source: trunk/MagicSoft/Mars/mhist/MHFlux.cc@ 1988

Last change on this file since 1988 was 1668, checked in by tbretz, 22 years ago
*** empty log message ***
File size: 18.2 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Wolfgang Wittek 5/2002 <mailto:wittek@mppmu.mpg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2002
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26// //
27// MHFlux //
28// //
29// calculates absolute photon fluxes //
30// from the distributions of the estimated energy //
31// for the different bins in some variable 'Var' //
32// (Var = Theta or time) //
33// //
34//////////////////////////////////////////////////////////////////////////////
35
36#include "MHFlux.h"
37
38#include <TStyle.h>
39
40#include <TF1.h>
41#include <TH2.h>
42#include <TProfile.h>
43
44#include <TCanvas.h>
45
46#include "MTime.h"
47
48#include "MBinning.h"
49#include "MParList.h"
50
51#include "MLog.h"
52#include "MLogManip.h"
53
54#include "MHThetabarTheta.h"
55#include "MHEffOnTime.h"
56#include "MHGamma.h"
57
58ClassImp(MHFlux);
59
60MHFlux::MHFlux(const MHGamma &hist, const TString varname, const TString unit)
61 : fHOrig(), fHUnfold(), fHFlux()
62{
63 const TH2D &h2d = *hist.GetProject();
64
65 if (varname.IsNull() || unit.IsNull())
66 *fLog << warn << dbginf << "varname or unit not defined" << endl;
67
68 fVarname = varname;
69 fUnit = unit;
70
71 // char txt[100];
72
73 // original distribution of E-est for different bins
74 // of the variable (Theta or time)
75 // sprintf(txt, "gammas vs. E-est and %s",varname);
76
77 ((TH2D&)h2d).Copy(fHOrig);
78
79 fHOrig.SetName("E_est");
80 fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname);
81
82 fHOrig.SetDirectory(NULL);
83 fHOrig.SetXTitle("E_{est} [GeV]");
84 fHOrig.SetYTitle(fVarname+fUnit);
85 //fHOrig.Sumw2();
86
87 SetBinning((TH2*)&fHOrig, (TH2*)&h2d);
88
89 fHOrig.Copy(fHUnfold);
90
91 // unfolded distribution of E-unfold for different bins
92 // of the variable (Theta or time)
93 // sprintf(txt, "gammas vs. E-unfold and %s",varname);
94 fHUnfold.SetName("E-unfolded");
95 fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname);
96
97 fHUnfold.SetDirectory(NULL);
98 fHUnfold.SetXTitle("E_{unfold} [GeV]");
99 fHUnfold.SetYTitle(fVarname+fUnit);
100 //fHUnfold.Sumw2();
101
102 SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig);
103
104
105 // absolute photon flux vs. E-unfold
106 // for different bins of the variable (Theta or time)
107 //
108 // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname);
109 fHFlux.SetName("photon flux");
110 fHFlux.SetTitle(TString("Gamma flux [1/(s m^2 GeV) vs. E-unfold and ")+fVarname);
111
112 fHFlux.SetDirectory(NULL);
113 fHFlux.SetXTitle("E_{unfold} [GeV]");
114 fHFlux.SetYTitle(fVarname+fUnit);
115 fHFlux.Sumw2();
116
117 SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold);
118}
119
120// --------------------------------------------------------------------------
121//
122// Default Constructor. It sets the variable name (Theta or time)
123// and the units for the variable
124//
125MHFlux::MHFlux(const TH2D &h2d, const TString varname, const TString unit)
126 : fHOrig(), fHUnfold(), fHFlux()
127{
128 if (varname.IsNull() || unit.IsNull())
129 *fLog << warn << dbginf << "varname or unit not defined" << endl;
130
131 fVarname = varname;
