| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Wolfgang Wittek 5/2002 <mailto:wittek@mppmu.mpg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2002
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // MHFlux //
|
|---|
| 28 | // //
|
|---|
| 29 | // calculates absolute photon fluxes //
|
|---|
| 30 | // from the distributions of the estimated energy //
|
|---|
| 31 | // for the different bins in some variable 'Var' //
|
|---|
| 32 | // (Var = Theta or time) //
|
|---|
| 33 | // //
|
|---|
| 34 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 35 |
|
|---|
| 36 | #include "MHFlux.h"
|
|---|
| 37 |
|
|---|
| 38 | #include <TStyle.h>
|
|---|
| 39 |
|
|---|
| 40 | #include <TF1.h>
|
|---|
| 41 | #include <TH2.h>
|
|---|
| 42 | #include <TProfile.h>
|
|---|
| 43 |
|
|---|
| 44 | #include <TCanvas.h>
|
|---|
| 45 |
|
|---|
| 46 | #include "MTime.h"
|
|---|
| 47 |
|
|---|
| 48 | #include "MBinning.h"
|
|---|
| 49 | #include "MParList.h"
|
|---|
| 50 |
|
|---|
| 51 | #include "MLog.h"
|
|---|
| 52 | #include "MLogManip.h"
|
|---|
| 53 |
|
|---|
| 54 | #include "MHThetabarTheta.h"
|
|---|
| 55 | #include "MHEffOnTime.h"
|
|---|
| 56 | #include "MHGamma.h"
|
|---|
| 57 |
|
|---|
| 58 | ClassImp(MHFlux);
|
|---|
| 59 |
|
|---|
| 60 | using namespace std;
|
|---|
| 61 |
|
|---|
| 62 | MHFlux::MHFlux(const MHGamma &hist, const TString varname, const TString unit)
|
|---|
| 63 | : fHOrig(), fHUnfold(), fHFlux()
|
|---|
| 64 | {
|
|---|
| 65 | const TH2D &h2d = *hist.GetProject();
|
|---|
| 66 |
|
|---|
| 67 | if (varname.IsNull() || unit.IsNull())
|
|---|
| 68 | *fLog << warn << dbginf << "varname or unit not defined" << endl;
|
|---|
| 69 |
|
|---|
| 70 | fVarname = varname;
|
|---|
| 71 | fUnit = unit;
|
|---|
| 72 |
|
|---|
| 73 | // char txt[100];
|
|---|
| 74 |
|
|---|
| 75 | // original distribution of E-est for different bins
|
|---|
| 76 | // of the variable (Theta or time)
|
|---|
| 77 | // sprintf(txt, "gammas vs. E-est and %s",varname);
|
|---|
| 78 |
|
|---|
| 79 | ((TH2D&)h2d).Copy(fHOrig);
|
|---|
| 80 |
|
|---|
| 81 | fHOrig.SetName("E_est");
|
|---|
| 82 | fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname);
|
|---|
| 83 |
|
|---|
| 84 | fHOrig.SetDirectory(NULL);
|
|---|
| 85 | fHOrig.SetXTitle("E_{est} [GeV]");
|
|---|
| 86 | fHOrig.SetYTitle(fVarname+fUnit);
|
|---|
| 87 | //fHOrig.Sumw2();
|
|---|
| 88 |
|
|---|
| 89 | SetBinning((TH2*)&fHOrig, (TH2*)&h2d);
|
|---|
| 90 |
|
|---|
| 91 | fHOrig.Copy(fHUnfold);
|
|---|
| 92 |
|
|---|
| 93 | // unfolded distribution of E-unfold for different bins
|
|---|
| 94 | // of the variable (Theta or time)
|
|---|
| 95 | // sprintf(txt, "gammas vs. E-unfold and %s",varname);
