 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 842 | }
|
|---|
| 843 |
|
|---|
| 844 |
|
|---|
| 845 | return kTRUE;
|
|---|
| 846 | }
|
|---|
| 847 |
|
|---|
| 848 |
|
|---|
| 849 | //=========== start loop for reducing the degree ==================
|
|---|
| 850 | // of the polynomial
|
|---|
| 851 | while (1)
|
|---|
| 852 | {
|
|---|
| 853 | //--------------------------------------------------
|
|---|
| 854 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
|---|
| 855 |
|
|---|
| 856 | TString funcname = "Poly";
|
|---|
| 857 | Double_t xmin = 0.0;
|
|---|
| 858 | Double_t xmax = 90.0;
|
|---|
| 859 |
|
|---|
| 860 | TString formula = "[0]";
|
|---|
| 861 | TString bra1 = "+[";
|
|---|
| 862 | TString bra2 = "]";
|
|---|
| 863 | TString xpower = "*x";
|
|---|
| 864 | TString newpower = "*x";
|
|---|
| 865 | for (Int_t i=1; i<=fDegree; i++)
|
|---|
| 866 | {
|
|---|
| 867 | formula += bra1;
|
|---|
| 868 | formula += i;
|
|---|
| 869 | formula += bra2;
|
|---|
| 870 | formula += xpower;
|
|---|
| 871 |
|
|---|
| 872 | xpower += newpower;
|
|---|
| 873 | }
|
|---|
| 874 |
|
|---|
| 875 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
|---|
| 876 |
|
|---|
| 877 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 878 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 879 | funclist->Add(fPoly);
|
|---|
| 880 |
|
|---|
| 881 | //------------------------
|
|---|
| 882 | // attention : the dimensions must agree with those in CallMinuit()
|
|---|
| 883 | const UInt_t npar = fDegree+1;
|
|---|
| 884 |
|
|---|
| 885 | TString parname[npar];
|
|---|
| 886 | TArrayD vinit(npar);
|
|---|
| 887 | TArrayD step(npar);
|
|---|
| 888 | TArrayD limlo(npar);
|
|---|
| 889 | TArrayD limup(npar);
|
|---|
| 890 | TArrayI fix(npar);
|
|---|
| 891 |
|
|---|
| 892 | vinit[0] = mean;
|
|---|
| 893 | vinit[2] = a2init;
|
|---|
| 894 |
|
|---|
| 895 | for (UInt_t j=0; j<npar; j++)
|
|---|
| 896 | {
|
|---|
| 897 | parname[j] = "p";
|
|---|
| 898 | parname[j] += j+1;
|
|---|
| 899 |
|
|---|
| 900 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
|---|
| 901 | }
|
|---|
| 902 |
|
|---|
| 903 | // limit the first coefficient of the polynomial to positive values
|
|---|
| 904 | // because the background must not be negative
|
|---|
| 905 | limup[0] = fHist->GetEntries();
|
|---|
| 906 |
|
|---|
| 907 | // use the subsequernt loop if you want to apply the
|
|---|
| 908 | // constraint : uneven derivatives (at alpha=0) = zero
|
|---|
| 909 | for (UInt_t j=1; j<npar; j+=2)
|
|---|
| 910 | {
|
|---|
| 911 | vinit[j] = 0;
|
|---|
| 912 | step[j] = 0;
|
|---|
| 913 | fix[j] = 1;
|
|---|
| 914 | }
|
|---|
| 915 |
|
|---|
| 916 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
|---|
| 917 |
|
|---|
| 918 | MMinuitInterface inter;
|
|---|
| 919 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
|---|
| 920 | limlo, limup, fix, fHist, "Migrad",
|
|---|
| 921 | kFALSE);
|
|---|
| 922 |
|
|---|
| 923 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
|---|
| 924 |
|
|---|
| 925 | if (rc != 0)
|
|---|
| 926 | {
|
|---|
| 927 | // *fLog << "MHFindSignificance::FitPolynomial; polynomial fit failed"
|
|---|
| 928 | // << endl;
|
|---|
| 929 | // return kFALSE;
|
|---|
| 930 | }
|
|---|
| 931 |
|
|---|
| 932 |
|
|---|
| 933 | //-------------------
|
|---|
| 934 | // get status of minimization
|
|---|
| 935 | Double_t fmin = 0;
|
|---|
| 936 | Double_t fedm = 0;
|
|---|
| 937 | Double_t errdef = 0;
|
|---|
| 938 | Int_t npari = 0;
|
|---|
| 939 | Int_t nparx = 0;
|
|---|
| 940 |
|
|---|
| 941 | if (gMinuit)
|
|---|
| 942 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
|---|
| 943 |
|
|---|
| 944 | *fLog << "MHFindSignificance::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
|---|
| 945 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
|---|
| 946 | << ", " << nparx << ", " << fIstat << endl;
|
|---|
| 947 |
|
|---|
| 948 |
|
|---|
| 949 | //-------------------
|
|---|
| 950 | // store the results
|
|---|
| 951 |
|
|---|
| 952 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
|---|
| 953 | fChisq = fmin;
|
|---|
| 954 | fNdf = fMbins - nparfree;
|
|---|
| 955 | fProb = TMath::Prob(fChisq, fNdf);
|
|---|
| 956 |
|
|---|
| 957 |
|
|---|
| 958 | // get fitted parameter values and errors
|
|---|
| 959 | fValues.Set(npar);
|
|---|
| 960 | fErrors.Set(npar);
|
|---|
| 961 |
|
|---|
| 962 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 963 | {
|
|---|
| 964 | Double_t val, err;
|
|---|
| 965 | if (gMinuit)
|
|---|
| 966 | gMinuit->GetParameter(j, val, err);
|
|---|
| 967 |
|
|---|
| 968 | fPoly->SetParameter(j, val);
|
|---|
| 969 | fPoly->SetParError(j, err);
|
|---|
| 970 |
|
|---|
| 971 | fValues[j] = val;
|
|---|
| 972 | fErrors[j] = err;
|
|---|
| 973 | }
|
|---|
| 974 |
|
|---|
| 975 |
|
|---|
| 976 | //--------------------------------------------------
|
|---|
| 977 | // if the highest coefficient (j0) of the polynomial
|
|---|
| 978 | // is consistent with zero reduce the degree of the polynomial
|
|---|
| 979 |
|
|---|
| 980 | Int_t j0 = 0;
|
|---|
| 981 | for (Int_t j=fDegree; j>1; j--)
|
|---|
| 982 | {
|
|---|
| 983 | // ignore fixed parameters
|
|---|
| 984 | if (fErrors[j] == 0)
|
|---|
| 985 | continue;
|
|---|
| 986 |
|
|---|
| 987 | // this is the highest coefficient
|
|---|
| 988 | j0 = j;
|
|---|
| 989 | break;
|
|---|
| 990 | }
|
|---|
| 991 |
|
|---|
| 992 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
|---|
| 993 | break;
|
|---|
| 994 |
|
|---|
| 995 | // reduce the degree of the polynomial
|
|---|
| 996 | *fLog << "MHFindSignificance::FitPolynomial; reduce the degree of the polynomial from "
|
|---|
| 997 | << fDegree << " to " << (j0-2) << endl;
|
|---|
| 998 | fDegree = j0 - 2;
|
|---|
| 999 |
|
|---|
| 1000 | funclist->Remove(fPoly);
|
|---|
| 1001 | //if (fPoly)
|
|---|
| 1002 | delete fPoly;