132 fUnit = unit;
133
134 // char txt[100];
135
136 // original distribution of E-est for different bins
137 // of the variable (Theta or time)
138 // sprintf(txt, "gammas vs. E-est and %s",varname);
139
140 ((TH2D&)h2d).Copy(fHOrig);
141
142 fHOrig.SetName("E_est");
143 fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname);
144
145 fHOrig.SetDirectory(NULL);
146 fHOrig.SetXTitle("E_{est} [GeV]");
147 fHOrig.SetYTitle(fVarname+fUnit);
148 //fHOrig.Sumw2();
149
150 // copy fHOrig into fHUnfold in case no unfolding is done
151 fHOrig.Copy(fHUnfold);
152
153 SetBinning((TH2*)&fHOrig, (TH2*)&h2d);
154
155
156 // unfolded distribution of E-unfold for different bins
157 // of the variable (Theta or time)
158 // sprintf(txt, "gammas vs. E-unfold and %s",varname);
159 fHUnfold.SetName("E-unfolded");
160 fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname);
161
162 fHUnfold.SetDirectory(NULL);
163 fHUnfold.SetXTitle("E_{unfold} [GeV]");
164 fHUnfold.SetYTitle(fVarname+fUnit);
165 //fHUnfold.Sumw2();
166
167 SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig);
168
169
170 // absolute photon flux vs. E-unfold
171 // for different bins of the variable (Theta or time)
172 //
173 // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname);
174 fHFlux.SetName("photon flux");
175 fHFlux.SetTitle(TString("Gamma flux [1/(s m^{2} GeV)] vs. E-unfold and ")+fVarname);
176
177 fHFlux.SetDirectory(NULL);
178 fHFlux.SetXTitle("E_{unfold} [GeV]");
179 fHFlux.SetYTitle(fVarname+fUnit);
180 fHFlux.Sumw2();
181
182 SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold);
183}
184
185// -------------------------------------------------------------------------
186//
187// Dummy Fill (has to be included because in base class MH Fill is set to 0
188// (abstract member function));
189// without the dummy Fill one gets the error message :
190//
191// Error: Can't call MHFlux::MHFlux(evttime,"time","[s]") in current scope
192// FILE:macros/flux.C LINE:465
193// Possible candidates are...
194// filename line:size busy function type and name (in MHFlux)
195// filename line:size busy function type and name (in MH)
196// filename line:size busy function type and name (in MParContainer)
197// filename line:size busy function type and name (in TObject)
198//
199Bool_t MHFlux::Fill(const MParContainer *par)
200{
201 return kTRUE;
202}
203
204
205// -------------------------------------------------------------------------
206//
207// Unfold the distribution in E-est
208//
209void MHFlux::Unfold()
210{
211}
212
213void MHFlux::CalcFlux(const MHEffOnTime &teff, const MHThetabarTheta &thetabar,
214 const TH2D *aeff)
215{
216 CalcFlux(teff.GetHist(), thetabar.GetHist(), aeff);
217}
218
219Double_t MHFlux::ParabInterpolLog(const TAxis &axe, Int_t j,
220 Double_t y[], Double_t Ebar) const
221{
222 const double t1 = log10(axe.GetBinLowEdge(j-1)) + log10(axe.GetBinUpEdge(j-1));
223 const double t2 = log10(axe.GetBinLowEdge(j)) + log10(axe.GetBinUpEdge(j));
224 const double t3 = log10(axe.GetBinLowEdge(j+1)) + log10(axe.GetBinUpEdge(j+1));
225
226 const Double_t lebar = log10(Ebar);
227
228 return Parab(t1/2, t2/2, t3/2, y[j-2], y[j-1], y[j], lebar);
229}
230
231// --------------------------------------------------------------------
232//
233// determine bins for interpolation (k3 is the middle one) in bar.