|
|---|
| 96 | fHUnfold.SetName("E-unfolded");
|
|---|
| 97 | fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname);
|
|---|
| 98 |
|
|---|
| 99 | fHUnfold.SetDirectory(NULL);
|
|---|
| 100 | fHUnfold.SetXTitle("E_{unfold} [GeV]");
|
|---|
| 101 | fHUnfold.SetYTitle(fVarname+fUnit);
|
|---|
| 102 | //fHUnfold.Sumw2();
|
|---|
| 103 |
|
|---|
| 104 | SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig);
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 | // absolute photon flux vs. E-unfold
|
|---|
| 108 | // for different bins of the variable (Theta or time)
|
|---|
| 109 | //
|
|---|
| 110 | // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname);
|
|---|
| 111 | fHFlux.SetName("photon flux");
|
|---|
| 112 | fHFlux.SetTitle(TString("Gamma flux [1/(s m^2 GeV) vs. E-unfold and ")+fVarname);
|
|---|
| 113 |
|
|---|
| 114 | fHFlux.SetDirectory(NULL);
|
|---|
| 115 | fHFlux.SetXTitle("E_{unfold} [GeV]");
|
|---|
| 116 | fHFlux.SetYTitle(fVarname+fUnit);
|
|---|
| 117 | fHFlux.Sumw2();
|
|---|
| 118 |
|
|---|
| 119 | SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold);
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | // --------------------------------------------------------------------------
|
|---|
| 123 | //
|
|---|
| 124 | // Default Constructor. It sets the variable name (Theta or time)
|
|---|
| 125 | // and the units for the variable
|
|---|
| 126 | //
|
|---|
| 127 | MHFlux::MHFlux(const TH2D &h2d, const TString varname, const TString unit)
|
|---|
| 128 | : fHOrig(), fHUnfold(), fHFlux()
|
|---|
| 129 | {
|
|---|
| 130 | if (varname.IsNull() || unit.IsNull())
|
|---|
| 131 | *fLog << warn << dbginf << "varname or unit not defined" << endl;
|
|---|
| 132 |
|
|---|
| 133 | fVarname = varname;
|
|---|
| 134 | fUnit = unit;
|
|---|
| 135 |
|
|---|
| 136 | // char txt[100];
|
|---|
| 137 |
|
|---|
| 138 | // original distribution of E-est for different bins
|
|---|
| 139 | // of the variable (Theta or time)
|
|---|
| 140 | // sprintf(txt, "gammas vs. E-est and %s",varname);
|
|---|
| 141 |
|
|---|
| 142 | ((TH2D&)h2d).Copy(fHOrig);
|
|---|
| 143 |
|
|---|
| 144 | fHOrig.SetName("E_est");
|
|---|
| 145 | fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname);
|
|---|
| 146 |
|
|---|
| 147 | fHOrig.SetDirectory(NULL);
|
|---|
| 148 | fHOrig.SetXTitle("E_{est} [GeV]");
|
|---|
| 149 | fHOrig.SetYTitle(fVarname+fUnit);
|
|---|
| 150 | //fHOrig.Sumw2();
|
|---|
| 151 |
|
|---|
| 152 | // copy fHOrig into fHUnfold in case no unfolding is done
|
|---|
| 153 | fHOrig.Copy(fHUnfold);
|
|---|
| 154 |
|
|---|
| 155 | SetBinning((TH2*)&fHOrig, (TH2*)&h2d);
|
|---|
| 156 |
|
|---|
| 157 |
|
|---|