|
|---|
| 1003 | fPoly = NULL;
|
|---|
| 1004 |
|
|---|
| 1005 | // delete the Minuit object in order to have independent starting
|
|---|
| 1006 | // conditions for the next minimization
|
|---|
| 1007 | //if (gMinuit)
|
|---|
| 1008 | delete gMinuit;
|
|---|
| 1009 | gMinuit = NULL;
|
|---|
| 1010 | }
|
|---|
| 1011 | //=========== end of loop for reducing the degree ==================
|
|---|
| 1012 | // of the polynomial
|
|---|
| 1013 |
|
|---|
| 1014 |
|
|---|
| 1015 | //--------------------------------------------------
|
|---|
| 1016 | // get the error matrix of the fitted parameters
|
|---|
| 1017 |
|
|---|
| 1018 |
|
|---|
| 1019 | if (fIstat >= 1)
|
|---|
| 1020 | {
|
|---|
| 1021 | // error matrix was calculated
|
|---|
| 1022 | if (gMinuit)
|
|---|
| 1023 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
|---|
| 1024 |
|
|---|
| 1025 | // copy covariance matrix into a matrix which includes also the fixed
|
|---|
| 1026 | // parameters
|
|---|
| 1027 | TString name;
|
|---|
| 1028 | Double_t bnd1, bnd2, val, err;
|
|---|
| 1029 | Int_t jvarbl;
|
|---|
| 1030 | Int_t kvarbl;
|
|---|
| 1031 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1032 | {
|
|---|
| 1033 | if (gMinuit)
|
|---|
| 1034 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
|---|
| 1035 |
|
|---|
| 1036 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1037 | {
|
|---|
| 1038 | if (gMinuit)
|
|---|
| 1039 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
|---|
| 1040 |
|
|---|
| 1041 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
|---|
| 1042 | }
|
|---|
| 1043 | }
|
|---|
| 1044 | }
|
|---|
| 1045 | else
|
|---|
| 1046 | {
|
|---|
| 1047 | // error matrix was not calculated, construct it
|
|---|
| 1048 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined"
|
|---|
| 1049 | << endl;
|
|---|
| 1050 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1051 | {
|
|---|
| 1052 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1053 | fEma[j][k] = 0;
|
|---|
| 1054 |
|
|---|
| 1055 | fEma[j][j] = fErrors[j]*fErrors[j];
|
|---|
| 1056 | }
|
|---|
| 1057 | }
|
|---|
| 1058 |
|
|---|
| 1059 |
|
|---|
| 1060 | //--------------------------------------------------
|
|---|
| 1061 | // calculate correlation matrix
|
|---|
| 1062 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1063 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1064 | {
|
|---|
| 1065 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
|---|
| 1066 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
|---|
| 1067 | }
|
|---|
| 1068 |
|
|---|
| 1069 |
|
|---|
| 1070 | //--------------------------------------------------
|
|---|
| 1071 | // reset the errors of the points in the histogram
|
|---|
| 1072 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1073 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 1074 |
|
|---|
| 1075 |
|
|---|
| 1076 | return kTRUE;
|
|---|
| 1077 | }
|
|---|
| 1078 |
|
|---|
| 1079 | // --------------------------------------------------------------------------
|
|---|
| 1080 | //
|
|---|
| 1081 | // ReBinHistogram
|
|---|
| 1082 | //
|
|---|
| 1083 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
|---|
| 1084 | // put the result into the histogram 'fHist'
|
|---|
| 1085 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
|---|
| 1086 | //
|
|---|
| 1087 |
|
|---|
| 1088 | Bool_t MHFindSignificance::RebinHistogram(Double_t x0, Int_t nrebin)
|
|---|
| 1089 | {
|
|---|
| 1090 | //-----------------------------------------
|
|---|
| 1091 | // search bin i0 which has x0 as lower edge
|
|---|
| 1092 |
|
|---|
| 1093 | Int_t i0 = -1;
|
|---|
| 1094 | Int_t nbold = fHistOrig->GetNbinsX();
|
|---|
| 1095 | for (Int_t i=1; i<=nbold; i++)
|
|---|
| 1096 | {
|
|---|
| 1097 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
|---|
| 1098 | {
|
|---|
| 1099 | i0 = i;
|
|---|
| 1100 | break;
|
|---|
| 1101 | }
|
|---|
| 1102 | }
|
|---|
| 1103 |
|
|---|
| 1104 | if (i0 == -1)
|
|---|
| 1105 | {
|
|---|
| 1106 | i0 = 1;
|
|---|
| 1107 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
|---|
| 1108 | << " as lower edge, start rebinning with bin 1" << endl;
|
|---|
| 1109 | }
|
|---|
| 1110 |
|
|---|
| 1111 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
|---|
| 1112 |
|
|---|
| 1113 | //-----------------------------------------
|
|---|
| 1114 | // get new bin edges
|
|---|
| 1115 |
|
|---|
| 1116 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
|---|
| 1117 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
|---|
| 1118 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
|---|
| 1119 | fHist->SetBins(nbnew, xmin, xmax);
|
|---|
| 1120 |
|
|---|
| 1121 | *fLog << "MHFindSignificance::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
|---|
| 1122 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
|---|
| 1123 | << xmin << ", " << xmax << endl;
|
|---|
| 1124 |
|
|---|
| 1125 | //-----------------------------------------
|
|---|
| 1126 | // get new bin entries
|
|---|
| 1127 |
|
|---|
| 1128 | for (Int_t i=1; i<=nbnew; i++)
|
|---|
| 1129 | {
|
|---|
| 1130 | Int_t j = nrebin*(i-1) + istart;
|
|---|
| 1131 |
|
|---|
| 1132 | Double_t content = 0;
|
|---|
| 1133 | Double_t error2 = 0;
|
|---|
| 1134 | for (Int_t k=0; k<nrebin; k++)
|
|---|
| 1135 | {
|
|---|
| 1136 | content += fHistOrig->GetBinContent(j+k);
|
|---|
| 1137 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
|---|
| 1138 | }
|
|---|
| 1139 | fHist->SetBinContent(i, content);
|
|---|
| 1140 | fHist->SetBinError (i, sqrt(error2));
|
|---|
| 1141 | }
|
|---|
| 1142 | fHist->SetEntries( fHistOrig->GetEntries() );
|
|---|
| 1143 |
|
|---|
| 1144 | return kTRUE;
|
|---|
| 1145 | }
|
|---|
| 1146 |
|
|---|
| 1147 | // --------------------------------------------------------------------------
|
|---|
| 1148 | //
|
|---|
| 1149 | // FitGaussPoly
|