234// k0 denotes the bin from which the error is copied
235//
236void MHFlux::FindBins(const TAxis &axe, const Double_t bar, Int_t &k3, Int_t &k0) const
237{
238 const Int_t n = axe.GetNbins();
239
240 k3 = axe.FindFixBin(bar);
241 k0 = k3;
242
243 if (k3<2)
244 {
245 k3 = 2;
246 if (bar<axe.GetBinLowEdge(2))
247 k0 = 1;
248 }
249
250 if (k3>n-1)
251 {
252 k3 = n-1;
253 if (bar>axe.GetBinLowEdge(n))
254 k0 = n;
255 }
256
257 if (bar>=axe.GetBinLowEdge(1) && bar<=axe.GetBinUpEdge(n))
258 return;
259
260 *fLog << dbginf << "extrapolation: bar = " << bar;
261 *fLog << ", min =" << axe.GetBinLowEdge(1);
262 *fLog << ", max =" << axe.GetBinUpEdge(n) << endl;
263}
264
265Double_t MHFlux::ParabInterpolCos(const TAxis &axe, const TH2D *aeff, Int_t j, Int_t k3, Double_t val) const
266{
267 const double t1 = cos( axe.GetBinCenter (k3-1) );
268 const double t2 = cos( axe.GetBinCenter (k3) );
269 const double t3 = cos( axe.GetBinCenter (k3+1) );
270
271 const double a1 = aeff->GetBinContent(j, k3-1);
272 const double a2 = aeff->GetBinContent(j, k3);
273 const double a3 = aeff->GetBinContent(j, k3+1);
274
275 return Parab(t1, t2, t3, a1, a2, a3, val);
276}
277
278// -------------------------------------------------------------------------
279//
280// Calculate photon flux by dividing the distribution in Eunf (fHUnfold) by
281// the width of the energy interval (deltaE)
282// the effective ontime (*teff)
283// and the effective collection area (*aeff)
284//
285void MHFlux::CalcFlux(const TH1D *teff, const TProfile *thetabar,
286 const TH2D *aeff)
287{
288 //
289 // Note that fHUnfold has bins in Eunf and Var
290 // *teff has bins in Var (the same bins in Var as fHUnfold)
291 // *thetabar has bins in Var (the same bins in Var as fHUnfold)
292 // *aeff has bins in Etru and Theta
293 // (where in general the binning in Etru is different
294 // from the binning in Eunf)
295 // The variable Var may be 'time' or 'Theta'
296
297 const TAxis &axex = *((TH2*)aeff)->GetXaxis();
298 const TAxis &axey = *((TH2*)aeff)->GetYaxis();
299
300 if (axex.GetNbins()<3)
301 {
302 *fLog << err << "ERROR - Number of Energy bins <3 not implemented!" << endl;
303 return;
304 }
305
306 if (axey.GetNbins()<3)
307 *fLog << warn << "WARNING - Less than 3 theta-bins not supported very well!" << endl;
308
309 //
310 // calculate effective collection area
311 // for the Eunf and Var bins of the histogram fHUnfold
312 // from the histogram *aeff, which has bins in Etru and Theta
313 // the result is the histogram fHAeff
314 //
315 TH2D fHAeff;
316 SetBinning((TH2*)&fHAeff, (TH2*)&fHUnfold);
317 fHAeff.Sumw2();
318
319 //
320 // ------ start loops ------
321 //
322 const Int_t nEtru = aeff->GetNbinsX();
323
324 Double_t *aeffbar = new Double_t[nEtru];
325 Double_t *daeffbar = new Double_t[nEtru];
326
327 const Int_t nVar = fHFlux.GetNbinsY();
328 for (int n=1; n<=nVar; n++)
329 {
330 const Double_t tbar = thetabar->GetBinContent(n);
331 const Double_t costbar = cos(tbar/kRad2Deg);
332
333 // determine bins for interpolation (k3, k0)
334 Int_t kv, ke;
335 FindBins(axey, tbar, kv, ke);
336
337 //
338 // calculate effective collection area at Theta = Thetabar
339 // by quadratic interpolation in cos(Theta);
340 // do this for each bin of Etru
341 //
342 for (int j=1; j<=nEtru; j++)
343 {
344 if (axey.GetNbins()<3)
345 {
346 // FIXME: Other interpolation?