| 158 | // unfolded distribution of E-unfold for different bins
|
|---|
| 159 | // of the variable (Theta or time)
|
|---|
| 160 | // sprintf(txt, "gammas vs. E-unfold and %s",varname);
|
|---|
| 161 | fHUnfold.SetName("E-unfolded");
|
|---|
| 162 | fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname);
|
|---|
| 163 |
|
|---|
| 164 | fHUnfold.SetDirectory(NULL);
|
|---|
| 165 | fHUnfold.SetXTitle("E_{unfold} [GeV]");
|
|---|
| 166 | fHUnfold.SetYTitle(fVarname+fUnit);
|
|---|
| 167 | //fHUnfold.Sumw2();
|
|---|
| 168 |
|
|---|
| 169 | SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig);
|
|---|
| 170 |
|
|---|
| 171 |
|
|---|
| 172 | // absolute photon flux vs. E-unfold
|
|---|
| 173 | // for different bins of the variable (Theta or time)
|
|---|
| 174 | //
|
|---|
| 175 | // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname);
|
|---|
| 176 | fHFlux.SetName("photon flux");
|
|---|
| 177 | fHFlux.SetTitle(TString("Gamma flux [1/(s m^{2} GeV)] vs. E-unfold and ")+fVarname);
|
|---|
| 178 |
|
|---|
| 179 | fHFlux.SetDirectory(NULL);
|
|---|
| 180 | fHFlux.SetXTitle("E_{unfold} [GeV]");
|
|---|
| 181 | fHFlux.SetYTitle(fVarname+fUnit);
|
|---|
| 182 | fHFlux.Sumw2();
|
|---|
| 183 |
|
|---|
| 184 | SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold);
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | // -------------------------------------------------------------------------
|
|---|
| 188 | //
|
|---|
| 189 | // Unfold the distribution in E-est
|
|---|
| 190 | //
|
|---|
| 191 | void MHFlux::Unfold()
|
|---|
| 192 | {
|
|---|
| 193 | }
|
|---|
| 194 |
|
|---|
| 195 | void MHFlux::CalcFlux(const MHEffOnTime &teff, const MHThetabarTheta &thetabar,
|
|---|
| 196 | const TH2D *aeff)
|
|---|
| 197 | {
|
|---|
| 198 | CalcFlux(teff.GetHist(), thetabar.GetHist(), aeff);
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 | Double_t MHFlux::ParabInterpolLog(const TAxis &axe, Int_t j,
|
|---|
| 202 | Double_t y[], Double_t Ebar) const
|
|---|
| 203 | {
|
|---|
| 204 | const double t1 = log10(axe.GetBinLowEdge(j-1)) + log10(axe.GetBinUpEdge(j-1));
|
|---|
| 205 | const double t2 = log10(axe.GetBinLowEdge(j)) + log10(axe.GetBinUpEdge(j));
|
|---|
| 206 | const double t3 = log10(axe.GetBinLowEdge(j+1)) + log10(axe.GetBinUpEdge(j+1));
|
|---|
| 207 |
|
|---|
| 208 | const Double_t lebar = log10(Ebar);
|
|---|
| 209 |
|
|---|
| 210 | return Parab(t1/2, t2/2, t3/2, y[j-2], y[j-1], y[j], lebar);
|
|---|
| 211 | }
|
|---|
| 212 |
|
|---|
| 213 | // --------------------------------------------------------------------
|
|---|
| 214 | //
|
|---|
| 215 | // determine bins for interpolation (k3 is the middle one) in bar.