|---|
| 1150 | //
|
|---|
| 1151 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
|---|
| 1152 | //
|
|---|
| 1153 | //
|
|---|
| 1154 | Bool_t MHFindSignificance::FitGaussPoly()
|
|---|
| 1155 | {
|
|---|
| 1156 | *fLog << "Entry FitGaussPoly" << endl;
|
|---|
| 1157 |
|
|---|
| 1158 | //--------------------------------------------------
|
|---|
| 1159 | // check the histogram :
|
|---|
| 1160 | // - calculate initial values of the parameters
|
|---|
| 1161 | // - check for bins with zero entries
|
|---|
| 1162 | // - set minimum errors
|
|---|
| 1163 | // - save the original errors
|
|---|
| 1164 | // - set errors huge outside the fit range
|
|---|
| 1165 | // (in 'fcnpoly' points with huge errors will be ignored)
|
|---|
| 1166 |
|
|---|
| 1167 |
|
|---|
| 1168 | Double_t dummy = 1.e20;
|
|---|
| 1169 |
|
|---|
| 1170 | fGNzero = 0;
|
|---|
| 1171 | fGMbins = 0;
|
|---|
| 1172 |
|
|---|
| 1173 | //------------------------------------------
|
|---|
| 1174 | // if a constant background has been assumed (due to low statistics)
|
|---|
| 1175 | // fit only in the signal region
|
|---|
| 1176 | if ( !fConstantBackg )
|
|---|
| 1177 | {
|
|---|
| 1178 | fAlphalow = 0.0;
|
|---|
| 1179 | fAlphahig = fAlphamax;
|
|---|
| 1180 | }
|
|---|
| 1181 | else
|
|---|
| 1182 | {
|
|---|
| 1183 | fAlphalow = 0.0;
|
|---|
| 1184 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
|---|
| 1185 | }
|
|---|
| 1186 | //------------------------------------------
|
|---|
| 1187 |
|
|---|
| 1188 |
|
|---|
| 1189 | fAlphalo = 10000.0;
|
|---|
| 1190 | fAlphahi = -10000.0;
|
|---|
| 1191 |
|
|---|
| 1192 |
|
|---|
| 1193 | Int_t nbins = fHist->GetNbinsX();
|
|---|
| 1194 | TArrayD saveError(nbins);
|
|---|
| 1195 |
|
|---|
| 1196 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1197 | {
|
|---|
| 1198 | saveError[i-1] = fHist->GetBinError(i);
|
|---|
| 1199 |
|
|---|
| 1200 | // bin should be completely contained in the fit range
|
|---|
| 1201 | // (fAlphalow, fAlphahig)
|
|---|
| 1202 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 1203 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 1204 |
|
|---|
| 1205 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
|---|
| 1206 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
|---|
| 1207 | {
|
|---|
| 1208 | fGMbins++;
|
|---|
| 1209 |
|
|---|
| 1210 | if ( xlo < fAlphalo )
|
|---|
| 1211 | fAlphalo = xlo;
|
|---|
| 1212 |
|
|---|
| 1213 | if ( xup > fAlphahi )
|
|---|
| 1214 | fAlphahi = xup;
|
|---|
| 1215 |
|
|---|
| 1216 | Double_t content = fHist->GetBinContent(i);
|
|---|
| 1217 |
|
|---|
| 1218 |
|
|---|
| 1219 | // count bins with zero entry
|
|---|
| 1220 | if (content <= 0.0)
|
|---|
| 1221 | fGNzero++;
|
|---|
| 1222 |
|
|---|
| 1223 | // set minimum error
|
|---|
| 1224 | if (content < 9.0)
|
|---|
| 1225 | fHist->SetBinError(i, 3.0);
|
|---|
| 1226 |
|
|---|
| 1227 | //*fLog << "Take : i, content, error = " << i << ", "
|
|---|
| 1228 | // << fHist->GetBinContent(i) << ", "
|
|---|
| 1229 | // << fHist->GetBinError(i) << endl;
|
|---|
| 1230 |
|
|---|
| 1231 | continue;
|
|---|
| 1232 | }
|
|---|
| 1233 | // bin is not completely contained in the fit range : set error huge
|
|---|
| 1234 |
|
|---|
| 1235 | fHist->SetBinError(i, dummy);
|
|---|
| 1236 |
|
|---|
| 1237 | //*fLog << "Omit : i, content, error = " << i << ", "
|
|---|
| 1238 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
|---|
| 1239 | // << endl;
|
|---|
| 1240 |
|
|---|
| 1241 | }
|
|---|
| 1242 |
|
|---|
| 1243 |
|
|---|
| 1244 | // if a bin has no entries don't fit
|
|---|
| 1245 | if (fGNzero > 0)
|
|---|
| 1246 | {
|
|---|
| 1247 | *fLog << "MHFindSignificance::FitGaussPoly; out of " << fGMbins
|
|---|
| 1248 | << " bins there are " << fGNzero
|
|---|
| 1249 | << " bins with zero entry" << endl;
|
|---|
| 1250 |
|
|---|
| 1251 | fGPoly = NULL;
|
|---|
| 1252 | return kFALSE;
|
|---|
| 1253 | }
|
|---|
| 1254 |
|
|---|
| 1255 |
|
|---|
| 1256 | //--------------------------------------------------
|
|---|
| 1257 | // prepare fit of a (polynomial+Gauss) :
|
|---|
| 1258 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
|---|
| 1259 |
|
|---|
| 1260 | TString funcname = "PolyGauss";
|
|---|
| 1261 | Double_t xmin = 0.0;
|
|---|
| 1262 | Double_t xmax = 90.0;
|
|---|
| 1263 |
|
|---|
| 1264 | TString xpower = "*x";
|
|---|
| 1265 | TString newpower = "*x";
|
|---|
| 1266 |
|
|---|
| 1267 | TString formulaBackg = "[0]";
|
|---|
| 1268 | for (Int_t i=1; i<=fDegree; i++)
|
|---|
| 1269 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
|---|
| 1270 |
|
|---|
| 1271 | const TString formulaGauss =
|
|---|
| 1272 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
|---|
| 1273 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
|---|
| 1274 |
|
|---|
| 1275 | TString formula = formulaBackg;
|
|---|
| 1276 | formula += "+";
|
|---|
| 1277 | formula += formulaGauss;
|
|---|
| 1278 |
|
|---|
| 1279 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
|---|
| 1280 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
|---|
| 1281 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
|---|
| 1282 |
|
|---|
| 1283 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 1284 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 1285 | funclist->Add(fGPoly);
|
|---|
| 1286 |
|
|---|
| 1287 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
|---|
| 1288 | funclist->Add(fGBackg);
|
|---|
| 1289 |
|
|---|
| 1290 | //------------------------
|
|---|
| 1291 | // attention : the dimensions must agree with those in CallMinuit()
|
|---|
| 1292 | Int_t npar = fDegree+1 + 3;
|
|---|
| 1293 |
|
|---|
| 1294 | TString parname[npar];
|
|---|
| 1295 | TArrayD vinit(npar);
|
|---|
| 1296 | TArrayD step(npar);
|
|---|
| 1297 | TArrayD limlo(npar);
|
|---|
| 1298 | TArrayD limup(npar);
|
|---|
| 1299 | TArrayI fix(npar);