347 aeffbar[j-1] = aeff->GetBinContent(j, n);
348 daeffbar[j-1] = aeff->GetBinError(j, n);
349 }
350 else
351 {
352 aeffbar[j-1] = ParabInterpolCos(axey, aeff, j, kv, costbar);
353 daeffbar[j-1] = aeff->GetBinError(j, ke);
354 }
355 }
356
357 //
358 // calculate effective collection area at (E = Ebar, Theta = Thetabar)
359 // by quadratic interpolation in log10(Etru)
360 // do this for each bin of Eunf
361 //
362 CalcEffCol(axex, fHAeff, n, aeffbar, daeffbar);
363 }
364
365 delete aeffbar;
366 delete daeffbar;
367
368 //
369 // now calculate the absolute gamma flux
370 //
371 CalcAbsGammaFlux(*teff, fHAeff);
372}
373
374// --------------------------------------------------------------------
375//
376// calculate effective collection area at (E = Ebar, Theta = Thetabar)
377// by quadratic interpolation in log10(Etru)
378// do this for each bin of Eunf
379//
380void MHFlux::CalcEffCol(const TAxis &axex, TH2D &fHAeff, Int_t n, Double_t aeffbar[], Double_t daeffbar[])
381{
382 const Int_t nEunf = fHFlux.GetNbinsX();
383
384 const TAxis &unfx = *fHUnfold.GetXaxis();
385
386 for (int m=1; m<=nEunf; m++)
387 {
388 const Double_t Ebar = GetBinCenterLog(unfx, m);
389
390 Int_t j0, j3;
391 FindBins(axex, Ebar, j3, j0);
392
393 const Double_t v = ParabInterpolLog(axex, j3, aeffbar, Ebar);
394
395 fHAeff.SetBinContent(m,n, v);
396 fHAeff.SetBinError(m,n, daeffbar[j0-1]);
397 }
398}
399
400// --------------------------------------------------------------------
401//
402// calculate the absolute gamma flux
403//
404void MHFlux::CalcAbsGammaFlux(const TH1D &teff, const TH2D &fHAeff)
405{
406 const Int_t nEunf = fHFlux.GetNbinsX();
407 const Int_t nVar = fHFlux.GetNbinsY();
408
409 for (int m=1; m<=nEunf; m++)
410 {
411 const Double_t DeltaE = fHFlux.GetXaxis()->GetBinWidth(m);
412
413 for (int n=1; n<=nVar; n++)
414 {
415 const Double_t Ngam = fHUnfold.GetBinContent(m,n);
416 const Double_t Aeff = fHAeff.GetBinContent(m,n);
417 const Double_t Effon = teff.GetBinContent(n);
418
419 const Double_t c1 = fHUnfold.GetBinError(m,n)/Ngam;
420 const Double_t c2 = teff.GetBinError(n) /Effon;
421 const Double_t c3 = fHAeff.GetBinError(m,n) /Aeff;
422
423 const Double_t cont = Ngam / (DeltaE * Effon * Aeff);
424 const Double_t dcont = sqrt(c1*c1 + c2*c2 + c3*c3);
425
426 //
427 // Out of Range
428 //
429 const Bool_t oor = Ngam<=0 || DeltaE<=0 || Effon<=0 || Aeff<=0;
430
431 if (oor)
432 *fLog << warn << "MHFlux::CalcAbsGammaFlux(" << m << "," << n << ") ";
433
434 if (Ngam<=0)
435 *fLog << " Ngam=0";
436 if (DeltaE<=0)
437 *fLog << " DeltaE=0";
438 if (Effon<=0)
439 *fLog << " Effon=0";
440 if (Aeff<=0)
441 *fLog << " Aeff=0";
442
443 if (oor)
444 *fLog << endl;
445
446 fHFlux.SetBinContent(m,n, oor ? 1e-20 : cont);
447 fHFlux.SetBinError(m,n, oor ? 1e-20 : dcont*cont);
448 }
449 }
450}
451
452// --------------------------------------------------------------------
453//
454// draw the differential photon flux vs. E-unf
455// for the individual bins of the variable Var
456//
457void MHFlux::DrawFluxProjectionX(Option_t *opt) const
458{
459 const Int_t nVar = fHFlux.GetNbinsY();
460
461 for (int n=1; n<=nVar; n++)
462 {
463 TString strg0("Flux-");
464
465 TH1D &h = *((TH2D)fHFlux).ProjectionX(strg0+fVarname, n, n, "E");
466
467 TString strg1 = "Photon flux vs. E_{unfold} for ";
468 TString strg2 = fVarname+"-bin #";
469 strg2 += n;
470
471 new TCanvas(strg2, strg1+strg2);
472 gPad->SetLogx();
473 gPad->SetLogy();
474
475 TString name = fVarname+"bin_";
476 name += n;
477
478 h.SetName(name);
479 h.SetTitle(strg1+strg2);