|
|---|
| 216 | // k0 denotes the bin from which the error is copied
|
|---|
| 217 | //
|
|---|
| 218 | void MHFlux::FindBins(const TAxis &axe, const Double_t bar, Int_t &k3, Int_t &k0) const
|
|---|
| 219 | {
|
|---|
| 220 | const Int_t n = axe.GetNbins();
|
|---|
| 221 |
|
|---|
| 222 | k3 = axe.FindFixBin(bar);
|
|---|
| 223 | k0 = k3;
|
|---|
| 224 |
|
|---|
| 225 | if (k3<2)
|
|---|
| 226 | {
|
|---|
| 227 | k3 = 2;
|
|---|
| 228 | if (bar<axe.GetBinLowEdge(2))
|
|---|
| 229 | k0 = 1;
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | if (k3>n-1)
|
|---|
| 233 | {
|
|---|
| 234 | k3 = n-1;
|
|---|
| 235 | if (bar>axe.GetBinLowEdge(n))
|
|---|
| 236 | k0 = n;
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 | if (bar>=axe.GetBinLowEdge(1) && bar<=axe.GetBinUpEdge(n))
|
|---|
| 240 | return;
|
|---|
| 241 |
|
|---|
| 242 | *fLog << dbginf << "extrapolation: bar = " << bar;
|
|---|
| 243 | *fLog << ", min =" << axe.GetBinLowEdge(1);
|
|---|
| 244 | *fLog << ", max =" << axe.GetBinUpEdge(n) << endl;
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | Double_t MHFlux::ParabInterpolCos(const TAxis &axe, const TH2D *aeff, Int_t j, Int_t k3, Double_t val) const
|
|---|
| 248 | {
|
|---|
| 249 | const double t1 = cos( axe.GetBinCenter (k3-1) );
|
|---|
| 250 | const double t2 = cos( axe.GetBinCenter (k3) );
|
|---|
| 251 | const double t3 = cos( axe.GetBinCenter (k3+1) );
|
|---|
| 252 |
|
|---|
| 253 | const double a1 = aeff->GetBinContent(j, k3-1);
|
|---|
| 254 | const double a2 = aeff->GetBinContent(j, k3);
|
|---|
| 255 | const double a3 = aeff->GetBinContent(j, k3+1);
|
|---|
| 256 |
|
|---|
| 257 | return Parab(t1, t2, t3, a1, a2, a3, val);
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | // -------------------------------------------------------------------------
|
|---|
| 261 | //
|
|---|
| 262 | // Calculate photon flux by dividing the distribution in Eunf (fHUnfold) by
|
|---|
| 263 | // the width of the energy interval (deltaE)
|
|---|
| 264 | // the effective ontime (*teff)
|
|---|
| 265 | // and the effective collection area (*aeff)
|
|---|
| 266 | //
|
|---|
| 267 | void MHFlux::CalcFlux(const TH1D *teff, const TProfile *thetabar,
|
|---|
| 268 | const TH2D *aeff)
|
|---|
| 269 | {
|
|---|
| 270 | //
|
|---|
| 271 | // Note that fHUnfold has bins in Eunf and Var
|
|---|
| 272 | // *teff has bins in Var (the same bins in Var as fHUnfold)
|
|---|
| 273 | // *thetabar has bins in Var (the same bins in Var as fHUnfold)
|
|---|
| 274 | // *aeff has bins in Etru and Theta
|
|---|
| 275 | // (where in general the binning in Etru is different
|
|---|
| 276 | // from the binning in Eunf)
|
|---|
| 277 | // The variable Var may be 'time' or 'Theta'
|
|---|
| 278 |
|
|---|
| 279 | const TAxis &axex = *((TH2*)aeff)->GetXaxis();
|
|---|
| 280 | const TAxis &axey = *((TH2*)aeff)->GetYaxis();
|
|---|
| 281 |
|
|---|
| 282 | if (axex.GetNbins()<3)