|
|---|
| 1300 |
|
|---|
| 1301 |
|
|---|
| 1302 | // take as initial values for the polynomial
|
|---|
| 1303 | // the result from the polynomial fit
|
|---|
| 1304 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1305 | vinit[j] = fPoly->GetParameter(j);
|
|---|
| 1306 |
|
|---|
| 1307 | Double_t sigma = 8;
|
|---|
| 1308 | vinit[fDegree+1] = 2.0 * fNex * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
|---|
| 1309 | vinit[fDegree+2] = 0;
|
|---|
| 1310 | vinit[fDegree+3] = sigma;
|
|---|
| 1311 |
|
|---|
| 1312 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
|---|
| 1313 | << vinit[fDegree+1] << endl;
|
|---|
| 1314 |
|
|---|
| 1315 | for (Int_t j=0; j<npar; j++)
|
|---|
| 1316 | {
|
|---|
| 1317 | parname[j] = "p";
|
|---|
| 1318 | parname[j] += j+1;
|
|---|
| 1319 |
|
|---|
| 1320 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
|---|
| 1321 | }
|
|---|
| 1322 |
|
|---|
| 1323 | // limit the first coefficient of the polynomial to positive values
|
|---|
| 1324 | // because the background must not be negative
|
|---|
| 1325 | limup[0] = fHist->GetEntries()*10;
|
|---|
| 1326 |
|
|---|
| 1327 | // limit the sigma of the Gauss function
|
|---|
| 1328 | limup[fDegree+3] = 20;
|
|---|
| 1329 |
|
|---|
| 1330 |
|
|---|
| 1331 | // use the subsequernt loop if you want to apply the
|
|---|
| 1332 | // constraint : uneven derivatives (at alpha=0) = zero
|
|---|
| 1333 | for (Int_t j=1; j<=fDegree; j+=2)
|
|---|
| 1334 | {
|
|---|
| 1335 | vinit[j] = 0;
|
|---|
| 1336 | step[j] = 0;
|
|---|
| 1337 | fix[j] = 1;
|
|---|
| 1338 | }
|
|---|
| 1339 |
|
|---|
| 1340 | // fix position of Gauss function
|
|---|
| 1341 | vinit[fDegree+2] = 0;
|
|---|
| 1342 | step[fDegree+2] = 0;
|
|---|
| 1343 | fix[fDegree+2] = 1;
|
|---|
| 1344 |
|
|---|
| 1345 | // if a constant background has been assumed (due to low statistics)
|
|---|
| 1346 | // fix the background
|
|---|
| 1347 | if (fConstantBackg)
|
|---|
| 1348 | {
|
|---|
| 1349 | step[0] = 0;
|
|---|
| 1350 | fix[0] = 1;
|
|---|
| 1351 | }
|
|---|
| 1352 |
|
|---|
| 1353 | MMinuitInterface inter;
|
|---|
| 1354 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
|---|
| 1355 | limlo, limup, fix, fHist, "Migrad",
|
|---|
| 1356 | kFALSE);
|
|---|
| 1357 |
|
|---|
| 1358 | if (rc != 0)
|
|---|
| 1359 | {
|
|---|
| 1360 | // *fLog << "MHFindSignificance::FitGaussPoly; (polynomial+Gauss) fit failed"
|
|---|
| 1361 | // << endl;
|
|---|
| 1362 | // return kFALSE;
|
|---|
| 1363 | }
|
|---|
| 1364 |
|
|---|
| 1365 |
|
|---|
| 1366 | //-------------------
|
|---|
| 1367 | // get status of the minimization
|
|---|
| 1368 | Double_t fmin;
|
|---|
| 1369 | Double_t fedm;
|
|---|
| 1370 | Double_t errdef;
|
|---|
| 1371 | Int_t npari;
|
|---|
| 1372 | Int_t nparx;
|
|---|
| 1373 |
|
|---|
| 1374 | if (gMinuit)
|
|---|
| 1375 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
|---|
| 1376 |
|
|---|
| 1377 | *fLog << "MHFindSignificance::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
|---|
| 1378 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
|---|
| 1379 | << ", " << nparx << ", " << fGIstat << endl;
|
|---|
| 1380 |
|
|---|
| 1381 |
|
|---|
| 1382 | //-------------------
|
|---|
| 1383 | // store the results
|
|---|
| 1384 |
|
|---|
| 1385 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
|---|
| 1386 | fGChisq = fmin;
|
|---|
| 1387 | fGNdf = fGMbins - nparfree;
|
|---|
| 1388 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
|---|
| 1389 |
|
|---|
| 1390 |
|
|---|
| 1391 | // get fitted parameter values and errors
|
|---|
| 1392 | fGValues.Set(npar);
|
|---|
| 1393 | fGErrors.Set(npar);
|
|---|
| 1394 |
|
|---|
| 1395 | for (Int_t j=0; j<npar; j++)
|
|---|
| 1396 | {
|
|---|
| 1397 | Double_t val, err;
|
|---|
| 1398 | if (gMinuit)
|
|---|
| 1399 | gMinuit->GetParameter(j, val, err);
|
|---|
| 1400 |
|
|---|
| 1401 | fGPoly->SetParameter(j, val);
|
|---|
| 1402 | fGPoly->SetParError(j, err);
|
|---|
| 1403 |
|
|---|
| 1404 | fGValues[j] = val;
|
|---|
| 1405 | fGErrors[j] = err;
|
|---|
| 1406 |
|
|---|
| 1407 | if (j <=fDegree)
|
|---|
| 1408 | {
|
|---|
| 1409 | fGBackg->SetParameter(j, val);
|
|---|
| 1410 | fGBackg->SetParError(j, err);
|
|---|
| 1411 | }
|
|---|
| 1412 | }
|
|---|
| 1413 |
|
|---|
| 1414 | fSigmaGauss = fGValues[fDegree+3];
|
|---|
| 1415 | fdSigmaGauss = fGErrors[fDegree+3];
|
|---|
| 1416 | // fitted total number of excess events
|
|---|
| 1417 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
|---|
| 1418 | (fHist->GetBinWidth(1)*2 );
|
|---|
| 1419 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
|---|
| 1420 |
|
|---|
| 1421 | //--------------------------------------------------
|
|---|
| 1422 | // get the error matrix of the fitted parameters
|
|---|
| 1423 |
|
|---|
| 1424 |
|
|---|
| 1425 | if (fGIstat >= 1)
|
|---|
| 1426 | {
|
|---|
| 1427 | // error matrix was calculated
|
|---|
| 1428 | if (gMinuit)
|
|---|
| 1429 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
|---|
| 1430 |
|
|---|
| 1431 | // copy covariance matrix into a matrix which includes also the fixed
|
|---|
| 1432 | // parameters
|
|---|
| 1433 | TString name;
|
|---|
| 1434 | Double_t bnd1, bnd2, val, err;
|
|---|
| 1435 | Int_t jvarbl;
|
|---|
| 1436 | Int_t kvarbl;
|
|---|
| 1437 | for (Int_t j=0; j<npar; j++)
|
|---|
| 1438 | {
|
|---|
| 1439 | if (gMinuit)
|
|---|
| 1440 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
|---|
| 1441 |
|
|---|
| 1442 | for (Int_t k=0; k<npar; k++)
|
|---|
| 1443 | {
|
|---|
| 1444 | if (gMinuit)
|
|---|
| 1445 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
|---|
| 1446 |
|
|---|
| 1447 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
|---|
| 1448 | }
|
|---|
| 1449 | }
|
|---|
| 1450 | }
|
|---|
| 1451 | else
|
|---|
| 1452 | {
|
|---|
| 1453 | // error matrix was not calculated, construct it