480 h.SetXTitle("E_{unfold} [GeV]");
481 h.SetYTitle("photons / (s m^{2} GeV)");
482 h.GetXaxis()->SetLabelOffset(-0.025);
483 h.GetXaxis()->SetTitleOffset(1.1);
484 h.GetXaxis()->SetNdivisions(1);
485 h.GetYaxis()->SetTitleOffset(1.25);
486 h.DrawCopy();
487 }
488}
489
490void MHFlux::DrawOrigProjectionX(Option_t *opt) const
491{
492 const Int_t nVar = fHOrig.GetNbinsY();
493
494 for (int n=1; n<=nVar; n++)
495 {
496 TString strg0 = "Orig-";
497 strg0 += fVarname;
498 strg0 += "_";
499 strg0 += n;
500
501 TH1D &h = *((TH2D)fHOrig).ProjectionX(strg0, n, n, "E");
502
503 TString strg1("No.of photons vs. E-est for ");
504 strg1 += fVarname+"-bin ";
505 strg1 += n;
506
507 new TCanvas(strg0, strg1);
508
509 gPad->SetLogx();
510 gPad->SetLogy();
511
512 h.SetName(strg0);
513 h.SetTitle(strg1);
514 h.SetXTitle("E_{est} [GeV]");
515 h.GetXaxis()->SetLabelOffset(-0.025);
516 h.GetXaxis()->SetTitleOffset(1.1);
517 h.GetXaxis()->SetNdivisions(1);
518 h.SetYTitle("No.of photons");
519 h.DrawCopy();
520 }
521}
522
523// -------------------------------------------------------------------------
524//
525// Draw copies of the histograms
526//
527TObject *MHFlux::DrawClone(Option_t *opt) const
528{
529 TCanvas &c = *MakeDefCanvas("flux", "Orig - Unfold - Flux plots");
530 c.Divide(2, 2);
531
532 gROOT->SetSelectedPad(NULL);
533
534 c.cd(1);
535 ((TH2*)&fHOrig)->DrawCopy("");
536 gPad->SetLogx();
537
538 c.cd(2);
539 ((TH2*)&fHUnfold)->DrawCopy("");
540 gPad->SetLogx();
541
542 c.cd(3);
543 ((TH2*)&fHFlux)->DrawCopy("");
544 gPad->SetLogx();
545
546 c.Modified();
547 c.Update();
548
549 return &c;
550}
551
552// -------------------------------------------------------------------------
553//
554// Draw the histograms
555//
556void MHFlux::Draw(Option_t *opt)
557{
558 if (!gPad)
559 MakeDefCanvas("flux", "orig-unfold-flux plots");
560
561 gPad->Divide(2,2);
562
563 gPad->cd(1);
564 fHOrig.Draw(opt);
565
566 gPad->cd(2);
567 fHUnfold.Draw(opt);
568
569 gPad->cd(3);
570 fHFlux.Draw(opt);
571
572 gPad->Modified();
573 gPad->Update();
574}
575
576Double_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3,
577 Double_t y1, Double_t y2, Double_t y3,
578 Double_t val)
579{
580 Double_t c0, c1, c2;
581 Parab(x1, x2, x3, y1, y2, y3, &c0, &c1, &c2);
582 return c0 + c1*val + c2*val*val;
583}
584
585// -------------------------------------------------------------------------
586//
587// Quadratic interpolation
588//
589// *** calculate the parameters of a parabula
590// y = a + b*x + c*x**2 = F(x)
591// such that yi = F(xi) for (i=1,3)
592//
593Bool_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3,
594 Double_t y1, Double_t y2, Double_t y3,
595 Double_t *a, Double_t *b, Double_t *c)
596{
597 const double det =
598 + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
599 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
600
601 if (det==0)
602 {
603 *a = 0;
604 *b = 0;
605 *c = 0;
606 return kFALSE;
607 }
608
609 const double det1 = 1.0/det;
610
611 const double ai11 = x2*x3*x3 - x3*x2*x2;
612 const double ai12 = x3*x1*x1 - x1*x3*x3;
613 const double ai13 = x1*x2*x2 - x2*x1*x1;
614
615 const double ai21 = x2*x2 - x3*x3;
616 const double ai22 = x3*x3 - x1*x1;
617 const double ai23 = x1*x1 - x2*x2;
618
619 const double ai31 = x3 - x2;
620 const double ai32 = x1 - x3;
621 const double ai33 = x2 - x1;
622
623 *a = (ai11*y1 + ai12*y2 + ai13*y3) * det1;
624 *b = (ai21*y1 + ai22*y2 + ai23*y3) * det1;
625 *c = (ai31*y1 + ai32*y2 + ai33*y3) * det1;
626
627 return kTRUE;
628}
Note: See TracBrowser for help on using the repository browser.