|
|---|
| 283 | {
|
|---|
| 284 | *fLog << err << "ERROR - Number of Energy bins <3 not implemented!" << endl;
|
|---|
| 285 | return;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | if (axey.GetNbins()<3)
|
|---|
| 289 | *fLog << warn << "WARNING - Less than 3 theta-bins not supported very well!" << endl;
|
|---|
| 290 |
|
|---|
| 291 | //
|
|---|
| 292 | // calculate effective collection area
|
|---|
| 293 | // for the Eunf and Var bins of the histogram fHUnfold
|
|---|
| 294 | // from the histogram *aeff, which has bins in Etru and Theta
|
|---|
| 295 | // the result is the histogram fHAeff
|
|---|
| 296 | //
|
|---|
| 297 | TH2D fHAeff;
|
|---|
| 298 | SetBinning((TH2*)&fHAeff, (TH2*)&fHUnfold);
|
|---|
| 299 | fHAeff.Sumw2();
|
|---|
| 300 |
|
|---|
| 301 | //
|
|---|
| 302 | // ------ start loops ------
|
|---|
| 303 | //
|
|---|
| 304 | const Int_t nEtru = aeff->GetNbinsX();
|
|---|
| 305 |
|
|---|
| 306 | Double_t *aeffbar = new Double_t[nEtru];
|
|---|
| 307 | Double_t *daeffbar = new Double_t[nEtru];
|
|---|
| 308 |
|
|---|
| 309 | const Int_t nVar = fHFlux.GetNbinsY();
|
|---|
| 310 | for (int n=1; n<=nVar; n++)
|
|---|
| 311 | {
|
|---|
| 312 | const Double_t tbar = thetabar->GetBinContent(n);
|
|---|
| 313 | const Double_t costbar = cos(tbar/kRad2Deg);
|
|---|
| 314 |
|
|---|
| 315 | // determine bins for interpolation (k3, k0)
|
|---|
| 316 | Int_t kv, ke;
|
|---|
| 317 | FindBins(axey, tbar, kv, ke);
|
|---|
| 318 |
|
|---|
| 319 | //
|
|---|
| 320 | // calculate effective collection area at Theta = Thetabar
|
|---|
| 321 | // by quadratic interpolation in cos(Theta);
|
|---|
| 322 | // do this for each bin of Etru
|
|---|
| 323 | //
|
|---|
| 324 | for (int j=1; j<=nEtru; j++)
|
|---|
| 325 | {
|
|---|
| 326 | if (axey.GetNbins()<3)
|
|---|
| 327 | {
|
|---|
| 328 | // FIXME: Other interpolation?
|
|---|
| 329 | aeffbar[j-1] = aeff->GetBinContent(j, n);
|
|---|
| 330 | daeffbar[j-1] = aeff->GetBinError(j, n);
|
|---|
| 331 | }
|
|---|
| 332 | else
|
|---|
| 333 | {
|
|---|
| 334 | aeffbar[j-1] = ParabInterpolCos(axey, aeff, j, kv, costbar);
|
|---|
| 335 | daeffbar[j-1] = aeff->GetBinError(j, ke);
|
|---|
| 336 | }
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | //
|
|---|
| 340 | // calculate effective collection area at (E = Ebar, Theta = Thetabar)
|
|---|
| 341 | // by quadratic interpolation in log10(Etru)
|
|---|
| 342 | // do this for each bin of Eunf
|
|---|
| 343 | //
|
|---|
| 344 | CalcEffCol(axex, fHAeff, n, aeffbar, daeffbar);
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | delete aeffbar;
|
|---|
| 348 | delete daeffbar;
|
|---|
| 349 |
|
|---|
| 350 | //
|
|---|
| 351 | // now calculate the absolute gamma flux
|
|---|
| 352 | //
|
|---|
| 353 | CalcAbsGammaFlux(*teff, fHAeff);
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | // --------------------------------------------------------------------
|