|
|---|
| 1454 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined"
|
|---|
| 1455 | << endl;
|
|---|
| 1456 | for (Int_t j=0; j<npar; j++)
|
|---|
| 1457 | {
|
|---|
| 1458 | for (Int_t k=0; k<npar; k++)
|
|---|
| 1459 | fGEma[j][k] = 0;
|
|---|
| 1460 |
|
|---|
| 1461 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
|---|
| 1462 | }
|
|---|
| 1463 | }
|
|---|
| 1464 |
|
|---|
| 1465 |
|
|---|
| 1466 | //--------------------------------------------------
|
|---|
| 1467 | // calculate correlation matrix
|
|---|
| 1468 | for (Int_t j=0; j<npar; j++)
|
|---|
| 1469 | {
|
|---|
| 1470 | for (Int_t k=0; k<npar; k++)
|
|---|
| 1471 | {
|
|---|
| 1472 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
|---|
| 1473 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
|---|
| 1474 | }
|
|---|
| 1475 | }
|
|---|
| 1476 |
|
|---|
| 1477 |
|
|---|
| 1478 | //--------------------------------------------------
|
|---|
| 1479 | // reset the errors of the points in the histogram
|
|---|
| 1480 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1481 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 1482 |
|
|---|
| 1483 | return kTRUE;
|
|---|
| 1484 |
|
|---|
| 1485 | }
|
|---|
| 1486 |
|
|---|
| 1487 | // --------------------------------------------------------------------------
|
|---|
| 1488 | //
|
|---|
| 1489 | // DetExcess
|
|---|
| 1490 | //
|
|---|
| 1491 | // using the result of the polynomial fit (fValues), DetExcess determines
|
|---|
| 1492 | //
|
|---|
| 1493 | // - the total number of events in the signal region (fNon)
|
|---|
| 1494 | // - the number of backgound events in the signal region (fNbg)
|
|---|
| 1495 | // - the number of excess events (fNex)
|
|---|
| 1496 | // - the effective number of background events (fNoff), and fGamma :
|
|---|
| 1497 | // fNbg = fGamma * fNoff; fdNbg = fGamma * sqrt(fNoff);
|
|---|
| 1498 | //
|
|---|
| 1499 | // It assumed that the polynomial is defined as
|
|---|
| 1500 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
|---|
| 1501 | //
|
|---|
| 1502 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
|---|
| 1503 | //
|
|---|
| 1504 |
|
|---|
| 1505 | Bool_t MHFindSignificance::DetExcess()
|
|---|
| 1506 | {
|
|---|
| 1507 | //*fLog << "MHFindSignificance::DetExcess;" << endl;
|
|---|
| 1508 |
|
|---|
| 1509 | //--------------------------------------------
|
|---|
| 1510 | // calculate the total number of events (fNon) in the signal region
|
|---|
| 1511 |
|
|---|
| 1512 | fNon = 0.0;
|
|---|
| 1513 | fdNon = 0.0;
|
|---|
| 1514 |
|
|---|
| 1515 | Double_t alphaup = -1000.0;
|
|---|
| 1516 | Double_t binwidth = fHist->GetBinWidth(1);
|
|---|
| 1517 |
|
|---|
| 1518 | Int_t nbins = fHist->GetNbinsX();
|
|---|
| 1519 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1520 | {
|
|---|
| 1521 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 1522 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 1523 |
|
|---|
| 1524 | // bin must be completely contained in the signal region
|
|---|
| 1525 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
|---|
| 1526 | {
|
|---|
| 1527 | Double_t width = fabs(xup-xlo);
|
|---|
| 1528 | if (fabs(width-binwidth) > fEps)
|
|---|
| 1529 | {
|
|---|
| 1530 | *fLog << "MHFindSignificance::DetExcess; alpha plot has variable binning, which is not allowed"
|
|---|
| 1531 | << endl;
|
|---|
| 1532 | return kFALSE;
|
|---|
| 1533 | }
|
|---|
| 1534 |
|
|---|
| 1535 | if (xup > alphaup)
|
|---|
| 1536 | alphaup = xup;
|
|---|
| 1537 |
|
|---|
| 1538 | fNon += fHist->GetBinContent(i);
|
|---|
| 1539 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
|---|
| 1540 | }
|
|---|
| 1541 | }
|
|---|
| 1542 | fdNon = sqrt(fdNon);
|
|---|
| 1543 |
|
|---|
| 1544 | // the actual signal range is :
|
|---|
| 1545 | if (alphaup == -1000.0)
|
|---|
| 1546 | return kFALSE;
|
|---|
| 1547 |
|
|---|
| 1548 | fAlphasi = alphaup;
|
|---|
| 1549 |
|
|---|
| 1550 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
|---|
| 1551 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
|---|
| 1552 | // << fDegree << endl;
|
|---|
| 1553 |
|
|---|
| 1554 | //--------------------------------------------
|
|---|
| 1555 | // calculate the number of background events (fNbg) in the signal region
|
|---|
| 1556 | // and its error (fdNbg)
|
|---|
| 1557 |
|
|---|
| 1558 | Double_t fac = 1.0/binwidth;
|
|---|
| 1559 |
|
|---|
| 1560 | fNbg = 0.0;
|
|---|
| 1561 | Double_t altothejplus1 = fAlphasi;
|
|---|
| 1562 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1563 | {
|
|---|
| 1564 | fNbg += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
|---|
| 1565 | altothejplus1 *= fAlphasi;
|
|---|
| 1566 | }
|
|---|
| 1567 | fNbg *= fac;
|
|---|
| 1568 |
|
|---|
| 1569 | // derivative of Nbg
|
|---|
| 1570 | Double_t facj;
|
|---|
| 1571 | Double_t fack;
|
|---|
| 1572 |
|
|---|
| 1573 | Double_t sum = 0.0;
|
|---|
| 1574 | altothejplus1 = fAlphasi;
|
|---|
| 1575 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1576 | {
|
|---|
| 1577 | facj = altothejplus1 / ((Double_t)(j+1));
|
|---|
| 1578 |
|
|---|
| 1579 | Double_t altothekplus1 = fAlphasi;
|
|---|
| 1580 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1581 | {
|
|---|
| 1582 | fack = altothekplus1 / ((Double_t)(k+1));
|
|---|
| 1583 |
|
|---|
| 1584 | sum += facj * fack * fEma[j][k];
|
|---|
| 1585 | altothekplus1 *= fAlphasi;
|
|---|
| 1586 | }
|
|---|
| 1587 | altothejplus1 *= fAlphasi;
|
|---|
| 1588 | }
|
|---|
| 1589 | sum *= fac*fac;
|
|---|
| 1590 |
|
|---|
| 1591 | if (sum < 0.0)
|
|---|
| 1592 | {
|
|---|
| 1593 | *fLog << "MHFindsignificance::DetExcess; error squared is negative"
|
|---|
| 1594 | << endl;
|
|---|
| 1595 | return kFALSE;
|
|---|
| 1596 | }
|
|---|
| 1597 |
|
|---|
| 1598 | fdNbg = sqrt(sum);
|
|---|
| 1599 |
|
|---|
| 1600 |
|
|---|
| 1601 | //--------------------------------------------