|---|
| 357 | //
|
|---|
| 358 | // calculate effective collection area at (E = Ebar, Theta = Thetabar)
|
|---|
| 359 | // by quadratic interpolation in log10(Etru)
|
|---|
| 360 | // do this for each bin of Eunf
|
|---|
| 361 | //
|
|---|
| 362 | void MHFlux::CalcEffCol(const TAxis &axex, TH2D &fHAeff, Int_t n, Double_t aeffbar[], Double_t daeffbar[])
|
|---|
| 363 | {
|
|---|
| 364 | const Int_t nEunf = fHFlux.GetNbinsX();
|
|---|
| 365 |
|
|---|
| 366 | const TAxis &unfx = *fHUnfold.GetXaxis();
|
|---|
| 367 |
|
|---|
| 368 | for (int m=1; m<=nEunf; m++)
|
|---|
| 369 | {
|
|---|
| 370 | const Double_t Ebar = GetBinCenterLog(unfx, m);
|
|---|
| 371 |
|
|---|
| 372 | Int_t j0, j3;
|
|---|
| 373 | FindBins(axex, Ebar, j3, j0);
|
|---|
| 374 |
|
|---|
| 375 | const Double_t v = ParabInterpolLog(axex, j3, aeffbar, Ebar);
|
|---|
| 376 |
|
|---|
| 377 | fHAeff.SetBinContent(m,n, v);
|
|---|
| 378 | fHAeff.SetBinError(m,n, daeffbar[j0-1]);
|
|---|
| 379 | }
|
|---|
| 380 | }
|
|---|
| 381 |
|
|---|
| 382 | // --------------------------------------------------------------------
|
|---|
| 383 | //
|
|---|
| 384 | // calculate the absolute gamma flux
|
|---|
| 385 | //
|
|---|
| 386 | void MHFlux::CalcAbsGammaFlux(const TH1D &teff, const TH2D &fHAeff)
|
|---|
| 387 | {
|
|---|
| 388 | const Int_t nEunf = fHFlux.GetNbinsX();
|
|---|
| 389 | const Int_t nVar = fHFlux.GetNbinsY();
|
|---|
| 390 |
|
|---|
| 391 | for (int m=1; m<=nEunf; m++)
|
|---|
| 392 | {
|
|---|
| 393 | const Double_t DeltaE = fHFlux.GetXaxis()->GetBinWidth(m);
|
|---|
| 394 |
|
|---|
| 395 | for (int n=1; n<=nVar; n++)
|
|---|
| 396 | {
|
|---|
| 397 | const Double_t Ngam = fHUnfold.GetBinContent(m,n);
|
|---|
| 398 | const Double_t Aeff = fHAeff.GetBinContent(m,n);
|
|---|
| 399 | const Double_t Effon = teff.GetBinContent(n);
|
|---|
| 400 |
|
|---|
| 401 | const Double_t c1 = fHUnfold.GetBinError(m,n)/Ngam;
|
|---|
| 402 | const Double_t c2 = teff.GetBinError(n) /Effon;
|
|---|
| 403 | const Double_t c3 = fHAeff.GetBinError(m,n) /Aeff;
|
|---|
| 404 |
|
|---|
| 405 | const Double_t cont = Ngam / (DeltaE * Effon * Aeff);
|
|---|
| 406 | const Double_t dcont = sqrt(c1*c1 + c2*c2 + c3*c3);
|
|---|
| 407 |
|
|---|
| 408 | //
|
|---|
| 409 | // Out of Range
|
|---|
| 410 | //
|
|---|
| 411 | const Bool_t oor = Ngam<=0 || DeltaE<=0 || Effon<=0 || Aeff<=0;
|
|---|
| 412 |
|
|---|
| 413 | if (oor)
|
|---|
| 414 | *fLog << warn << "MHFlux::CalcAbsGammaFlux(" << m << "," << n << ") ";
|
|---|
| 415 |
|
|---|
| 416 | if (Ngam<=0)
|
|---|
| 417 | *fLog << " Ngam=0";
|
|---|
| 418 | if (DeltaE<=0)
|
|---|
| 419 | *fLog << " DeltaE=0";
|
|---|
| 420 | if (Effon<=0)
|
|---|
| 421 | *fLog << " Effon=0";
|
|---|
| 422 | if (Aeff<=0)
|
|---|
| 423 | *fLog << " Aeff=0";
|
|---|
| 424 |
|
|---|
| 425 | if (oor)
|
|---|
| 426 | *fLog << endl;
|
|---|
| 427 |
|
|---|
| 428 | fHFlux.SetBinContent(m,n, oor ? 1e-20 : cont);
|
|---|
| 429 | fHFlux.SetBinError(m,n, oor ? 1e-20 : dcont*cont);
|
|---|
| 430 | }
|
|---|
| 431 | }
|
|---|
| 432 | }
|
|---|
| 433 |
|
|---|
| 434 | // --------------------------------------------------------------------
|
|---|
| 435 | //
|
|---|
| 436 | // draw the differential photon flux vs. E-unf
|
|---|
| 437 | // for the individual bins of the variable Var
|
|---|
| 438 | //
|
|---|
| 439 | void MHFlux::DrawFluxProjectionX(Option_t *opt) const
|
|---|
| 440 | {
|
|---|
| 441 | const Int_t nVar = fHFlux.GetNbinsY();
|
|---|
| 442 |
|
|---|
| 443 | for (int n=1; n<=nVar; n++)
|
|---|
| 444 | {
|
|---|
| 445 | TString strg0("Flux-");
|
|---|
| 446 |
|
|---|
| 447 | TH1D &h = *((TH2D)fHFlux).ProjectionX(strg0+fVarname, n, n, "E");
|
|---|
| 448 |
|
|---|
| 449 | TString strg1 = "Photon flux vs. E_{unfold} for ";
|
|---|
| 450 | TString strg2 = fVarname+"-bin #";
|
|---|
| 451 | strg2 += n;
|
|---|
| 452 |
|
|---|
| 453 | new TCanvas(strg2, strg1+strg2);
|
|---|
| 454 | gPad->SetLogx();
|
|---|
| 455 | gPad->SetLogy();
|
|---|
| 456 |
|
|---|
| 457 | TString name = fVarname+"bin_";
|
|---|
| 458 | name += n;
|
|---|
| 459 |
|
|---|
| 460 | h.SetName(name);
|
|---|
| 461 | h.SetTitle(strg1+strg2);
|
|---|
| 462 | h.SetXTitle("E_{unfold} [GeV]");
|
|---|
| 463 | h.SetYTitle("photons / (s m^{2} GeV)");
|
|---|
| 464 | h.GetXaxis()->SetLabelOffset(-0.025);
|
|---|
| 465 | h.GetXaxis()->SetTitleOffset(1.1);
|
|---|
| 466 | h.GetXaxis()->SetNdivisions(1);
|
|---|
| 467 | h.GetYaxis()->SetTitleOffset(1.25);
|
|---|
| 468 | h.DrawCopy();
|
|---|
| 469 | }
|
|---|
| 470 | }
|
|---|
| 471 |
|
|---|
| 472 | void MHFlux::DrawOrigProjectionX(Option_t *opt) const
|
|---|
| 473 | {
|
|---|
| 474 | const Int_t nVar = fHOrig.GetNbinsY();
|
|---|
| 475 |
|
|---|
| 476 | for (int n=1; n<=nVar; n++)
|
|---|
| 477 | {
|
|---|
| 478 | TString strg0 = "Orig-";
|
|---|
| 479 | strg0 += fVarname;
|
|---|
| 480 | strg0 += "_";
|
|---|
| 481 | strg0 += n;
|
|---|
| 482 |
|
|---|
| 483 | TH1D &h = *((TH2D)fHOrig).ProjectionX(strg0, n, n, "E");
|
|---|
| 484 |
|
|---|
| 485 | TString strg1("No.of photons vs. E-est for ");
|
|---|
| 486 | strg1 += fVarname+"-bin ";
|
|---|
| 487 | strg1 += n;
|
|---|
| 488 |
|
|---|
| 489 | new TCanvas(strg0, strg1);
|
|---|
| 490 |
|
|---|
| 491 | gPad->SetLogx();
|
|---|
| 492 | gPad->SetLogy();
|
|---|
| 493 |
|
|---|
| 494 | h.SetName(strg0);
|
|---|
| 495 | h.SetTitle(strg1);
|
|---|
| 496 | h.SetXTitle("E_{est} [GeV]");
|
|---|
| 497 | h.GetXaxis()->SetLabelOffset(-0.025);
|
|---|
| 498 | h.GetXaxis()->SetTitleOffset(1.1);
|
|---|
| 499 | h.GetXaxis()->SetNdivisions(1);
|
|---|
| 500 | h.SetYTitle("No.of photons");
|
|---|
| 501 | h.DrawCopy();
|
|---|
| 502 | }
|
|---|
| 503 | }
|
|---|
| 504 |
|
|---|
| 505 | // -------------------------------------------------------------------------
|
|---|
| 506 | //
|
|---|
| 507 | // Draw the histograms