|
|---|
| 1602 | // AS A CHECK :
|
|---|
| 1603 | // calculate the number of background events (fNbgtotFitted) in the
|
|---|
| 1604 | // background region, and its error (fdNbgtotFitted)
|
|---|
| 1605 | // expect fdnbg to be approximately equal to sqrt(fNbgtotFitted)
|
|---|
| 1606 |
|
|---|
| 1607 | Double_t fNmi = 0.0;
|
|---|
| 1608 | altothejplus1 = fAlphami;
|
|---|
| 1609 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1610 | {
|
|---|
| 1611 | fNmi += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
|---|
| 1612 | altothejplus1 *= fAlphami;
|
|---|
| 1613 | }
|
|---|
| 1614 | fNmi *= fac;
|
|---|
| 1615 |
|
|---|
| 1616 | Double_t fNma = 0.0;
|
|---|
| 1617 | altothejplus1 = fAlphama;
|
|---|
| 1618 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1619 | {
|
|---|
| 1620 | fNma += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
|---|
| 1621 | altothejplus1 *= fAlphama;
|
|---|
| 1622 | }
|
|---|
| 1623 | fNma *= fac;
|
|---|
| 1624 |
|
|---|
| 1625 | fNbgtotFitted = fNma - fNmi;
|
|---|
| 1626 |
|
|---|
| 1627 | //----------------------
|
|---|
| 1628 |
|
|---|
| 1629 | sum = 0.0;
|
|---|
| 1630 | Double_t altothejma = fAlphama;
|
|---|
| 1631 | Double_t altothejmi = fAlphami;
|
|---|
| 1632 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1633 | {
|
|---|
| 1634 | facj = (altothejma-altothejmi) / ((Double_t)(j+1));
|
|---|
| 1635 |
|
|---|
| 1636 | Double_t altothekma = fAlphama;
|
|---|
| 1637 | Double_t altothekmi = fAlphami;
|
|---|
| 1638 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1639 | {
|
|---|
| 1640 | fack = (altothekma-altothekmi) / ((Double_t)(k+1));
|
|---|
| 1641 |
|
|---|
| 1642 | sum += facj * fack * fEma[j][k];
|
|---|
| 1643 | altothekma *= fAlphama;
|
|---|
| 1644 | altothekmi *= fAlphami;
|
|---|
| 1645 | }
|
|---|
| 1646 | altothejma *= fAlphama;
|
|---|
| 1647 | altothejmi *= fAlphami;
|
|---|
| 1648 | }
|
|---|
| 1649 | sum *= fac*fac;
|
|---|
| 1650 |
|
|---|
| 1651 | fdNbgtotFitted = sqrt(sum);
|
|---|
| 1652 | if ( fabs(fdNbgtotFitted - sqrt(fNbgtotFitted)) > 0.2 * sqrt(fNbgtotFitted) )
|
|---|
| 1653 | {
|
|---|
| 1654 | *fLog << "MHFindSignificance::DetExcess; error of calculated number of background events (in the background region) does not agree with the expectation :"
|
|---|
| 1655 | << endl;
|
|---|
| 1656 | *fLog << " fNbgtotFitted, fdNbgtotFitted = "
|
|---|
| 1657 | << fNbgtotFitted << ", " << fdNbgtotFitted
|
|---|
| 1658 | << ", expected : " << sqrt(fNbgtotFitted) << endl;
|
|---|
| 1659 | }
|
|---|
| 1660 |
|
|---|
| 1661 |
|
|---|
| 1662 | //--------------------------------------------
|
|---|
| 1663 | // calculate the number of excess events in the signal region
|
|---|
| 1664 |
|
|---|
| 1665 | fNex = fNon - fNbg;
|
|---|
| 1666 |
|
|---|
| 1667 | //--------------------------------------------
|
|---|
| 1668 | // calculate the effective number of background events (fNoff) , and fGamma :
|
|---|
| 1669 | // fNbg = fGamma * fNoff; dfNbg = fGamma * sqrt(fNoff);
|
|---|
| 1670 |
|
|---|
| 1671 | if (fNbg < 0.0)
|
|---|
| 1672 | {
|
|---|
| 1673 | *fLog << "MHFindSignificamce::DetExcess; number of background events is negative, fNbg, fdNbg = "
|
|---|
| 1674 | << fNbg << ", " << fdNbg << endl;
|
|---|
| 1675 |
|
|---|
| 1676 | fGamma = 1.0;
|
|---|
| 1677 | fNoff = 0.0;
|
|---|
| 1678 | return kFALSE;
|
|---|
| 1679 | }
|
|---|
| 1680 |
|
|---|
| 1681 | if (fNbg > 0.0)
|
|---|
| 1682 | {
|
|---|
| 1683 | fGamma = fdNbg*fdNbg / fNbg;
|
|---|
| 1684 | fNoff = fNbg*fNbg / (fdNbg*fdNbg);
|
|---|
| 1685 | }
|
|---|
| 1686 | else
|
|---|
| 1687 | {
|
|---|
| 1688 | fGamma = 1.0;
|
|---|
| 1689 | fNoff = 0.0;
|
|---|
| 1690 | }
|
|---|
| 1691 |
|
|---|
| 1692 | //*fLog << "Exit DetExcess()" << endl;
|
|---|
| 1693 |
|
|---|
| 1694 | return kTRUE;
|
|---|
| 1695 | }
|
|---|
| 1696 |
|
|---|
| 1697 | // --------------------------------------------------------------------------
|
|---|
| 1698 | //
|
|---|
| 1699 | // SigmaLiMa
|
|---|
| 1700 | //
|
|---|
| 1701 | // calculates the significance according to Li & Ma
|
|---|
| 1702 | // ApJ 272 (1983) 317
|
|---|
| 1703 | //
|
|---|
| 1704 | Bool_t MHFindSignificance::SigmaLiMa(Double_t non, Double_t noff,
|
|---|
| 1705 | Double_t gamma, Double_t *siglima)
|
|---|
| 1706 | {
|
|---|
| 1707 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
|---|
| 1708 | {
|
|---|
| 1709 | *siglima = 0.0;
|
|---|
| 1710 | return kFALSE;
|
|---|
| 1711 | }
|
|---|
| 1712 |
|
|---|
| 1713 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
|---|
| 1714 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
|---|
| 1715 | *siglima = sqrt( 2.0 * (help1+help2) );
|
|---|
| 1716 |
|
|---|
| 1717 | Double_t nex = non - gamma*noff;
|
|---|
| 1718 | if (nex < 0.0)
|
|---|
| 1719 | *siglima = - *siglima;
|
|---|
| 1720 |
|
|---|
| 1721 | //*fLog << "MHFindSignificance::SigmaLiMa; non, noff, gamma, *siglima = "
|
|---|
| 1722 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
|---|
| 1723 |
|
|---|
| 1724 | return kTRUE;
|
|---|
| 1725 | }
|
|---|
| 1726 |
|
|---|
| 1727 | // --------------------------------------------------------------------------
|
|---|
| 1728 | //
|
|---|
| 1729 | Bool_t MHFindSignificance::DrawFit(const Option_t *opt)
|
|---|
| 1730 | {
|
|---|
| 1731 | if (fHist == NULL)
|
|---|
| 1732 | *fLog << "MHFindSignificance::DrawFit; fHist = NULL" << endl;
|
|---|
| 1733 |
|
|---|
| 1734 |
|
|---|
| 1735 | //TCanvas *fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
|---|
| 1736 | // fCanvas = new TCanvas(fHist->GetName(), "Alpha plot", 600, 600);
|
|---|
| 1737 |
|
|---|
| 1738 | TVirtualPad *c = gPad ? gPad : MakeDefCanvas(this);
|
|---|
| 1739 |
|
|---|
| 1740 | //gStyle->SetOptFit(1011);
|
|---|
| 1741 |
|
|---|
| 1742 | gROOT->SetSelectedPad(NULL);
|
|---|
| 1743 | gStyle->SetPadLeftMargin(0.1);