|
|---|
| 508 | //
|
|---|
| 509 | void MHFlux::Draw(Option_t *opt)
|
|---|
| 510 | {
|
|---|
| 511 | TVirtualPad *pad = gPad ? gPad : MakeDefCanvas(this);
|
|---|
| 512 | pad->SetBorderMode(0);
|
|---|
| 513 |
|
|---|
| 514 | AppendPad("");
|
|---|
| 515 |
|
|---|
| 516 | pad->Divide(2,2);
|
|---|
| 517 |
|
|---|
| 518 | pad->cd(1);
|
|---|
| 519 | gPad->SetBorderMode(0);
|
|---|
| 520 | fHOrig.Draw(opt);
|
|---|
| 521 |
|
|---|
| 522 | pad->cd(2);
|
|---|
| 523 | gPad->SetBorderMode(0);
|
|---|
| 524 | fHUnfold.Draw(opt);
|
|---|
| 525 |
|
|---|
| 526 | pad->cd(3);
|
|---|
| 527 | gPad->SetBorderMode(0);
|
|---|
| 528 | fHFlux.Draw(opt);
|
|---|
| 529 |
|
|---|
| 530 | pad->Modified();
|
|---|
| 531 | pad->Update();
|
|---|
| 532 | }
|
|---|
| 533 |
|
|---|
| 534 | Double_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3,
|
|---|
| 535 | Double_t y1, Double_t y2, Double_t y3,
|
|---|
| 536 | Double_t val)
|
|---|
| 537 | {
|
|---|
| 538 | Double_t c0, c1, c2;
|
|---|
| 539 | Parab(x1, x2, x3, y1, y2, y3, &c0, &c1, &c2);
|
|---|
| 540 | return c0 + c1*val + c2*val*val;
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | // -------------------------------------------------------------------------
|
|---|
| 544 | //
|
|---|
| 545 | // Quadratic interpolation
|
|---|
| 546 | //
|
|---|
| 547 | // *** calculate the parameters of a parabula
|
|---|
| 548 | // y = a + b*x + c*x**2 = F(x)
|
|---|
| 549 | // such that yi = F(xi) for (i=1,3)
|
|---|
| 550 | //
|
|---|
| 551 | Bool_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3,
|
|---|
| 552 | Double_t y1, Double_t y2, Double_t y3,
|
|---|
| 553 | Double_t *a, Double_t *b, Double_t *c)
|
|---|
| 554 | {
|
|---|
| 555 | const double det =
|
|---|
| 556 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
|---|
| 557 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
|---|
| 558 |
|
|---|
| 559 | if (det==0)
|
|---|
| 560 | {
|
|---|
| 561 | *a = 0;
|
|---|
| 562 | *b = 0;
|
|---|
| 563 | *c = 0;
|
|---|
| 564 | return kFALSE;
|
|---|
| 565 | }
|
|---|
| 566 |
|
|---|
| 567 | const double det1 = 1.0/det;
|
|---|
| 568 |
|
|---|
| 569 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
|---|
| 570 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
|---|
| 571 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
|---|
| 572 |
|
|---|
| 573 | const double ai21 = x2*x2 - x3*x3;
|
|---|
| 574 | const double ai22 = x3*x3 - x1*x1;
|
|---|
| 575 | const double ai23 = x1*x1 - x2*x2;
|
|---|
| 576 |
|
|---|
| 577 | const double ai31 = x3 - x2;
|
|---|
| 578 | const double ai32 = x1 - x3;
|
|---|
| 579 | const double ai33 = x2 - x1;
|
|---|
| 580 |
|
|---|
| 581 | *a = (ai11*y1 + ai12*y2 + ai13*y3) * det1;
|
|---|
| 582 | *b = (ai21*y1 + ai22*y2 + ai23*y3) * det1;
|
|---|
| 583 | *c = (ai31*y1 + ai32*y2 + ai33*y3) * det1;
|
|---|
| 584 |
|
|---|
| 585 | return kTRUE;
|
|---|
| 586 | }
|
|---|