|
|---|
| 1744 |
|
|---|
| 1745 | // fCanvas->cd();
|
|---|
| 1746 | c->cd();
|
|---|
| 1747 |
|
|---|
| 1748 |
|
|---|
| 1749 | if (fHist)
|
|---|
| 1750 | {
|
|---|
| 1751 | fHist->DrawCopy();
|
|---|
| 1752 | }
|
|---|
| 1753 |
|
|---|
| 1754 | TF1 *fpoly = fHist->GetFunction("Poly");
|
|---|
| 1755 | if (fpoly == NULL)
|
|---|
| 1756 | *fLog << "MHFindSignificance::DrawFit; fpoly = NULL" << endl;
|
|---|
| 1757 |
|
|---|
| 1758 | if (fpoly)
|
|---|
| 1759 | {
|
|---|
| 1760 | // 2, 1 is red and solid
|
|---|
| 1761 | fpoly->SetLineColor(2);
|
|---|
| 1762 | fpoly->SetLineStyle(1);
|
|---|
| 1763 | fpoly->SetLineWidth(2);
|
|---|
| 1764 | fpoly->DrawCopy("same");
|
|---|
| 1765 | }
|
|---|
| 1766 |
|
|---|
| 1767 | if (fFitGauss)
|
|---|
| 1768 | {
|
|---|
| 1769 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
|---|
| 1770 | if (fpolygauss == NULL)
|
|---|
| 1771 | *fLog << "MHFindSignificance::DrawFit; fpolygauss = NULL" << endl;
|
|---|
| 1772 |
|
|---|
| 1773 | if (fpolygauss)
|
|---|
| 1774 | {
|
|---|
| 1775 | // 4, 1 is blue and solid
|
|---|
| 1776 | fpolygauss->SetLineColor(4);
|
|---|
| 1777 | fpolygauss->SetLineStyle(1);
|
|---|
| 1778 | fpolygauss->SetLineWidth(4);
|
|---|
| 1779 | fpolygauss->DrawCopy("same");
|
|---|
| 1780 | }
|
|---|
| 1781 |
|
|---|
| 1782 | TF1 *fbackg = fHist->GetFunction("Backg");
|
|---|
| 1783 | if (fbackg == NULL)
|
|---|
| 1784 | *fLog << "MHFindSignificance::DrawFit; fbackg = NULL" << endl;
|
|---|
| 1785 |
|
|---|
| 1786 | if (fbackg)
|
|---|
| 1787 | {
|
|---|
| 1788 | // 6, 4 is pink and dotted
|
|---|
| 1789 | fbackg->SetLineColor(4);
|
|---|
| 1790 | fbackg->SetLineStyle(4);
|
|---|
| 1791 | fbackg->SetLineWidth(4);
|
|---|
| 1792 | fbackg->DrawCopy("same");
|
|---|
| 1793 | }
|
|---|
| 1794 | }
|
|---|
| 1795 |
|
|---|
| 1796 |
|
|---|
| 1797 | //-------------------------------
|
|---|
| 1798 | // print results onto the figure
|
|---|
| 1799 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
|---|
| 1800 | char tx[100];
|
|---|
| 1801 |
|
|---|
| 1802 | sprintf(tx, "Results of polynomial fit (order %2d) :", fDegree);
|
|---|
| 1803 | TText *t1 = pt->AddText(tx);
|
|---|
| 1804 | t1->SetTextSize(0.03);
|
|---|
| 1805 | t1->SetTextColor(2);
|
|---|
| 1806 |
|
|---|
| 1807 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphami, fAlphama);
|
|---|
| 1808 | pt->AddText(tx);
|
|---|
| 1809 |
|
|---|
| 1810 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
|---|
| 1811 | fChisq, fNdf, fProb);
|
|---|
| 1812 | pt->AddText(tx);
|
|---|
| 1813 |
|
|---|
| 1814 | sprintf(tx, " Nbgtot(fit) = %8.1f #pm %8.1f",
|
|---|
| 1815 | fNbgtotFitted, fdNbgtotFitted);
|
|---|
| 1816 | pt->AddText(tx);
|
|---|
| 1817 |
|
|---|
| 1818 | sprintf(tx, " Nbgtot(meas) = %8.1f", fNbgtot);
|
|---|
| 1819 | pt->AddText(tx);
|
|---|
| 1820 |
|
|---|
| 1821 |
|
|---|
| 1822 | //sprintf(tx, " ");
|
|---|
| 1823 | //pt->AddText(tx);
|
|---|
| 1824 |
|
|---|
| 1825 | //--------------
|
|---|
| 1826 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
|---|
| 1827 | TText *t6 = pt->AddText(tx);
|
|---|
| 1828 | t6->SetTextSize(0.03);
|
|---|
| 1829 | t6->SetTextColor(8);
|
|---|
| 1830 |
|
|---|
| 1831 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
|---|
| 1832 | pt->AddText(tx);
|
|---|
| 1833 |
|
|---|
| 1834 | sprintf(tx, " Nex = %8.1f #pm %8.1f", fNex, fdNex);
|
|---|
| 1835 | pt->AddText(tx);
|
|---|
| 1836 |
|
|---|
| 1837 | sprintf(tx, " Nbg = %8.1f #pm %8.1f, gamma = %6.1f",
|
|---|
| 1838 | fNbg, fdNbg, fGamma);
|
|---|
| 1839 | pt->AddText(tx);
|
|---|
| 1840 |
|
|---|
| 1841 | Double_t ratio = fNbg>0.0 ? fNex/fNbg : 0.0;
|
|---|
| 1842 | sprintf(tx, " Significance = %6.2f, Nex/Nbg = %6.2f",
|
|---|
| 1843 | fSigLiMa, ratio);
|
|---|
| 1844 | pt->AddText(tx);
|
|---|
| 1845 |
|
|---|
| 1846 | //sprintf(tx, " ");
|
|---|
| 1847 | //pt->AddText(tx);
|
|---|
| 1848 |
|
|---|
| 1849 | //--------------
|
|---|
| 1850 | if (fFitGauss)
|
|---|
| 1851 | {
|
|---|
| 1852 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
|---|
| 1853 | TText *t7 = pt->AddText(tx);
|
|---|
| 1854 | t7->SetTextSize(0.03);
|
|---|
| 1855 | t7->SetTextColor(4);
|
|---|
| 1856 |
|
|---|
| 1857 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
|---|
| 1858 | fGChisq, fGNdf, fGProb);
|
|---|
| 1859 | pt->AddText(tx);
|
|---|
| 1860 |
|
|---|
| 1861 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
|---|
| 1862 | fSigmaGauss, fdSigmaGauss);
|
|---|
| 1863 | pt->AddText(tx);
|
|---|
| 1864 |
|
|---|
| 1865 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
|---|
| 1866 | fNexGauss, fdNexGauss);
|
|---|
| 1867 | pt->AddText(tx);
|
|---|
| 1868 | }
|
|---|
| 1869 | //--------------
|
|---|
| 1870 |
|
|---|
| 1871 | pt->SetFillStyle(0);
|
|---|
| 1872 | pt->SetBorderSize(0);
|
|---|
| 1873 | pt->SetTextAlign(12);
|
|---|
| 1874 |
|
|---|
| 1875 | pt->Draw();
|
|---|
| 1876 |
|
|---|
| 1877 | // fCanvas->Modified();
|
|---|
| 1878 | // fCanvas->Update();
|
|---|
| 1879 | c->Modified();
|
|---|
| 1880 | c->Update();
|
|---|
| 1881 |
|
|---|
| 1882 | return kTRUE;
|
|---|
| 1883 | }
|
|---|
| 1884 |
|
|---|
| 1885 |
|
|---|
| 1886 |
|
|---|
| 1887 | // --------------------------------------------------------------------------
|
|---|
| 1888 | //
|
|---|
| 1889 | // Print the results of the polynomial fit to the alpha distribution
|
|---|
| 1890 | //
|
|---|
| 1891 | //
|
|---|
| 1892 | void MHFindSignificance::PrintPoly(Option_t *o)
|
|---|
| 1893 | {
|
|---|
| 1894 | *fLog << "---------------------------" << endl;
|
|---|
| 1895 | *fLog << "MHFindSignificance::PrintPoly :" << endl;
|
|---|
| 1896 |
|
|---|
| 1897 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
|---|
| 1898 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
|---|
| 1899 | << fAlphasi << endl;
|
|---|
| 1900 |
|
|---|
| 1901 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
|---|
| 1902 | << fNzero << ", " << fIstat << endl;
|
|---|
| 1903 |
|
|---|
| 1904 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
|---|
| 1905 | << fNdf << ", " << fProb << endl;
|
|---|
| 1906 |
|
|---|
| 1907 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
|---|
| 1908 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
|---|
| 1909 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
|---|
| 1910 |
|
|---|
| 1911 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
|---|
| 1912 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
|---|
| 1913 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
|---|
| 1914 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
|---|
| 1915 |
|
|---|
| 1916 | //------------------------------------
|
|---|
| 1917 | // get errors
|
|---|
| 1918 |
|
|---|
| 1919 | /*
|
|---|
| 1920 | Double_t eplus;
|
|---|
| 1921 | Double_t eminus;
|
|---|
| 1922 | Double_t eparab;
|
|---|
| 1923 | Double_t gcc;
|
|---|
| 1924 | Double_t errdiag;
|
|---|
| 1925 |
|
|---|
| 1926 |
|
|---|
| 1927 | if ( !fConstantBackg )
|
|---|
| 1928 | {
|
|---|
| 1929 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
|---|
| 1930 | << endl;
|
|---|
| 1931 |
|
|---|
| 1932 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1933 | {
|
|---|
| 1934 | if (gMinuit)
|
|---|
| 1935 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
|---|
| 1936 | errdiag = sqrt(fEma[j][j]);
|
|---|
| 1937 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
|---|
| 1938 | << eplus << " " << eminus << " " << eparab << " "
|
|---|
| 1939 | << errdiag << " " << gcc << endl;
|
|---|
| 1940 | }
|
|---|
| 1941 | }
|
|---|
| 1942 | else
|
|---|
| 1943 | {
|
|---|
| 1944 | *fLog << "parameter value error errdiag "
|
|---|
| 1945 | << endl;
|
|---|
| 1946 |
|
|---|
| 1947 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1948 | {
|
|---|
| 1949 | errdiag = sqrt(fEma[j][j]);
|
|---|
| 1950 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
|---|
| 1951 | << errdiag << endl;
|
|---|
| 1952 | }
|
|---|
| 1953 | }
|
|---|
| 1954 | */
|
|---|
| 1955 |
|
|---|
| 1956 | //----------------------------------------
|
|---|
| 1957 | /*
|
|---|
| 1958 | *fLog << "Covariance matrix :" << endl;
|
|---|
| 1959 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1960 | {
|
|---|
| 1961 | *fLog << "j = " << j << " : ";
|
|---|
| 1962 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1963 | {
|
|---|
| 1964 | *fLog << fEma[j][k] << " ";
|
|---|
| 1965 | }
|
|---|
| 1966 | *fLog << endl;
|
|---|
| 1967 | }
|
|---|
| 1968 |
|
|---|
| 1969 | *fLog << "Correlation matrix :" << endl;
|
|---|
| 1970 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1971 | {
|
|---|
| 1972 | *fLog << "j = " << j << " : ";
|
|---|
| 1973 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1974 | {
|
|---|
| 1975 | *fLog << fCorr[j][k] << " ";
|
|---|
| 1976 | }
|
|---|
| 1977 | *fLog << endl;
|
|---|
| 1978 | }
|
|---|
| 1979 | */
|
|---|
| 1980 |
|
|---|
| 1981 | *fLog << "---------------------------" << endl;
|
|---|
| 1982 | }
|
|---|
| 1983 |
|
|---|
| 1984 | // --------------------------------------------------------------------------
|
|---|
| 1985 | //
|
|---|
| 1986 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
|---|
| 1987 | //
|
|---|
| 1988 | //
|
|---|
| 1989 | void MHFindSignificance::PrintPolyGauss(Option_t *o)
|
|---|
| 1990 | {
|
|---|
| 1991 | *fLog << "---------------------------" << endl;
|
|---|
| 1992 | *fLog << "MHFindSignificance::PrintPolyGauss :" << endl;
|
|---|
| 1993 |
|
|---|
| 1994 | *fLog << "fAlphalo, fAlphahi = "
|
|---|
| 1995 | << fAlphalo << ", " << fAlphahi << endl;
|
|---|
| 1996 |
|
|---|
| 1997 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
|---|
| 1998 | << fGNzero << ", " << fGIstat << endl;
|
|---|
| 1999 |
|
|---|
| 2000 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
|---|
| 2001 | << fGNdf << ", " << fGProb << endl;
|
|---|
| 2002 |
|
|---|
| 2003 |
|
|---|
| 2004 | //------------------------------------
|
|---|
| 2005 | // get errors
|
|---|
| 2006 |
|
|---|
| 2007 | Double_t eplus;
|
|---|
| 2008 | Double_t eminus;
|
|---|
| 2009 | Double_t eparab;
|
|---|
| 2010 | Double_t gcc;
|
|---|
| 2011 | Double_t errdiag;
|
|---|
| 2012 |
|
|---|
| 2013 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
|---|
| 2014 | << endl;
|
|---|
| 2015 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 2016 | {
|
|---|
| 2017 | if (gMinuit)
|
|---|
| 2018 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
|---|
| 2019 | errdiag = sqrt(fGEma[j][j]);
|
|---|
| 2020 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
|---|
| 2021 | << eplus << " " << eminus << " " << eparab << " "
|
|---|
| 2022 | << errdiag << " " << gcc << endl;
|
|---|
| 2023 | }
|
|---|
| 2024 |
|
|---|
| 2025 |
|
|---|
| 2026 | *fLog << "Covariance matrix :" << endl;
|
|---|
| 2027 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 2028 | {
|
|---|
| 2029 | *fLog << "j = " << j << " : ";
|
|---|
| 2030 | for (Int_t k=0; k<=(fDegree+3); k++)
|
|---|
| 2031 | {
|
|---|
| 2032 | *fLog << fGEma[j][k] << " ";
|
|---|
| 2033 | }
|
|---|
| 2034 | *fLog << endl;
|
|---|
| 2035 | }
|
|---|
| 2036 |
|
|---|
| 2037 | *fLog << "Correlation matrix :" << endl;
|
|---|
| 2038 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 2039 | {
|
|---|
| 2040 | *fLog << "j = " << j << " : ";
|
|---|
| 2041 | for (Int_t k=0; k<=(fDegree+3); k++)
|
|---|
| 2042 | {
|
|---|
| 2043 | *fLog << fGCorr[j][k] << " ";
|
|---|
| 2044 | }
|
|---|
| 2045 | *fLog << endl;
|
|---|
| 2046 | }
|
|---|
| 2047 |
|
|---|
| 2048 | *fLog << "---------------------------" << endl;
|
|---|
| 2049 | }
|
|---|
| 2050 |
|
|---|
| 2051 | //============================================================================
|
|---|
| 2052 |
|
|---|